
 
 

 

 
 

Transformations and Non-Linear Modeling  
 

This document considers transformations in the analysis of RET data. Transformations have 
been used in several ways. First, they often are used as a tool to address assumption 
violations of statistical methods. The statistical workhorse for many RETs is some form of 
linear regression, so the assumption violations typically addressed are those dealing with 
normality, variance homogeneity of disturbance terms, and linearity. Also important is the 
assumption of independent disturbances and, potentially, interval level metrics. A second 
use of transformations is to formally model non-linear relationships between variables, such 
as between a continuous mediator and a continuous outcome. I address primarily the first 
use of transformations in this document. For a discussion of using transformations for non-
linear modeling, see Chapter 15 (and, in particular, the section on log regression).  

TRANSFORMATIONS TO ADDRESS ASSUMPTION VIOLATIONS    

Transformations often are used to help make data conform to the assumptions of a statistical 
test. This strategy was important in earlier days of statistical analysis when the analytic tools 
we had were limited and assumption laden. In modern statistics, a large number of robust 
statistical procedures have become available that do not require the assumptions of the older 
methods. These newer approaches include such strategies as the invocation of sandwich 
estimators for standard errors, bootstrapping, and a host of newer robust regression methods 
described in Wilcox (2022). With the advent of these newer techniques, the need for using 
transformations to deal with assumption violations has diminished.  

Common transformation strategies include log transformations, which are thought to 
reduce outliers and to deal with data that are right or positively skewed. Log transformations 
also are thought by some to address matters of non-normality and disturbance variance 
heterogeneity. Square root transformations often are invoked for positively skewed data 
where disturbance variance heterogeneity is proportional to the mean. Reciprocal 
transformations often are used when the disturbance variance is proportional to the fourth 
power of the mean. Box-Cox transformations are a family of power transformations that 
can stabilize heterogeneous disturbance variances and improve disturbance non-normality. 
Sometimes these strategies are effective at reducing assumption violations, sometimes not. 
Current wisdom is that it usually is better to use more modern analytic methods that do not 
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make assumptions that are problematic in the first place.  
Sometimes a transformation will remedy one assumption violation but unwittingly 

create another violation (see Budescu & Appelbaum, 1981).  As well, transformations have 
been found to be suboptimal when working with certain forms of heavy-tailed distributions 
(Rasmussen, 1989; Doksum &Wong, 1983). Log transformations to deal with outliers may 
or may not suffice. Wilcox (2003) describes how log transformations sometimes increase 
rather than decrease the number of outliers in data. There are a wide range of outlier resistant 
regression methods that handle outliers in more elegant ways than transformations and that 
allow one to maintain original variable metrics in the process (see Wilcox, 2008, 2010, 
2017).  I describe some of these regression methods in Chapter 6 and provide programs on 
my website to implement them. 

Transformed variables often are difficult to interpret, which is another reason not to 
use them. For example, most of us have a good sense of income and what different values 
of income imply, but few of us have a good sense of the log of income and what different 
values of log income imply.  How well off is someone who earns a log income of 10.23 and 
how much better off is that individual than someone who earns a log income of 9.33? This 
difference is not intuitive. When transformations make non-arbitrary metrics arbitrary, the 
transformations can be counterproductive interpretationally. 

Doubts also can be raised about the meaningfulness of transformed scores if, for 
example, the transformations make constructs that are inherently skewed be normally 
distributed. The distribution of depression among the general population is inherently 
skewed with most people not suffering from depression. What exactly are we measuring 
when these depression scores are transformed to have a normal distribution? Do these 
transformed scores validly reflect depression?  In some sense they do, but the non-linear 
function between the scores and the underlying latent construct of depression might make 
score interpretation difficult. 

Yet another issue with a transformation strategy is that transformations in multivariate 
models can sometimes lead us to unwittingly work with models we never would have 
posited because of their conceptual inappropriateness.  For example, suppose we want to 
work with the model Y = X + Z but because of non-linearities, transform the variables using 
log transforms such that ln(Y) = ln(X) + ln(Z).  It turns out that this latter model implies 
that X and Z in their original metrics combine multiplicatively to impact Y because the log 
of the equation Y = XZ is ln(Y) = ln(X) + ln(Z).  Is a multiplicative model what we intended 
when we model the log transformed predictors? 

Transformations of a variable affects not just its association with one predictor in a 
regression equation; it also potentially changes the relationship between the transformed 
variable and all the other variables in the regression analysis. This can result in model 
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misspecification and biased coefficients and significance tests. One must be careful when 
using transformations in multivariate systems because the transformation can affect the 
entire system, not just one pair of variables.   

Some researchers argue that transformations are unnecessary for linear regression for 
handling non-normality or disturbance variance heterogeneity because tests of coefficients 
for regression models based on OLS are robust to such violations. Broad assertions about  
the robustness of OLS regression are questionable because the fact is that the matter of 
robustness is nuanced. For example, Wilcox (2022) argues that with certain types of 
heteroscedasticity, Type I errors in regression models can inflate substantially beyond 
desired alpha levels. Statistical power also can be adversely affected by violations of 
normality and heteroscedasticity, especially for heavy tailed distributions (Wilcox, 1998; 
Wilcox & Rousselet, 2023). Again, when possible, one usually is advised to use analytic 
methods that do not make these assumptions rather than resort to ad hoc transformations.  

Transformations also can obscure effect size estimates and their meaningfulness. 
Transformations can sometimes help address tests of null hypotheses of zero effects, but 
they can yield different characterizations of effect size based on transformed versus 
untransformed data (even after back-transformation). 

For some transformations and some analytic situations, it is reasonable to back-
transform predicted scores and regression coefficients so that inferences and statements can 
be made in the original metric of the transformed variables.  However, in some scenarios, 
back transformations can be misleading (Miller, 1984; Dambolena, Eriksen & Kopsco, 
2009). Also, what is minimized in the loss function when deriving parameter estimates in 
the transformed model is not necessarily what is minimized in a non-linear version of that 
model vis-à-vis traditional non-linear modeling. To illustrate this point, consider an 
exponential model that appears as follows: 
 
Y = (a)(ebX)                    [1] 
 
It turns out, I can “linearize” this model by transforming Y to be the natural log of Y.  Taking 
the log of both sides of Equation 1 produces the model: 
 
ln(Y) = ln(a) + bX                    [2] 
 
In principle, if I regress ln(Y) onto X using standard linear regression methods, I will obtain 
estimates of ln(a) and of b (the intercept and slope in the log transformed equation).  The  
exponent of the intercept from the linear model is an estimate of a in Equation 1 and b in 
Equation 2 is an estimate of b in Equation 1. Note that when I use classic non-linear 



                                                                                                             Measurement Invariance    4 

 
 

regression modeling, I introduce a disturbance term into Equation 1 to reflect random 
disturbances and I then use the least squares loss function to derive estimates of the 
adjustable constants in Equation 1. , with the model taking the form 
 
 Y = (a)(ebX) + d                      [3] 
 
where d is the disturbance term. I seek to minimize the squared discrepancies between Y 
and Ŷ in this model where Ŷ is (a)(ebX).  By contrast, when I apply traditional OLS 
regression per Equation 2, I minimize instead the sum of the squared differences between 
ln(Y) and Ŷ where Ŷ is defined as (ln(a) + bX), which, it turns out, yields a different error 
structure from the traditional non-linear model (see Seber & Wild, 2003). The parameter 
estimates, thus, can be different as can the results of significance tests in the log transformed 
linear model compared to the more traditional non-linear approach.  

CONCLUDING COMMENTS 

For all of the above reasons, I personally think it is better to avoid transformations whenever 
possible rather than embrace them. To be sure, there are modeling scenarios where 
transformations can be useful (see, for example, Chapters  12 to 15), but as a go-to strategy 
to deal with skewed data or assumption violations of variance heterogeneity and non-
normality, there generally are better ways of addressing such matters. Using transformations 
in such scenarios is outdated.  
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