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Smoothers 
 

This primer focuses on smoothers. I assume you have read the section on smoothers in 
Chapter 6, but I repeat parts of it here to set context. Consider the case where the annual 
income of a population of adults is thought to be a linear function of the number of years 
of education the adults have attained. The relationship can be expressed using a 
traditional linear regression equation:   

               Incomei = α + β Years Educationi + εi  

where α is an intercept, β is the (unstandardized) regression or path coefficient, ε is a 
disturbance or error term that reflects all factors other than education that independently 
impact income, and “i” refers to individual i. Suppose our target population has years of 
education ranging from 10 to 16. We can segregate individuals into those who have 10 
years of education, those with 11 years of education, and so on. Suppose for each such 
segment, we calculate the mean annual income and obtain the following: 
 
    Education          Mean Annual Income   

10      22,000   
11      24,000   
12      26,000   
13      28,000   
14      30,000   
15      32,000   
16      34,000   
 

It can be seen that the mean income increases by $2,000 for each additional year of 
education. The value for the regression coefficient in the linear model is thus 2,000. This 
coefficient provides perspectives on mean changes per unit increase in predictor values 
and in this case reflects the worth of a year of education. Each of the above means is a 
conditional mean, i.e., the mean value conditional on the predictor equaling a given 
value. For example, the mean income conditional on 10 years of education is $22,000; 
the mean income conditional on 11 years of education is $24,000. And so on. 
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    The relationship between predictor values and conditional means does not have to 
be linear. Here is a different relationship we might observe: 
 
   Education          Mean Annual Income   

10      22,000   
11      22,000   
12      22,000   
13      24,000   
14      26,000   
15      28,000   
16      30,000   
 

Note that there is a floor effect for mean income, with the mean not changing at the lower 
end of years of education. This is a non-linear function that traditional linear regression 
mischaracterizes.  
    The same concepts apply to dichotomous outcomes. Consider the case where the 
outcome is the probability adolescents will smoke marijuana in the ensuing year and the 
predictor is the age of adolescents, ranging from 12 to 17 in units of one. We want to 
characterize the probability of smoking marijuana for youth who are age 12, for youth 
who are age 13, for youth who are age 14, and so on. Here are the empirically derived 
probabilities: 

         Age       Proportion Smoked Marijuana 

 12   0.025 
 13   0.050 
 14   0.075 
 15   0.100 
 16   0.125 
 17   0.150 

The probability of smoking marijuana is 0.025 conditional on age being 12. The 
probability of smoking marijuana is 0.050 conditional on age being 13. And so on. The 
regression coefficient is 0.025; for every one unit age increases, the probability of 
smoking marijuana increases by 0.025 units. This model is called a linear probability 
model because the function is linear. Logistic regression, an alternative analytic approach, 
assumes the function is non-linear and has the shape of a sigmoid (S) function. With this 
as background, I now consider smoothers.  
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SMOOTHERS 

When we posit a direct causal relationship between two quantitative variables, we usually 
have a general sense of whether the relationship is positive or negative, but we may not 
think through the specific form of the relationship. Traditional regression analyses 
assume the relationship is linear, but perhaps it is not. A statistical tool to help identify 
non-linear functional forms is called a smoother (Wilcox, 2017), a graphical and analytic 
device that makes evident complex functions between variables as compared with more 
traditional scatterplots. Smoothers plot the conditional means as a function of X and then 
draw a “line” through the points, a “line” that can be non-linear and irregular in shape. 
Smoothers are useful because they give insights into how mean Y values change across 
values of X. With smoothers, one usually does not take every small “bump” or “change 
in direction” of the smooth literally; rather, it is the general trend suggested by the 
smoother that is interpreted. See Chapter 11 in the main text for elaboration.  

When X is continuous, one can’t calculate a Y mean at each value of X because X 
has, in principle, an infinite number of values (given that it is continuous). Suppose you 
want to estimate the mean of Y when X = 10, where X is a continuous variable. One 
popular form of smoothing identifies a span of X scores that are somewhat below X =10 
and somewhat above X = 10, and then calculates a predicted mean on the outcome for X 
= 10 taking all these points into account (using algorithms to weight the various points 
within the span, with values closer to the point of interest receiving greater weight). The 
process is repeated for other values of X and then the predicted means are plotted, 
producing the “smooth.” The size of the span to use around a given X can affect the 
results. Spans are specified by the analyst prior to analysis. It often is useful to examine 
smooths under different span scenarios. Indeed, for some types of smoothers, choice of 
the span can be crucial to accurately capturing the true trends in the data. As a general 
rule, the smaller the span, the better the smoother will characterize the data but at the cost 
of a more jagged smooth subject to random noise.  

Figure 1.1 presents an example of a smooth. We seek to predict student test 
performance on an exam from a measure of test anxiety. The outcome is measured on a 0 
to 100 metric, with higher scores indicating better performance. Test anxiety is a multi-
item scale that ranges from -5 to +5, where 0 is a normed average or typical score from a 
broader student population. Scores greater than 0 reflect increasingly above average test 
anxiety and scores less than 0 reflect increasingly below average test anxiety.  
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FIGURE 1.1. Smoother for Test Performance and Test Anxiety 

 
 

The relationship is decidedly non-linear. At the low end of the test anxiety dimension, 
increases in anxiety are associated with increases in test performance, probably by 
motivating students to study more. At some point (near a score of 0), however, test 
anxiety begins to interfere with test performance such that increases in anxiety are 
associated with decreases in performance.  

Smoothers also can be used to double check linearity assumptions in traditional 
regression analysis. Figure 1.2 shows a smoother predicting the annual salary of 
professors from the number of times the person’s research has been cited by others, 
where the expectation was the relationship would be linear. The fact that smooth is 
functionally linear in form affirms the assumption of a linear relationship. I make a 
routine practice of plotting smooths when conducting regression analyses.  

Smoothers traditionally plot conditional means as a function of a predictor X, but 
they also can plot conditional medians, trimmed means, quantiles, and proportions, 
among other indices of location. You can do so using the software package shown in the 
video or using the R programs available in the R package WRS2 by Rand Wilcox.  

Smoothers can be extended to scenarios involving multiple predictors, but plots are 
limited to the case where the number of predictors is 2 or less. With two predictors, three 
dimensional plots are examined. As well, as discussed in Chapter 11, multiple smoothers 
can be plotted on the same graph for purposes of gaining insights into interaction effects 
and moderator analyses. 
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FIGURE 1.2. Smoother for Annual Salary and Research Citations 

 
 

The type of smoother illustrated in Figure 1.2 is known as a LOWESS (locally weighted 
scatterplot smoothing) smoother. The span parameter for it ranges in principle from 0 to 
1.0. Wilcox (2017) recommends a default value of 0.75, which was used in this example.  

SOME USEFUL RESOURCES 

A somewhat technical but useful introduction to smoothers is provided in Wilcox (2017). 
A more introductory treatment is in Wilcox (2010, 2012). A classic but technical 
introduction to smoothing is by Wand and Jones (1995). 

CONCLUDING COMMENTS 

Smoothers are a useful tool for exploring the functional form of the relationship between 
two variables.  They can identify non-linear functions and can provide perspectives on 
the viability of linearity assumptions in statistical tests. When using them, one must be 
cautious about the choice of the span parameter.  Smaller spans better reflect the data but 
can produce jagged smooths that are difficult to interpret. Larger spans often produce 
more interpretable smooths but they also can distort the true trends in the data. It 
sometimes is helpful to plot multiple smooths on the same plot to yield insights into the 
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functional forms of statistical interactions or moderation.  As well, you can use smoothers 
with multiple predictors as a form of non-parametric multiple regression. 
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