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INTRODUCTION 

This supplement elaborates the simulation strategies for sample size analysis described in 
Chapter 28. I assume you have read Chapter 28. The first section of the document shows 
you how to conduct a power analysis simulation for more complex RET designs with 
multiple mediators and covariates. The second section shows you how to pursue power 
analysis simulations for the chi square global test of fit. The third section shows you how 
to conduct a power analysis simulation for the joint significance test of an omnibus indirect 
effect. I then cover a wide variety of localized simulations of many different forms. 
Additional examples of SEM-based simulation design for sample size decisions are in 
Muthén and Muthén (2002) and Muthén and Curran (1997). Every numerical example in 
the Mplus User’s Guide is accompanied by a simulation program to generate their example 
data. These programs can be found in the Mplus example folder and can be adapted for 
power analysis simulations. In general, you can read the different sections of the current 
document on a need-to-know basis although at times, I refer you to the material in another 
section that you should study first.  
  For many of the simulations I use the example from Chapter 28 about an intervention 
to improve study skills and, in turn, performance on an end-of-year math exam. This is a 
simplified RET with a treatment and control group, a single mediator, and a single 
outcome. The idea is that you can easily generalize what you learn to more complex designs 
once you understand the core logic. The model is reproduced in Figure 1. To refresh your 



                                                                                                             Simulation Variants 3 

 
 

memory, the study evaluates an intervention that teaches middle school students study 
skills for math. There are two treatment conditions, an intervention group and a control 
group. The mediator is student study skills measured four weeks after the intervention. The 
measure is scored from 0 to 100 with higher scores indicating better skills. Students 
typically score about 60 on the test, with a standard deviation of 15 or so. The outcome is 
performance on the final math exam. Scores on the exam range from 0 to 100 with higher 
scores indicating better performance. Like many school exams, a score of 90 is excellent, 
a score of 80 is above average, a score of 70 is average, and so on. Path p3 in the figure is 
not included in the model, but I show it with the dashed arrow for referencing when I want 
to make points about its inclusion or exclusion. The assumption is that the effects of the 
intervention on exam performance are completely mediated by the study skills the program 
targets for improvement.  

Treatment vs. 
Control

Study 
Skills

Exam 
Performance

d1 d2

p1

p3

p2

 

FIGURE 1. Simulation Example with Single Mediator 

WORKING WITH COMPLEX MODELS: PART II 

In this section, I show you heuristics for sample size analysis for complex RET models 
with multiple mediators. I develop heuristics using the raw metric approach described in 
Chapter 28. I then show you how to use the standardized metric approach from Chapter 28.  

In Chapter 28, I presented three sets of equations to help determine population values 
for a simulation. One set of equations focused on variance decomposition and eta squared: 

varTOTAL = varBETWEEN + varWITHIN                  [1] 

varTOTAL = varREGRESSION + varERROR                [2] 

varTOTAL = varSYSTEMATIC + varERROR              [3] 
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 varTOTAL = varEXPLAINED + varUNEXPLAINED               [4] 

Eta2 = varBETWEEN / varTOTAL = varREGRESSION / varTOTAL =  
           varSYSTEMATIC / varTOTAL = varEXPLAINED / varTOTAL            [5] 
 

Another set was for the relationship between covariances and correlations, expressed 
here for simplicity using sample notation:  

rXY = (covXY) / [(SDX)(SDY)]                [6] 

covXY = (rXY)(SDX)(SDY)                 [7] 

The third set was for the variance of a linear combination. For two predictors in the 
model Y = α + β1 X1 + β2 X2 + ε, the equation is: 

var(Y) = [β12 var(X1) + β22 var(X2)] +  [(2)( β1)(β2)cov(X1,X2)] +  var (ε)                  [8] 

and for k predictors, it is  

2 2 2 2

1 1 1
[ 2 cov( , )]

k k k

m j m jY j j
j m j

X X εσ σ σ 

= = >

=   β ]   +   [ β β    +   ∑ ∑∑              [9] 

See Chapter 28 for a discussion of these equation sets. 
 The model I work with has a treatment versus control group (0 = control, 1 = 
treatment), three posttest mediators (M1, M2, M3) each with a baseline counterpart (M1B, 
M2B, M3B), and a follow-up outcome Y with a baseline Y (YB). For purposes of 
pedagogy, I will assume all of the mediator and outcome measures have a metric from 0 to 
100 with a standard deviation of 10, as do their baseline counterparts. In practice, the 
metrics likely will vary from one variable to the next.  

Figure 2 shows the model structure but omits the presumed correlations between the 
exogenous variables to reduce clutter. The path coefficients for covariates are signified by 
bs and the primary causal paths of substantive interest are signified by ps.  
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FIGURE 2. Complex RET Model  

There are four endogenous variables in the model, yielding four core equations: 
 
M1 = a1 + b1 M1B + p1 T + d1 

M2 = a2 + b2 M2B + p2 T + d2 

M3 = a3 + b3 M3B + p3 T + d3 

Y = a4 + b4 YB + p4 M1+ p5 M2+ p6 M3 + p7 T + d4 

I now develop how to construct simulations for sample size analysis of this model. 

The Raw Metric Approach 

I begin by specifying the population covariances between the exogenous variables, which 
are the baseline mediators, the baseline outcome, and the treatment condition dummy 
variable. Because the treatment condition is randomized, it is uncorrelated with all the other 
exogenous variables. Suppose based on my knowledge of the exogenous variables from 
past research I decide to set the correlations between all the other exogenous variables to 
be 0.30. You can vary them if you want, but I will use these values in the current example. 
I must translate these expected correlations into covariances for purposes of Mplus 
programming, for which I make use of  Equation 7. Equation 7 multiplies each desired 
correlation by the relevant standard deviations. Because the standard deviations are 10.0 
for all the exogenous variables except T, the covariances between any two of the exogenous 
variables (excluding T) will equal (0.30)(10)(10) = 30. Here is the Mplus syntax I 
ultimately will use in the larger Mplus program to specify the population covariances: 
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m1b WITH m2b*30 m3b*30 yb*30 ; 
m2b WITH m3b*30 yb*30 ; 
m3b WITH yb*30 ; 
t WITH m1b*0 m2b*0 m3b*0 yb*0 ; 

Next, I specify the population effects of the treatment condition on the posttest 
mediators, i.e., T→M. I decide to make one of them (p1) equal to zero to evaluate Type I 
errors, the other (p2) to equal what I judge to be a medium effect of 5.0, and the third (p3) 
to equal what I judge to be a large effect of 8.0. These are covariate adjusted mean 
differences for each mediator as a function of the treatment group minus the control group. 
I selected the values of 5 and 8 based on my knowledge of the measures, prior research, 
and the context in which the RET is conducted (see Chapter 10). You will need to select 
the relevant covariate adjusted mean differences that you want to target. 

The three posttest mediators also are impacted by their respective baseline mediators. 
The three posttest mediators have a standard deviation of 10 as do the baseline mediators. 
Based on past research of the measures/constructs, I decide to set the path coefficient from 
the baseline covariate to its posttest counterpart to 0.30 for each mediator, i.e., a one unit 
change in the pretest mediator is associated with a 0.30 unit change in the mean of the 
posttest mediator. This yields the following Mplus syntax that I ultimately will use in the 
larger Mplus program to set the values of the path coefficients to the mediators: 

m1 ON m1b*0.30 t*0 ; 
m2 ON m2b*0.30 t*5.0 ; 
m3 ON m3b*0.30 t*8.0 ; 

 
I next define the disturbance variances for M1, M2, and M3. The variance of M1 is 

100 and it is decomposed via Equation 8 to be: 

var(M1) = 100 = [b12 var(M1B) + p12 var(T)] +  [(2)(b1)(p1)cov(M1B,T)] +  var(d1) 

If I substitute the known values of the terms on the right hand side of the equation or the 
parameter values I have already specified, I obtain 

100 = [(.302)(100) + (02)(.25)] +  [(2)(.30)(0)(0)] + var(d1) 

       = [9 + 0] + [0] + var(d1) 

and var(d1) = 100 – 9 = 91.00 
 I repeat this process for M2 and find 

var(M2) = 100 = [b22 var(M2B) + p22 var(T)] +  [(2)(b2)(p2)cov(M2B,T)] +  var(d2) 
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which yields 

100 = [(.302)(100) + (52)(.25)] +  [(2)(.30)(5)(0)] + var(d2) 

       = [9 + 6.25] + [0] + var(d2) 

and var(d2) = 100 – 15.25 = 84.75 

For M3, I find 

var(M3) = 100 = [b32 var(M3B) + p32 var(T)] +  [(2)(b3)(p3)cov(M3B,T)] +  var(d3) 

which yields 

100 = [(.302)(100) + (82)(.25)] +  [(2)(.30)(8)(0)] + var(d3) 

       = [9 + 16] + [0] + var(d3) 

and var(d3) = 100 – 25 = 75.0 

 The Mplus syntax I will ultimately use to specify the population values for the 
mediator disturbance variances is  

m1*91.0 ; 
m2*84.75 ; 
m3*75.0 ; 

Next, I turn my attention to the path and regression coefficients for the predictors of 
the outcome, Y. I set the coefficient from YB to Y to 0.30, again, based on past research 
and theory. I decide to set p4 for M1→Y to zero so I can evaluate Type I errors. I set p5 for 
M2→Y to 0.20 to represent what I judge to be a medium effect and p6 for M3→Y to 0.40 
to represent what I judge to be a large effect. I set p7 to 5.0 to reflect a medium direct effect 
of T on Y. Here is the Mplus syntax I ultimately will use to represent these population 
values: 

y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 

The final step is to specify the disturbance variance for Y. This is complicated 
because there are 5 correlated predictors whose intercorrelations are determined by other 
parts of the model structure that must be taken into account. To define the disturbance 
variance in a coherent way, I need to invoke a decomposition analysis using Equation 2: 

varTOTAL = varREGRESSION + varERROR               
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where varERROR is the disturbance variance. I previously defined varTOTAL as 100, but to 
work with the above equation, I need to know the value of varREGRESSION based on the other 
model population values I have already specified. Rather than derive the value of 
varREGRESSION mathematically using Equation 9, I can use an Mplus shortcut/heuristic 
instead. To execute the shortcut, I first program the simulation using all the values I have 
derived thus far but I set the disturbance variance for Y to zero. Table 1 presents the 
relevant Mplus syntax for doing so.  

Table 1: Generate varREGRESSION for Raw Metric Approach 

1.  TITLE: Generate variance regression ; 
2.  MONTECARLO: 
3.  NAMES ARE t m1 m2 m3 m1b m2b m3b y yb ;  
4.  CUTPOINTS = t(0); 
5.  NOBS = 2000000 ;    !sample size 
6.  NREPS = 1 ;         !number of replicates 
7.  !NOBS = 100 ;       !sample size 
8.  !NREPS = 20000 ;    !number of replicates 
9.  SEED = 2222 ;       !random seed 
10. SAVE = temp.dat; 
11. ANALYSIS:  
12. ESTIMATOR = MLR ;   
13. MODEL POPULATION:    !specify population model 
14. [t*0] ;              !set mean when generating original continuous t  
15. t*1 ;                !set var when generating original continuous t 
16. [m1b*0]; [m2b*0]; [m3b*0]; [yb*0];    !set means  
17. m1b*100; m2b*100; m3b*100; yb*100 ;   !set variances   
18. [y*0]; [m1*0]; [m2*0]; [m3*0];        !set intercepts  
19. m1b WITH m2b*30 m3b*30 yb*30 ;        !set covariances 
20. m2b WITH m3b*30 yb*30 ; 
21. m3b WITH yb*30 ; 
22. t WITH m1b*0 m2b*0 m3b*0 yb*0 ; 
23. m1 ON m1b*0.30 t*0 ;               !define equations 
24. m2 ON m2b*0.30 t*5.0 ; 
25. m3 ON m3b*0.30 t*8.0 ; 
26. y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 
27. m1*91.0 ;    !define disturbance variances          
28. m2*84.75 ; 
29. m3*75.0 ; 
30. y*.001 ; 
31. !y*48.923 ; 
32. MODEL:       !specify analysis model; don't mention exogenous  
33. m1 ON m1b*0.30 t*0 ; 
34. m2 ON m2b*0.30 t*5.0 ; 
35. m3 ON m3b*0.30 t*8.0 ; 
36. y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 
37. m1*91.0 ; 
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38. m2*84.75 ; 
39. m3*75.0 ; 
40. y*.001 ; 
41. !y*48.923 ; 
42. MODEL INDIRECT: 
43. y IND t ;        !evaluate omnibus mediation effect 
44. OUTPUT: TECH9 ;      
 
Most of this syntax should be familiar based on Chapter 28. On Lines 5 and 6, I create a 
single sample with an N of 2,000,000. When analyzed, this sample should yield parameter 
values that are close to the true population values because the sample size is so large. The 
underlying logic is similar to the “Population Check” strategy I described in the main text 
of Chapter 28. On Line 30, I specify the disturbance variance for Y. I set this to zero so 
that the computed total variance of Y on the Mplus output will then equal varREGRESSION. 
However, setting it to zero will create an error in the Mplus computational algorithms so I 
instead set it to a very small number that is close to zero but that will not create havoc with 
the Mplus algorithms. In this case, I use the value of 0.001, which is functionally zero. I 
do the same operation on Line 40, which must parallel Line 30.  
 Once the above syntax is executed, the generated output prints the covariance matrix 
for the first replicate. Because there is only one replicate with an N=2,000,000, the printed 
covariance matrix is for this sample. Here is the first portion of the printed covariance 
matrix on the output: 
 
 Covariances 
              M1            M2            M3            Y             T 
              ________      ________      ________      ________      ________ 
 M1           100.011 
 M2             2.761       100.107 
 M3             2.787        12.837       100.143 
 Y              4.334        34.104        55.343        51.077 
 T              0.000         1.255         2.004         2.303         0.250 
 M1B           29.841         9.022         9.030        14.401         0.002 
 M2B            8.904        30.113         9.103        18.673         0.005 
 M3B            8.978         9.052        30.188        22.908         0.008 
 YB             8.886         8.916         8.987        35.342         0.001 

 
The diagonal for the Y variable contains the variance of Y, which actually is 

varREGRESSION because varERROR was set to (near) zero. It equals 51.077 and takes into 
account all of the model implied variances and covariances among the predictors of Y. If 
varTOTAL equals 100 then varERROR should be 100 – 51.077 = 48.923 and I have successfully 
defined the disturbance variance for Y. Note that using a disturbance variance of 48.923 
implies that the squared correlation predicting Y from its predictors is 51.077/100.0 = 
0.510. If I feel this is too high, I can increase the disturbance variance to a value larger than 
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48.923 but this will change the metric of varTOTAL (and the population standard deviation 
of Y), which may affect how I define the values of the other parameters in the model. The 
alternative is to change the values of the path coefficients of any of the predictors of Y to 
bring them closer to zero so as to lower varREGRESSION. In the current case, I believe a 
squared R of 0.510 is substantively reasonable and I move forward with it accordingly.  

Given the above, I next comment out Lines 5 and 6 and replace them with Lines 7 
and 8, which set the true sample size I want to simulate (N = 100) and the true number of 
simulation replications I want to analyze. I comment out Line 10 so I do not overwrite the 
prior generated temp.dat file (for reasons I mention shortly) and I also comment out Lines 
30 and 40 and replace them by Lines 31 and 41 to use the disturbance variance for Y that 
I want to define in the population. The revised syntax is in Table 2. 

Table 2: Raw Metric Syntax for Complex Model   

1.  TITLE: Monte Carlo analysis of SEM model ; 
2.  MONTECARLO: 
3.  NAMES ARE t m1 m2 m3 m1b m2b m3b y yb ;  
4.  CUTPOINTS = t(0); 
5.  !NOBS = 2000000 ;    !sample size 
6.  !NREPS = 1 ;         !number of replicates 
7.  NOBS = 100 ;       !sample size 
8.  NREPS = 20000 ;    !number of replicates 
9.  SEED = 2222 ;       !random seed 
10. !SAVE = temp.dat; 
11. ANALYSIS:  
12. ESTIMATOR = MLR ;   
13. MODEL POPULATION:    !specify population model 
14. [t*0] ;              !set mean when generating original continuous t  
15. t*1 ;                !set var when generating original continuous t 
16. [m1b*0]; [m2b*0]; [m3b*0]; [yb*0];    !set means  
17. m1b*100; m2b*100; m3b*100; yb*100 ;   !set variances   
18. [y*0]; [m1*0]; [m2*0]; [m3*0];        !set intercepts  
19. m1b WITH m2b*30 m3b*30 yb*30 ;        !set covariances 
20. m2b WITH m3b*30 yb*30 ; 
21. m3b WITH yb*30 ; 
22. t WITH m1b*0 m2b*0 m3b*0 yb*0 ; 
23. m1 ON m1b*0.30 t*0 ;               !define equations 
24. m2 ON m2b*0.30 t*5.0 ; 
25. m3 ON m3b*0.30 t*8.0 ; 
26. y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 
27. m1*91.0 ;    !define disturbance variances          
28. m2*84.75 ; 
29. m3*75.0 ; 
30. !y*.001 ; 
31. y*48.923 ; 
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32. MODEL:       !specify analysis model; don't mention exogenous  
33. m1 ON m1b*0.30 t*0 ; 
34. m2 ON m2b*0.30 t*5.0 ; 
35. m3 ON m3b*0.30 t*8.0 ; 
36. y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 
37. m1*91.0 ; 
38. m2*84.75 ; 
39. m3*75.0 ; 
40. !y*.001 ; 
41. y*48.923 ; 
42. MODEL INDIRECT: 
43. y IND t ;        !evaluate omnibus mediation effect 
44. OUTPUT: TECH9 ;      

This syntax then simulates the model in Figure 2 for N = 100 with 20,000 simulated 
replicates. 
 There are interesting features of this simulation that I now highlight. Many 
methodologists argue that a sample size of 100 is too small for a complex model using an 
analysis strategy based on asymptotic theory. Let’s see what the results of the simulation 
say about this proposition in the context of the current RET. Here is the simulation output 
for the chi square test of global fit:   
 
  Chi-Square Test of Model Fit 
 
        Degrees of freedom                      15 
 
        Mean                                16.437 
        Std Dev                              6.033 
        Number of successful computations    20000 
 
             Proportions                   Percentiles 
        Expected    Observed         Expected       Observed 
           0.990       0.994            5.229          5.716 
           0.980       0.987            5.985          6.515 
           0.950       0.966            7.261          7.877 
           0.900       0.931            8.547          9.382 
           0.800       0.855           10.307         11.271 
           0.700       0.771           11.721         12.808 
           0.500       0.592           14.339         15.719 
           0.300       0.394           17.322         18.966 
           0.200       0.282           19.311         21.238 
           0.100       0.160           22.307         24.548 
           0.050       0.090           24.996         27.513 
           0.020       0.041           28.259         30.964 
           0.010       0.022           30.578         33.746 
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 Recall from Chapter 28 that the average chi square value (16.437) should 
approximate the degrees of freedom, 15. The two values seem reasonably close. The 
standard deviation of the chi square values should equal the square root of double the 
degrees of freedom. The square root of 30 is 5.48, which roughly equals the reported 
standard deviation value of 6.033 on the output. In the column Proportions Expected at 
the row for a theoretical p value of 0.05, the entry in the Proportions Observed column 
is 0.09. This indicates that the chi square test is rejecting about 9% of the models when it 
should be rejecting only 5% of the models, the alpha level expressed in percent from. As 
such, the test shows a tendency to over-reject correctly specified models. Looking further 
at the above output, I also note that in a chi square distribution with 15 degrees of freedom, 
one expects the critical value of chi square that rejects 5% of the models to equal 24.996. 
The critical value in the observed data that did so was 27.513. Based on this result, I might 
consider using as a cut off a value of 27.513 in my study; or I might decide I can live with 
the slightly inflated tendency of the chi square test to reject models of the type I am using 
with N = 100. Or perhaps not in which case I would decide to increase my sample size.  
 Here are the simulation results for the core model parameters: 
 
                              ESTIMATES                S. E.  M. S. E.   95%  % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 M1       ON 
  M1B                 0.300     0.2988     0.0978     0.0941     0.0096   0.933  0.871 
  T                   0.000    -0.0050     1.9334     1.8937     3.7379   0.943  0.056 
 
 M2       ON 
  M2B                 0.300     0.3006     0.0940     0.0907     0.0088   0.936  0.898 
  T                   5.000     5.0105     1.8709     1.8270     3.5004   0.941  0.774 
 
 M3       ON 
  M3B                 0.300     0.3011     0.0882     0.0853     0.0078   0.938  0.927 
  T                   8.000     8.0075     1.7243     1.7182     2.9731   0.946  0.996 
 
 Y        ON 
  YB                  0.300     0.3006     0.0731     0.0698     0.0053   0.934  0.982 
  M1                  0.000    -0.0002     0.0726     0.0694     0.0053   0.933  0.067 
  M2                  0.200     0.1999     0.0753     0.0715     0.0057   0.931  0.782 
  M3                  0.400     0.3999     0.0795     0.0757     0.0063   0.933  0.998 
  T                   5.000     5.0087     1.6112     1.5519     2.5958   0.936  0.884 

Scanning down the Estimates column, there is no disconcerting parameter bias, which is 
affirming. For the effect of T on M1, the true path coefficient is 0, so the % Sig Coeff  
entry reflects Type I errors. Given an alpha of 0.05, the entry should be close to 0.05. It 
was 0.056, which seems reasonable. The effect of M1 on Y also has a population coefficient 
of 0 and its % Sig Coeff value was 0.067 when it should be 0.05. This is a bit inflated but 
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also does not seem unreasonable. The remaining entries in the % Sig Coeff column all 
reflect statistical power, which generally appears to be adequate. An N of 100 thus seems 
sufficient in the present case given the assumptions I made in the simulation and given a 
correctly specified model. This statement takes into account asymptotic theory, bias in the 
parameter estimates, confidence interval coverage, Type I error rates, and statistical power. 
Although I did not highlight it, the simulation  also provides perspectives on margins of 
error for an N = 100, per my discussion in Chapter 28 and on omnibus tests of the indirect 
effects. For the latter, the results for the current analysis were similar to those for a 
bootstrap analysis, with one exception; for the indirect effect T→M2→Y, the statistical 
power was 0.39 in the original analysis but for the bootstrap analysis it was 0.52 with 
slightly more accurate confidence interval coverage. 
 There are other features of the output I could discuss but my main focus is on showing 
you the mechanics of conducting a simulation for more complex models than what I 
considered in Chapter 28. However, there is one additional point I want to make. It may be 
helpful on occasions to conduct a population check on the simulated data using the method 
discussed in Chapter 28 so that you can explore the population data to gain a better sense 
of the operative dynamics in it. This involves running the syntax in Table 2 but using a 
single replicate with 2,000,000 cases (see Lines 5 and 6) and saving that data in the file 
temp.dat (see Line 10). I check at the end of the output produced by these changes for the 
order of the saved variables and find it to be: 

SAVEDATA INFORMATION 
 
  Order of variables 
 
    M1 
    M2 
    M3 
    Y 
    T 
    M1B 
    M2B 
    M3B 
    YB 

I then analyze the saved data using the following syntax: 

1.  TITLE: POPULATION CHECK ; 
2.  DATA: 
3.  FILE IS temp.dat ; 
4.  VARIABLE:  
5.  NAMES ARE m1 m2 m3 y t 
6.    m1b m2b m3b yb ;  
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7.  ANALYSIS:  
8.  ESTIMATOR = MLR ;  
9.  MODEL:           !specify analysis model 
10.   m1 ON m1b t ; 
11.   m2 ON m2b t ; 
12.   m3 ON m3b t ; 
13.   m1 ; m2 ; m3 ; 
14.   y ON yb m1 m2 m3 t ; 
15.   y ; 
16. MODEL INDIRECT: 
17.   y IND t ; 
18. OUTPUT: SAMP STDYX TECH4 ; 

I can use the output from this check to gain additional perspectives on the population data. 
For example, the unique explained variance (squared semi-part correlation) for a predictor 
in a given equation, assuming large N, is  

sr2 = (CR2 (1-R2))/N 

where sr2 is the squared semi-part correlation for the predictor, CR is the critical ratio for 
the predictor coefficient, R2 is the overall squared multiple correlation and N is the sample 
size (see Chapter 10). For the effect of T on M2 (whose statistical power was 0.77), the 
unique explained variance was 

[(384.9302)(1-0.153)]/2,000,000 = 0.063 

or 6.3%. For the effect of T on M3 (whose statistical power was 0.99), the unique explained 
variance was 

[(653.8132)(1-0.251)]/(2,000,000) = 0.160 

or 16.0%. For the effect of M2 on Y (whose statistical power was 0.78), the unique 
explained variance was 

[(389.9012)(1-0.511)]/(2,000,000) = 0.037 

or 3.7%. And so on. 

The Standardized Metric Approach 

In this section, I develop Mplus syntax for the model in Figure 2 but using the standardized 
metric approach. The approach treats all continuous variables as having a standard 
deviation of 1.0. This does not mean you literally standardize your data before analyzing 
it. Rather, we treat all the continuous variables as having standard deviations of 1.0 as a 
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matter of convenience because sometimes it is easier for us to think in such a standardized 
metric in terms of specifying population values. I assume you have read and digested the 
raw metric approach described above.  

I begin by specifying the population covariances between the exogenous variables, 
which are the baseline mediators (M1B, M2B, M3B), the baseline outcome (YB), and the 
treatment condition dummy variable (T). Because the treatment condition is randomized, 
it is uncorrelated with all other exogenous variables. I again set the correlations between 
all the other exogenous variables to be 0.30. I must translate these into covariances for 
Mplus, but because they all have standard deviations of 1.0, the covariances equal the 
correlations. Here is the Mplus syntax I ultimately will use for the population covariances: 

m1b WITH m2b*0.30 m3b*0.30 yb*0.30 ; 
m2b WITH m3b*0.30 yb*0.30 ; 
m3b WITH yb*0.30 ; 
t WITH m1b*0 m2b*0 m3b*0 yb*0 ; 

For the effects of the treatment condition on the mediators, I again decide to make 
one of them (p1) equal to zero to evaluate Type I errors, the other (p2) to what I judge to be 
a medium effect, and the third (p3) to what I judge to be a large effect. These are covariate 
adjusted mean differences for each mediator as a function of the treatment group minus the 
control group. The three posttest mediators each have a standard deviation of 1.0 as do the 
baseline mediators. I decide to set the regression coefficient from the baseline covariates 
to their posttest counterparts to 0.30 for each mediator. This is analogous to using a 
standardized regression coefficient of 0.30. For p2 (the effect of T on M2), I set the value 
of p2 to 0.30. Because p2 is the mean difference between the treatment and control groups, 
this value corresponds to a 0.30 M2 standard deviation difference between the groups, after 
covariate adjustment. For p3 (the effect of T on M3), I set its value to 0.50. This corresponds 
to a 0.50 M3 standard deviation difference between the groups, after covariate adjustment. 
The above yields the following Mplus syntax that I ultimately will use to set the values of 
the coefficients 

m1 ON m1b*0.30 t*0 ; 
m2 ON m2b*0.30 t*0.30 ; 
m3 ON m3b*0.30 t*0.50 ; 

I next define the disturbance variances for M1, M2, and M3. The variance of M1 is 
1.0 and it is decomposed via Equation 8 to be: 

var(M1) = 1.0 = [b12 var(M1B) + p12 var(T)] +  [(2)(b1)(p1)cov(M1B,T)] +  var(d1) 

If I substitute the known values of the terms on the right hand side of the equation, I obtain 
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1.0 = [(.302)(1.0) + (02)(.25)] +  [(2)(.30)(0)(0)] + var(d1) 

       = [.09 + 0] + [0] + var(d1) 

and var(d1) = 1.00 – .09 = 0.91 
 
 I repeat this process for M2 and find 

var(M2) = 1.0 = [b22 var(M2B) + p22 var(T)] +  [(2)(b2)(p2)cov(M2B,T)] +  var(d2) 

which yields 

100 = [(.302)(1.0) + (.302)(.25)] +  [(2)(.30)(.30)(0)] + var(d2) 

       = [0.09 + 0.0225] + [0] + var(d2) 

and var(d2) = 1.0 – 0.1125 = 0.8875 

For M3, I find 

var(M3) = 100 = [b32 var(M3B) + p32 var(T)] +  [(2)(b3)(p3)cov(M3B,T)] +  var(d3) 

which yields 

100 = [(.302)(1.0) + (.502)(.25)] +  [(2)(.30)(.50)(0)] + var(d3) 

       = [0.09 + 0.0625] + [0] + var(d3) 

and var(d3) = 1.0 – 0.1525 = 0.8475 

 The Mplus syntax I ultimately use to specify the population values for the disturbance 
variances are  

m1*0.910 ; 
m2*0.8875 ; 
m3*0.8475 ; 

Next, I turn my attention to the coefficients for the outcome, Y. I set the coefficient 
from YB to Y to 0.30. I set p4 for M1→Y to zero so I can evaluate Type I errors. I set p5 
for M2→Y to 0.20 to represent what I judge to be a medium effect and p6 for M3→Y to 
0.40 to represent what I judge to be a large effect. Thus, for every one standard deviation 
that M2 increases, Y is predicted to increase 0.20 standard deviations and for every one 
standard deviation that M3 increases, Y is predicted to increase 0.40 standard deviations, 
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holding constant the other predictors in the equation. I set p7 to 0.30 to reflect a medium 
direct effect of T on Y independent of the mediators. Here is the Mplus syntax I ultimately 
will use to represent these population values: 

y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*0.30 ; 

The final step is to specify the disturbance variance for Y. As with the raw metric 
approach, this is complicated because there are 5 correlated predictors whose 
intercorrelations are determined by other parts of the model structure. To define the 
disturbance variance in a coherent fashion, I need to know the variance of the predicted Y 
scores, i.e., I need to work with the decomposition from Equation 2: 

varTOTAL = varREGRESSION + varERROR               

I previously defined varTOTAL as 1.0, but I need to know the value of varREGRESSION given 
the other model population values I have chosen. Rather than derive this mathematically, I 
use the same Mplus shortcut I used for the raw metric approach. Table 3 presents the 
relevant Mplus syntax, which follows the format of Table 1.  

Table 3: Generate varREGRESSION for Standardized Metric 

1.  TITLE: Generate variance regression ; 
2.  MONTECARLO: 
3.  NAMES ARE t m1 m2 m3 m1b m2b m3b y yb ;  
4.  CUTPOINTS = t(0); 
5.  NOBS = 2000000 ;    !sample size 
6.  NREPS = 1 ;         !number of replicates 
7.  !NOBS = 100 ;       !sample size 
8.  !NREPS = 20000 ;    !number of replicates 
9.  SEED = 2222 ;       !random seed 
10. SAVE = temp.dat; 
11. ANALYSIS:  
12. ESTIMATOR = MLR ;   
13. MODEL POPULATION:    !specify population model 
14. [t*0] ;              !set mean when generating original continuous t  
15. t*1 ;                !set var when generating original continuous t 
16. [m1b*0]; [m2b*0]; [m3b*0]; [yb*0];        !set means  
17. m1b*1.00; m2b*1.00; m3b*1.00; yb*1.00 ;   !set variances   
18. [y*0]; [m1*0]; [m2*0]; [m3*0];            !set intercepts  
19. m1b WITH m2b*0.30 m3b*0.30 yb*0.30 ;      !set covariances 
20. m2b WITH m3b*0.30 yb*0.30 ; 
21. m3b WITH yb*0.30 ; 
22. t WITH m1b*0 m2b*0 m3b*0 yb*0 ; 
23. m1 ON m1b*0.30 t*0 ;               !define equations 
24. m2 ON m2b*0.30 t*0.30 ; 



                                                                                                             Simulation Variants 18 

 
 

25. m3 ON m3b*0.30 t*0.50 ; 
26. y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*0.30 ; 
27. m1*0.910 ;    !define disturbance variances          
28. m2*0.8875 ; 
29. m3*0.8475 ; 
30. y*.001 ; 
31. !y*0.694 ; 
32. MODEL:       !specify analysis model; don't mention exogenous  
33. m1 ON m1b*0.30 t*0 ; 
34. m2 ON m2b*0.30 t*0.30 ; 
35. m3 ON m3b*0.30 t*0.50 ; 
36. y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*0.30 ; 
37. m1*0.910 ; 
38. m2*0.8875 ; 
39. m3*0.8475 ; 
40. y*.001 ; 
41. !y*0.694 ; 
42. MODEL INDIRECT: 
43. y IND t ;        !evaluate omnibus mediation effect 
44. OUTPUT: TECH9 ;      

On the output, I find that varREGRESSION is 0.396. If varTOTAL equals 1.00 then varERROR 
equals 1.00 – 0.396 = 0.694.  

At this point, I have all the population parameters I need and it is straightforward to 
execute the final simulation syntax analogous to that of Table 2 to conduct the simulation. 
I leave that as an exercise for you. 

POWER ANALYSIS FOR GLOBAL CHI SQUARE TEST 

To evaluate the statistical power of the chi square test, the model I evaluate needs to be 
misspecified relative to the true data-generating model in the population. To illustrate the 
approach, I work with the model in Figure 1 on study skills and exam performance as the 
true generating model but where path c is part of the model and is non-zero. The model I 
will incorrectly fit to the data omits path c. I will use the same population values as in my 
exposition of power analysis in the main text of Chapter 28 for this model, but I define the 
true population model so that the strength of path c is 7.0 (the same as the value of T→M) 
instead of zero. Here are the population parameter values I used in the Mplus syntax: 

var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2) = 204.75, p1=7.0, and p2 = 
0.030, p3=7.0 

Note that everything is the same as the values I used in Chapter 28 but (a) I added a value 
for p3 equal to 7.0, and (b) the value of the disturbance variance for Y, var(d2), is reduced 
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from 204.75 to 186.124. This reduction is necessary because I am now explaining more of 
the population variance in Y by virtue of p3 being meaningful. I used the Mplus heuristic 
method I described in the section on working with complex models to calculate the new 
value. Table 4 presents the syntax that implements the above values and that I ultimately 
will use to calculate the power of the chi square test.  

Table 4: Step 1 of Power Analysis for Chi Square Test 

1.  TITLE: STEP 1 CHI SQUARE POWER ANALYSIS ; 
2.  MONTECARLO: 
3.  NAMES ARE t m y ;  
4.  CUTPOINTS = t(0); 
5.  NOBS = 150 ;         !sample size 
6.  NREPS = 20000 ;      !number of replicates 
7.  SEED = 2222 ;        !random seed 
8.  RESULTS = results.txt; 
9.  ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:    !specify population model 
12. [t*0] ;              !set mean when generating original continuous t  
13. t*1 ;                !set var when generating original continuous t 
14. [y*0]; [m*0];        !set intercepts to 0 
15. y ON m*.30 t*7.0 ;   !set effect of m and t on y 
16. m ON t*7.0 ;         !set effect of t on M 
17. y*186.124 ;          !disturbance variance for y   
18. m*212.75 ;           !disturbance variance for m   
19. MODEL:               !specify analysis model 
20. y ON m*.30 ;         !outcome equation – note misspecification 
21. m ON t*7.0 ;         !mediation equation 
23. y*186.124 ;          !disturbance variance for y   
24. m*212.75 ;           !disturbance variance for m16.  
25. MODEL INDIRECT: 
26. y IND t ; 
27. OUTPUT: TECH1 TECH9 ; 

You should be familiar with all of the syntax except Line 8, which I explain shortly. A 
noteworthy feature of the syntax is that the analysis model in Lines 19 to 24 is not the same 
as the true generating model in Lines 11 to 18. The model in the former lines excludes path 
c whereas the true generating model includes path c. This introduces the specification error.  

Line 8 asks Mplus to store the results of the analysis model for each of the 20,000 
simulation replicates in a file that I called results.txt (you can use any filename you 
want). The data in the file are stored in free field ASCII format. The entries include for 
each replication the replication number, the parameter estimates, the standard errors, and a 
set of global fit statistics, one of which is the chi square fit statistic.  
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You will next execute a second program in Mplus that I show you the syntax for 
shortly. The program locates the p value for the chi square test for each of the 20,000 
replicates stored in the results.txt file and then calculates the proportion of them whose 
p value was less than or equal to 0.05, which signifies a correct rejection of the null 
hypothesis. This proportion represents the power of the chi square test relative to the 
misspecified model.  

To execute the second program, you need to know the location of the p value for the 
chi square test in the results.txt file. This can vary depending on your model. To 
determine the location, you first need to know the number of parameters that were 
estimated in the model. This is shown in the section of the output for the syntax in Table 4 
that looks like this: 

 
MODEL FIT INFORMATION 
 
Number of Free Parameters                        6 

 
For the current model, there were 6 parameters estimated. You then find on the output the 
section that describes the order in which the results are saved in the results.txt file. In 
the current case, it looks like this:  
 
RESULTS SAVING INFORMATION 
 
  Order of data 
 
    Replication number 
    Parameter estimates 
     (saved in order shown in Technical 1 output) 
    Standard errors 
     (saved in order shown in Technical 1 output) 
    Number of Free Parameters 
    H0 Loglikelihood 
    H1 Loglikelihood 
    Akaike (AIC) 
    Bayesian (BIC) 
    Sample-Size Adjusted BIC 
    Chi-square : Value 
    Chi-square : Degrees of Freedom 
    Chi-square : P-Value 
    CFI 
    TLI 
    RMSEA : Estimate 
    SRMR  
 

The Replication number is the first entry for a given simulation replicate and is an 
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arbitrary sequential integer; the Parameter estimates are the next six entries (one for 
each free parameter); the Standard errors are the next six entries (one for each free 
parameter), and then after these 12 entries (not counting the replicate number), you count 
down the above list sequentially until you reach Chi-square : P-Value , which is entry 
number 21. Note also that the total number of entries are the repetition number, plus these 
21 entries, plus the remainder of entries in the list of fit indices. For the current simulation, 
there are a total of 26 entries per replication, one of which is the replication number. With 
this information, you can program and execute the second Mplus program shown in Table 
5 and that will give you the power estimate you seek. 

Table 5: Step 2 of Power Analysis for Chi Square Test 

1.  TITLE: STEP 2 CHI SQUARE POWER ANALYSIS ; 
2.  DATA: 
3.  FILE IS results.txt ; 
4.  DEFINE: 
5.  IF (f21 GT 0.05) THEN chipow = 0 ; 
6.  IF (f21 LE 0.05) THEN chipow = 1 ; 
7.  VARIABLE:  
8.  NAMES ARE rep f1-f25 ;  
9.  USEVARIABLES chipow  ; 
10. ANALYSIS: TYPE = BASIC ; 
11. OUTPUT:  ; 

 
Line 8 tells Mplus to read in 26 entries per “case,” calling the first entry (the replication 
number) rep and the remaining ones f1, f2, f3…f25. Lines 5 and 6 create a new variable 
that I call chipow based on an if statement for the chi square p value which is in the variable 
called f21. If the p value is greater than 0.05, a score of 0 is assigned to chipow to indicate 
the null hypothesis was not rejected for the replicate in question. If the p value is less than 
or equal to 0.05, a score of 1 is assigned to chipow to indicate the null hypothesis was 
rejected for the replicate. Line 10 tells Mplus to calculate descriptive statistics for chipow, 
with the mean value being the statistical power for the chi square test. Here is the output: 

  Means 
     CHIPOW 
     ________ 
       0.856 

The statistical power of the global chi square test of fit for an N of 150 for the model in 
Figure 1 in which the misspecified model erroneously omits path c and where the strength 
of p3 is 7 in the data generating population model is 0.856.  

Parenthetically, the population RMSEA fit statistic for the misspecified model was 
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0.243. If I run the program on my website called Power: SEM chi square test and enter the 
desired power as 0.856 and the RMSEA index of misfit as 0.243, I obtain a required sample 
size of 154, which is close to what the simulation suggests. The problem with the canned 
program on my website (variants of which are widely used in power analysis for RMSEAs) 
is that I would have a hard time knowing a priori to use an RMSEA misfit index of 0.243 
to represent the degree of misfit in my misspecified model. In fact, RMSEA rules of thumb 
suggest that any model with misfit greater than 0.08 should not be trusted but it turns out 
this standard reflects a trivial and non-consequential amount of misfit in the current case. 
The simulation approach is better because it allows you to zero in with greater precision 
on specific types of misspecification you want to explore.  

POWER ANALYSIS FOR THE JOINT SIGNFICANCE TEST 

In Chapter 28, I stated that it is possible to conduct a power analysis for the joint 
significance test using Mplus. This section shows you how to do so. It is a two-step process; 
One first conducts a standard simulation for one’s model while saving the results in a file 
called results.txt (as I did for the chi square power analysis in the previous section). 
Then one gathers up and summarizes relevant information for the joint significance test in 
Step 2. 

For Step 1, I conduct the analysis for the model in Figure 1 using the same population 
parameter values I used in Chapter 28: 

var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2) = 204.75, p1=7.0, p2 = 0.30 

Table 6 presents the simulation program from Chapter 28 but with two exceptions. On Line 
9, I ask Mplus to save results of the simulation in the file results.txt. I explained how 
this command works in the previous section on power analysis of the chi square test, so I 
do not repeat myself here. If you did not read that section, do so now. The other exception 
is the output line where I add TECH1 which I explain shortly.  

Table 6: Step 1 for Joint Significance Test Power Analysis  

1.  TITLE: STEP 1 JST POWER ANALYSIS; 
2.  MONTECARLO: 
3.  NAMES ARE t m y ;  
4.  CUTPOINTS = t(0); 
5.  NOBS = 150 ;        !sample size 
6.  NREPS = 20000 ;     !number of replicates 
7.  SEED = 2222 ;       !random seed 
8.  SAVE = temp.dat; 
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9.  RESULTS = results.txt;   !save results 
10. ANALYSIS:  
11. ESTIMATOR = MLR ;  
12. MODEL POPULATION:   !specify population model 
13. [t*0] ;             !set mean when generating original continuous t  
14. t*1 ;               !set var when generating original continuous t 
15. [y*0]; [m*0];       !set intercepts to 0 
16. y ON m*.30 ;        !set effect of m on y 
17. m ON t*7.0 ;        !set effect of t on M 
18. y*204.75 ;          !disturbance variance for y   
19. m*212.75 ;          !disturbance variance for m   
20. MODEL:              !specify analysis model 
21. y ON m*.30 ;        !outcome equation 
22. m ON t*7.0 ;        !mediation equation 
23. y*204.75 ;          !disturbance variance for y   
24. m*212.75 ;          !disturbance variance for m   
25. MODEL INDIRECT: 
26. y IND t ;         !evaluate omnibus mediation effect 
27. OUTPUT: TECH1 TECH9 ;  

 
Here is the output that describes the contents of the results.txt file for each simulation 
replicate: 
 
Number of Free Parameters                        6 

 
RESULTS SAVING INFORMATION 
 
  Order of data 
 
    Replication number 
    Parameter estimates 
     (saved in order shown in Technical 1 output) 
    Standard errors 
     (saved in order shown in Technical 1 output) 
    Number of Free Parameters 
    H0 Loglikelihood 
    H1 Loglikelihood 
    Akaike (AIC) 
    Bayesian (BIC) 
    Sample-Size Adjusted BIC 
    Chi-square : Value 
    Chi-square : Degrees of Freedom 
    Chi-square : P-Value 
    CFI 
    TLI 
    RMSEA : Estimate 
    SRMR  
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Counting up the entries in this list, there are a total of 26 entries per replication that I will 
input into my Step 2 Mplus program with the names rep and f1 to f25. From this list, I 
need to determine the names for the two coefficients that are part of mediational chain of 
interest, in this case p1 and p2. I also need to find in the file their estimated standard errors. 
The TECH1 option on the OUTPUT line produces output that helps me accomplish this.  

There are 6 free parameters in the model and the values for these parameters, based 
on the above listing of the contents of the results.txt file, are somewhere between f1 
and f6, inclusive. The TECH1 output shows a series of technical matrices in which the 
estimated free parameters are consecutively numbered, in this case, from 1 to 6. We need 
to locate a matrix on the output called the BETA matrix. It lists potential “causes” from the 
model in the columns and “effects” from the model in the rows. Here is the BETA matrix 
from the TECH1 OUTPUT in the current example: 

 
          BETA 
              M             Y             T 
              ________      ________      ________ 
 M                  0             0             3 
 Y                  4             0             0 
 T                  0             0             0 

 
Parameter number 3 is T→M because it intersects the column T (causes) with the row M 
(effects). Parameter number 4 is M→Y because it intersects the column M with the row Y. 
These numbers are the parameter numbers for p1 and p2, which means the values of the 
coefficients will be in variables f3 and f4 in my Step 2 program when I read in the data 
from the results.txt file. Their corresponding standard errors are found by adding the 
number of free parameters, 6, to these numbers, f9 and f10.1     
 Here is the Step 2 program to calculate power for the joint significance test: 

Table 7: Step 2 for Joint Significance Test Power Analysis  

1.  TITLE: STEP 2 JST POWER ANALYSIS ; 
2.  DATA: 
3.  FILE IS results.txt ; 
4.  DEFINE: 
5.  jst11=0 ; 
6.  jst00=0 ; 

 
1 The Beta matrix is used in maximum likelihood estimation. There is another matrix called the Gamma matrix that 
is used in weighted least squares estimation. Working with these matrices can be complex;  careful study of the Mplus 
user guide and technical appendix is required. I provide you in the Appendix with a work-around to using these 
matrices that is simpler but tedious. 
 



                                                                                                             Simulation Variants 25 

 
 

7.  jst10=0 ; 
8.  jst01=0 ; 
9.  if (abs(f3/f9) GE 1.96 AND abs(f4/f10) GE 1.96) THEN jst11 = 1 ; 
10. if (abs(f3/f9) LT 1.96 AND abs(f4/f10) LT 1.96) THEN jst00 = 1 ; 
11. if (abs(f3/f9) GE 1.96 AND abs(f4/f10) LT 1.96) THEN jst10 = 1 ; 
12. if (abs(f3/f9) LT 1.96 AND abs(f4/f10) GE 1.96) THEN jst01 = 1 ; 
13. VARIABLE:  
14. NAMES ARE rep f1-f25 ;  
15. USEVARIABLES jst11 jst00 jst10 jst01 ; 
16. ANALYSIS: TYPE = BASIC ; 
17. OUTPUT:    ; 

 
Lines 5 to 8 create four new variables whose names begin with jst (for “joint significance 
test”) and sets each of them to a value of zero for each replicate. Lines 9 to 12 modify these 
0 values depending on certain conditions. Each line (a) divides the p1 value by its standard 
error, takes the absolute value of the result, and then determines if this critical ratio is larger 
or smaller than the critical value for a two tailed z test (alpha = 0.05) and (b) also determines 
if the corresponding critical ratio for p2 is larger or smaller than its corresponding critical 
value. In Line 9, if both results are statistically significant, then jst11 is changed from a 
value of 0 to a value of 1 for the replicate in question. In Line 10, if both results are 
statistically non-significant, then jst00 is changed to 1 for the replicate. In Line 11, if the 
result for p1 is statistically significant but not p2, then jst10 is changed to 1 for the 
replicate. In Line 12, if the result for p1 is statistically non-significant but p2 is statistically 
significant, then jst01 is changed to 1 for the replicate. All other syntax should be self-
explanatory. 
 Here is the core output that results from the syntax: 

  
    SAMPLE STATISTICS 
 
           Means 
              JST11         JST00         JST10         JST01 
              ________      ________      ________      ________ 
                0.814         0.006         0.028         0.152 
 

Both of the joint significance null hypotheses were rejected in the same analysis 81.4% of 
the time across the 20,000 simulation replicates, indicating the power of the joint 
significance test was 0.814. On 15.2% of the replicates, only p2 was statistically significant, 
while on 2.8% of the replicates, only p1 was statistically significant. Neither p1 nor p2 was 
statistically significant for fewer than 1% of the replicates (.6%).  
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LOCALIZED SIMULATIONS FOR PROPORTIONS 

In this section, I show how to conduct a localized simulation for the case of a binary 
outcome. I illustrate the approach first using logistic regression, including a design with a 
continuous mediator, and then using probit regression. I also consider the case where I have 
a binary mediator and a binary outcome.   
 
Comparing Two Groups on a Binary Outcome Using Logistic Analysis 

Here, I show you how to conduct a localized simulation using the model in Figure 1, but 
where I alter the exam performance outcome to be dichotomous, 1 = student received a 
high pass on the exam, 0 = student did not receive a high pass. I illustrate the general logic 
by first omitting the mediator and then I repeat the example with the mediator. Discussing 
the former scenario first makes it easier to understand the latter scenario.   

The simulation uses limited information SEM to compare the treatment and control 
groups on the proportion of students receiving a high pass. The logistic model, using 
sample notation, takes the form: 

Ln[Odds(HP=1)] = a + b T                                      [10] 

where HP=1 indicates obtaining a high pass, T is the treatment condition, a is the intercept 
and b is the logistic coefficient. In this equation, a is the log odds of a high pass for the 
control group because when T = 0, the intercept references the control group. The exponent 
of a is the odds of a high pass for the control group. The coefficient b is the difference 
between the log odds of having a high pass for the intervention group minus the log odds 
of having a high pass for the control group. The exponent of it is the odds ratio for the 
effect of the treatment group relative to the control group (see Chapter 5 for details about 
logistic regression)  

A formula I will make use of is one that converts an odds to a probability: 

P(HP=1) = Odds(HP=1) / (1 + Odds(HP=1))                                  [11] 

where P(HP=1) is the probability of a high pass and Odds(HP=1) is the odds of a high pass. 
The equation states that the probability of a high pass equals the odds of a high pass divided 
by 1 plus the odds of a high pass. A second formula converts a probability to an odds: 

Odds(HP=1) = P(HP=1) / (1 - P(HP=1))                    [12]  

where all terms are as previously defined; the odds of a high pass equals the probability of 
a high pass divided by one minus the probability of a high pass.  
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I conduct a simulation using an initial sample size of N=150 (approximately 75 per 
group for the treatment versus control conditions) and where the population effect size is a 
proportion of 0.30 for a high pass in the intervention group minus a proportion of 0.20 in 
the control group. To write the syntax, I need to convert the intervention 
probability/proportion and the control group probability/proportion to log odds. Using 
Equation 12 in conjunction with a natural logarithm, they are   

Log odds for control group = ln[0.20/(1-0.20)] = -1.38629 

Log odds for intervention group = ln[0.30/(1-0.30)] = -0.847298 

and the intercept (which is the control group log odds) and the slope (which is the difference 
in the two log odds) are  

a = -1.38629 

b = -0.847298 - (-1.38629) = 0.538992 

For binary outcomes, Mplus works with a threshold instead of an intercept, which is the 
same value as the intercept but opposite in sign. The threshold value is thus 1.38629. See 
Chapter 5 for elaboration.  

Table 8 presents the Mplus syntax for the simulation.  

Table 8: Two Group Test of Proportions  

1. TITLE: PROPORTION SIMULATION ; 
2. MONTECARLO: 
3. NAMES ARE t y ;  
4. CUTPOINTS = t(0); 
5. NOBS = 800 ;            !sample size 
6. NREPS = 20000 ;         !number of replicates 
7. SEED = 2222 ;           !random seed 
8. GENERATE = y(1 l) ;     !binary DV, 1 threshold with logit link 
9. CATEGORICAL = y ; 
10. ANALYSIS:  
11. ESTIMATOR = ML ; LINK = LOGIT ;  
12. MODEL POPULATION:      !specify population model 
13. [t*0] ;                !set mean when generating original continuous t  
14. t*1 ;                  !set var when generating original continuous t 
15. [y$1*1.38629]  ;       !set threshold for y 
16. y ON t*0.538992  ;     !set slope coefficient for y 
17. MODEL:                 !specify analysis model 
18. [y$1*1.38629] (thresh) ;    !assign a label to the y threshold 
19. y ON t*0.538992 (b) ;       !assign a label to the y coefficient 
20. MODEL CONSTRAINT: 
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21. NEW(PCTRL*.2000 PTREAT*.3000 DIFF*.1000 ) ; 
22. PCTRL = exp(-thresh)/(1+exp(-thresh)) ; 
23. PTREAT = exp(-thresh+1*b)/(1+ exp(-thresh+1*b)) ;      
24. DIFF = PTREAT-PCTRL ;       
25. OUTPUT: TECH9 ; 

 
Most of the syntax should be familiar based on my initial explanation of Mplus based 

simulations in the main text. Line 8 generates a binary endogenous variable in the 
simulation. In this case the target variable is named y and the first entry in parentheses is 
the number 1 to signify there is one break point (or threshold), making y binary. If the 
number of thresholds was 2, then y would be a trichotomy. And so on. The second entry is 
a lower case L to tell Mplus I will later define the threshold value using a logistic function. 
Line 9 declares y as categorical, per binary regression in Mplus.  
 Line 15 defines the threshold for the logistic regression and, as noted, it is the opposite 
signed log odds intercept value for the control group. The intercept essentially reflects a 
proportion/probability of 0.20. Line 16 tells Mplus to regress y onto t and to set the 
coefficient for t to 0.538992. Note that if I calculate the predicted y for the intervention 
group, based on Y = a + b T, I obtain  

Predicted log odds for intervention group = -1.38629 + (0.538992)(1.0) = -0.847298 

which maps onto a probability/proportion of 0.30.  
 On Lines 18 and 19, I add labels to the two parameters in the analysis phase as 
opposed to data generation phase of the simulation. On Line 20, I invoke the MODEL 
CONSTRAINT option. Line 21 specifies three NEW parameter names, PCTRL, PTREAT, and 
DIFF, each followed by a population value it is to take on. Line 22 uses the parameter 
labels to define PCTRL to be the proportion of high passes for the control group, Line 23 
defines PTREAT as the proportion of high passes for the intervention group, and Line 24 
defines DIFF as the difference between the two proportions.  

The logistic model is just identified so the global fit statistics are not germane. Here 
is the simulation output for the coefficients of interest: 

 
                              ESTIMATES              S. E.  M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 Y          ON 
  T                   0.539     0.5511     0.4029     0.3914     0.1624   0.949  0.289 
 Thresholds 
  Y$1                 1.386     1.4129     0.3042     0.2952     0.0932   0.952  1.000 
 
 
                              ESTIMATES              S. E.  M. S. E.   95%   % Sig 
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                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
New/Additional Parameters 
  PCTRL               0.200     0.2001     0.0466     0.0458     0.0022   0.935  1.000 
  PTREAT              0.300     0.2998     0.0534     0.0526     0.0029   0.939  1.000 
  DIFF                0.100     0.0997     0.0713     0.0699     0.0051   0.943  0.305 
 

Two lines of output are of particular interest. First is the logistic coefficient for Y on 
T, which is the log odds outcome difference between the intervention and control groups. 
The parameter estimate appears to be relatively unbiased and the confidence interval 
coverage for it (0.949) is reasonable. The statistical power for the test is low, 0.289. If you 
examine the last line of the New/Additional Parameters section that focuses on the 
proportion differences between the two groups, the effect estimate when translated into 
proportions also is relatively unbiased and the confidence interval coverage is reasonable 
(0.943). The statistical power is 0.305, which is quite close to the result for the logistic 
coefficient. The two estimates are slightly different because different statistical tests are 
being applied. The Y on T logistic coefficient uses a Wald-like test but the approach in the 
New/Additional Parameters section uses a delta method to define the standard error.  

Both methods also yielded reasonable results when I evaluated Type I errors by 
setting the coefficient for T to zero and re-running the simulation with appropriate syntax 
adjustments for the zero effect. Aside from the low power and the rather large margin of 
error (a MOE for the proportion difference is (2)(0.07) = ±0.14), this analysis showed that 
the Type I error rate was reasonable.   
 For a sample size of 150, what is the effect size sensitivity for the effect of the 
intervention on obtaining a high pass? I need to engage in a trial and error process in which 
I systematically alter the proportion difference between the two groups and iterate through 
different values until I find statistical power of 0.80 for the effect size in question and N = 
150. As a first step, I leave the control group proportion at 0.20 but first try the case where 
instead of 0.30, the intervention proportion is 0.40. To do so, I calculate the log odds that 
maps onto a proportion of 0.40, which is ln(0.40/(1-.40)) = -0.405465. I then subtract from 
this the log odds for a proportion of 0.20, which as noted above is -1.38629. The difference 
is 0.980825 and this becomes the value of the coefficient associated with T in the new 
syntax. I then rewrite Lines 15 to 25 read as follows: 
 
15. [y$1*1.38629]  ; 
16. y ON t*0.980825  ;   
17. MODEL:                 
18. [y$1*1.38629] (thresh) ; 
19. y ON t*0.980825 (b) ;   
20. MODEL CONSTRAINT: 
21. NEW(PCTRL*.2000 PTREAT*.4000 DIFF*.2000 ) ; 
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22. PCTRL = exp(-thresh)/(1+exp(-thresh)) ; 
23. PTREAT = exp(-thresh+1*b)/(1+ exp(-thresh+1*b)) ;      
24. DIFF = PTREAT-PCTRL ;       
25. OUTPUT: TECH9 ; 

Here is the output for this proportion difference that provides me the statistical power of 
the contrasts when the population proportion difference is 0.40 – 0.20 = 0.20: 
 
                             ESTIMATES                 S. E.  M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
New/Additional Parameters 
  PCTRL               0.200     0.2001     0.0466     0.0458     0.0022   0.935  1.000 
  PTREAT              0.400     0.3999     0.0568     0.0563     0.0032   0.944  1.000 
  DIFF                0.200     0.1998     0.0738     0.0727     0.0055   0.944  0.780 

 
Power for DIFF is just under 0.80. I decide to rerun the program one more time to get even 
closer to power of 0.80 by setting the proportion for intervention group to 0.410 and then 
repeating the above process. The result was an estimated power of 0.802. The effect size 
sensitivity of a sample size of 150 is thus a proportion difference of approximately 0.21 or 
greater, which, to me, is poor sensitivity.  
 What sample size do I need to achieve power of 0.80 in the original analysis? Here 
are the results if I increase N to 600 but leave the target proportions at 0.20 and 0.30: 

                              ESTIMATES                S. E.  M. S. E.  95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 Y          ON 
  T                   0.539     0.5411     0.1929     0.1925     0.0372   0.951  0.808 
 
 Thresholds 
  Y$1                 1.386     1.3924     0.1449     0.1450     0.0210   0.953  1.000 
 
New/Additional Parameters 
  PCTRL               0.200     0.2000     0.0230     0.0230     0.0005   0.948  1.000 
  PTREAT              0.300     0.2998     0.0265     0.0264     0.0007   0.948  1.000 
  DIFF                0.100     0.0998     0.0351     0.0351     0.0012   0.950  0.811 
 
I got lucky and stumbled onto power very close to 0.80 on the first try. Based on this 
analysis, if I want to detect a proportion treatment-control difference of 0.10 (or 0.30 minus 
0.20), I need a sample size of about 300 per group. With this sample size, the likely margin 
of error for the difference will be approximately (2)(0.35) = ±0.07. Notice how much more 
sample size demanding this analysis is than if my outcome had been continuous. 
Dichotomous outcomes often are less informative and sample size demanding than 
continuous outcomes, so I tend not to use them unless circumstances so dictate.  
 Note also that the power analysis will produce different results if the 0.10 proportion 
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difference is 0.20 versus 0.10, or 0.30 versus 0.20, or 0.40 versus 0.30. It turns out the most 
sample size demanding analysis will be one in which one of the target proportions is 0.50. 
Given this, many researchers conduct power analysis where they transform what they think 
is the true proportion difference to one where one of the target proportions is 0.50. In the 
current case, I would use 0.50 versus 0.40 in the simulation (or 0.60 versus 0.50, which 
will produce the same results).  
 There are many analytic strategies that statisticians have developed for comparing 
proportions in independent groups. The analytic method used here tends to do well except 
for smaller sample sizes and when percentages are near their extremes. An adjusted Bayes 
method described by Agresti and Caffo (2000) fares well more generally as do methods by 
Storer and Kim, by Beal, and by Kulinskaya, Morgenthaler, and Staudte, all of which are 
described in Wilcox (2021). The local simulation here suggests that the logistic regression 
strategy as implemented in Mplus with maximum likelihood estimation works reasonably 
well in terms of bias, asymptotic theory, and confidence interval coverage for the specific 
conditions of my study, but these other methods might provide yet more statistical power.  

Mediation Analysis with a Binary Outcome Using Logistic Analysis 

I now consider the case of introducing a mediator into the model, study skills. For purposes 
of power analysis, I place the mediator on a standardized metric that has a mean of zero 
and a standard deviation of 1.0. This simplifies the reporting of the power analyses, as 
elaborated below. The model I use is: 

Treatment vs. 
Control (T)

Study 
Skills (M) High Pass (Y)

d1

p1 p2

 

There is no Y disturbance term because Y is binary endogenous (see Chapter 5).  
To execute the simulation, here are the population parameters I need to specify: 

var(T), var(M), var(d1), p1, p2, a1, and a2 

where a1 and a2 are intercepts for the endogenous variables M and Y, respectively, and all 
other terms are as previously defined. In the  main text, I noted that for a two group 
intervention with equal n per group vis-à-vis random assignment, the variance of T is 0.25. 
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Because I treat M as having a standardized metric, its population variance equals 1.0. To 
specify the population value of var(d1), I must decide how much of the variance in M that 
I want T to account for. Suppose I decide to evaluate an effect size or value of p1 that 
reflects 5% explained variance in M or an eta squared of 0.05. This means that the 
disturbance variance for M should equal 1 (the variance of M) minus 0.05 = 0.95. From 
the above information, I can calculate the value of p1. Recall the decomposition equation 

var(M) = p12 var(T) + var (d1) 

Substituting the above known values, I obtain 

1.0 =  p12 0.25 + 0.95 

and with algebraic manipulation I find that  

p12 = (1-.95) / 0.25 =  0.200   

and p1 = 0.447 
I next specify the value of p2. My presentation of logistic regression in Chapter 5 

showed that the exponent of p2 is the odds ratio or multiplicative factor associated with the 
effect of M on Y. Suppose for this link I want to explore the statistical power associated 
with an odds ratio of 1.75. This means that for every 1 unit that M increases (i.e., for every 
one standard deviation that M increases because M has a standardized metric), the odds of 
Y increases by a multiplicative factor of 1.75. The natural log of 1.75 is 0.559616, so I set 
p2 = 0.559616.  

For M, a1 is the mean of M when all the predictors of it equal zero. In the present 
case, a1 defines the mean on M for the control group because T is the only predictor of M 
and a score of 0 on T indicates the control group. If the intervention and control groups are 
of equal size and the overall mean of M is zero, the mean for the control group should be 
negative half the size of p1 (or -.447/2 = -0.2235) and for the intervention group it should 
be positive half the size of p1 (or +.447/2 = 0.2235). I set a1 to -0.2235.  

For Y, a2 is the log odds of Y when all predictors equal zero. In the present model, 
because the only predictor of Y is M, a2 is the log odds of Y when M = 0 (which is the 
mean of M). I set the a2 log odds to map onto a value that reflects the probability that Y = 
1 for 0.25, the midway value between the intervention and control groups. The log odds 
value for a2 is thus ln[0.25/(1-0.25)] = -1.09861. The threshold equivalent is 1.0986.2 

Given the above parameterizations, I can write the Mplus syntax. It appears in Table 

 
2 The parameter values yield a total effect of T on Y that is different from the previous example. I chose the values 
to make some points later. They key is that you understand the logic of the current example.  
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9. All of the syntax should be self-explanatory.  

Table 9: Binary Outcome with Mediation  

1. TITLE: PROPORTION SIMULATION WITH MEDIATION ; 
2. MONTECARLO: 
3. NAMES ARE t m y ;  
4. CUTPOINTS = t(0); 
5. NOBS = 150 ;           !sample size 
6. NREPS = 20000 ;        !number of replicates 
7. SEED = 2222 ;          !random seed 
8. GENERATE = y(1 l) ;    !binary DVs 1 threshold using logit 
9. CATEGORICAL = y ;      !declare y as categorical 
10. ANALYSIS:  
11. ESTIMATOR=ML ; LINK=LOGIT ;  
12. MODEL POPULATION:     !specify population model 
13. [t*0] ;               !set mean when generating original continuous t  
14. t*1 ;                 !set var when generating original continuous t 
15. [m*-0.2235];  
16. m*0.95 ; 
17. m ON t*0.447  ; 
18. [y$1*1.0986]  ; 
19. y ON m*0.559616 ;    !ln of odds ratio of 1.75   
20. MODEL:                !specify analysis model 
21. [m*-0.2235];  
22. m*0.95 ; 
23. m ON t*0.447 (p1) ; 
24. [y$1*1.0986] (thresh) ;   
25. y ON m*0.559616 (p2) ;  !ln of odds ratio of 1.75  
26. MODEL INDIRECT: 
27. y IND t ;           !evaluate omnibus mediation effect 
28. OUTPUT: TECH9 ;  
 

Here are the results for the key parameter estimates:  
 
                              ESTIMATES                S. E.   M. S. E.    95%  % Sig 
                 Population    Average   Std. Dev.  Average              Cover  Coeff 
 
 M          ON 
  T                   0.447     0.4487     0.1603     0.1584     0.0257   0.947  0.803 
 
 Y          ON 
  M                   0.560     0.5751     0.2118     0.2076     0.0451   0.953  0.816 

 
All seems to be in order in terms of bias and confidence interval coverage. The statistical 
power for the effect of T on M is 0.803 and for the effect of M on Y it is 0.816. Here are 
the results for the overall omnibus test of mediation:  
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TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                               ESTIMATES             S. E.      M. S. E.   95%   % Sig 
                 Population    Average   Std. Dev. Average               Cover  Coeff 
 
Effects from T to Y 
 
  Indirect            0.250     0.2575     0.1349     0.1337     0.0182   0.927  0.408 
  Direct effect       0.000     0.0000     0.0000     0.0000     0.0000   0.000  1.000 

 
In the current case, the indirect effect is the same as the total effect because there is only 
one mediator and there is no direct effect of T on Y over and above the mediator. The 
product of the two logistic coefficients, p1 times p2, is (0.447)(0.560) = 0.250. The 
statistical power for it is 0.408, which is low. Many researchers prefer the use of 
bootstrapping when evaluating omnibus indirect effects and total effects of this type. When 
I did so, the results for T→M and M→Y were comparable to the non-bootstrap analyses 
but this was not the case for the indirect effect of T→M→Y. With bootstrapping, the 
statistical power for the indirect effect was 0.61 and the confidence interval coverage was 
0.948, yielding a non-trivial improvement in statistical power relative to the non-bootstrap 
analysis.3 Parenthetically, when I used the joint significance test, the statistical power for 
the omnibus test was 0.63.  
 I do not pursue the analyses further, but I could conduct other simulation analyses for 
the current model to explore the implications of increased sample sizes, effect size 
sensitivity, ensuring viable uses of bootstrapping, and reducing margins of errors.   

Comparing Two Groups on a Binary Outcome Using Probit Analysis  

I work with the same scenario as above for a logistic analysis but now I use a probit 
analysis. The underlying probit model, stated using sample notation, takes the form: 

Probit(HP=1) = a + b T                                   [13] 

where HP=1 indicates a high pass, T is a dummy variable for the treatment condition, a is 
the probit-based intercept, b is the probit-based coefficient, and the term ‘Probit” refers to 
a translating the probability into a Z score based on the cumulative distribution function 
(CDF) of the standard normal distribution. In this equation a is probit value for the control 
group. The coefficient b is the difference between the probit value for a high pass for the 
intervention group minus the probit value for a high pass for the control group.  

 
3 Mplus sometimes reports the message ERRORS DURING ESTIMATION WITH BOOTSTRAP DRAW 
NUMBER __, with the draw number varying to reflect the replicate where the error occurred. As long as this 
message is not accompanied by an elaboration of the error, all is well.  
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As discussed in Chapter 5, probit regression focuses on Z scores in a cumulative 
normal distribution. Each such Z score can be transformed into a probability, so one can 
think of probit regression as analyzing transformed probabilities. In R, one can convert a 
probability to a probit value or Z score in a cumulative standard normal distribution using 
the qnorm function. For example, if the probability of a high pass for the control group is 
0.20, the probit value or Z score equivalent for it is  

qnorm(.20) = -0.8416212 

If the probability of a high pass for the intervention group is 0.30, the probit value or Z 
score for it is  

qnorm(.30) = -.5244005 

 I also can convert a probit value or Z score to a probability/proportion using the 
pnorm function in R, like this: 

pnorm(-0.8416212) = 0.20 

pnorm(-.5244005) = 0.30 

For this power simulation demonstration, I again conduct the power analysis 
simulation using a sample size of N=150 (75 per group for the treatment versus control 
conditions) where the population effect size is a proportion of 0.30 with a high pass in the 
intervention group minus a corresponding proportion of 0.20 in the control group,  per the 
example in Chapter 28. The intercept is the probit value for the control group, -0.8416212, 
and for the slope it is the difference between the probit values for the two groups, (-
.5244005) - (-0.8416212) = 0.317221. As with the logit analysis, Mplus works with 
thresholds, which is the opposite signed intercept, in this case 0.8416212.  

Table 10 presents the relevant Mplus syntax for the simulation.    

Table 10: Probit Simulation for Test of Proportions  

1.  TITLE: PROPORTION SIMULATION ; 
2.  MONTECARLO: 
3.  NAMES ARE t y ;  
4.  CUTPOINTS = t(0); 
5.  NOBS = 800 ;          !sample size 
6.  NREPS = 20000 ;       !number of replicates 
7.  SEED = 2222 ;         !random seed 
8.  GENERATE = y(1 p) ;   !binary DV, 1 threshold with probit link 
9.  CATEGORICAL = y ; 
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10. ANALYSIS:  
11. ESTIMATOR = ML ; LINK = PROBIT ;  
12. MODEL POPULATION:      !specify population model 
13. [t*0] ;              !set mean of treatment to 0 for cutoff  
14. [t*0] ;              !set mean when generating original continuous t  
15. t*1 ;                !set var when generating original continuous t 
16. y ON t*0.317221 ;    !set slope coefficient for y 
17. MODEL:                 !specify analysis model 
18. [y$1*0.8416212] (thresh) ;    !assign a label to the y threshold 
19. y ON t*0.317221 (b) ;         !assign a label to the y coefficient 
20. MODEL CONSTRAINT: 
21. NEW(PCTRL*.2000 PTREAT*.3000 DIFF*.1000 ) ; 
22. PCTRL = exp(-thresh)/(1+exp(-thresh)) ; 
23. PTREAT = exp(-thresh+1*b)/(1+ exp(-thresh+1*b)) ;      
24. DIFF = PTREAT-PCTRL ;       
25. OUTPUT: TECH9 ; 
 
All of the syntax should be familiar. Line 8 generates the binary endogenous variable, y, 
but now the second entry in the parentheses has a p to indicate the use of a probit function 
rather than a lower case L.  

The probit model is just identified so the global fit statistics are not germane. Here is 
the output for the coefficients of interest: 

                              ESTIMATES               S. E.  M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
Y          ON 
  T                   0.317     0.3222     0.2336     0.2274     0.0546   0.947  0.296 
 
 Thresholds 
  Y$1                 0.842     0.8536     0.1717     0.1673     0.0296   0.950  1.000 
 
New/Additional Parameters 
  PCTRL               0.200     0.2001     0.0466     0.0458     0.0022   0.935  1.000 
  PTREAT              0.300     0.2998     0.0534     0.0526     0.0029   0.939  1.000 
  DIFF                0.100     0.0997     0.0713     0.0699     0.0051   0.943  0.305 
 

The results parallel closely those for the logistic analysis. 

Mediation Analysis with a Binary Outcome Using Probit Analysis 

This section shows you how to analyze the mediation model for the effect of a treatment 
versus control condition, T, on study skills, M, (measured on a 0 to 100 metric with a 
standard deviation of 15) which, in turn, affects the binary outcome of obtaining a high 
pass, Y. Given two endogenous variables in the causal model, two causal equations are 
implied: 
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M = a1 + p1 T + d1 

Y = a2 + p2 M 
 
As with the logistic analysis, the population parameters I need to specify are: 

var(T), var(M), var(d1), p1, p2, a1, and a2 

Because T is a two group dummy variable with random assignment, the variance of T is 
0.25. The standard deviation of M is 15 and the variance is SD2, so var(M) = 152 = 225. To 
specify the population value of var(d1), I must first decide the effect size I want to use as 
my standard for estimating power for the effect of T on M. Suppose I decide 7.0 is the 
minimally important effect size I want to use, which is roughly half the standard deviation 
of M. Recall the variance decomposition equation 

var(M) = p12 var(T) + var (d1) 

If p1 = 7.0, I obtain 

225 =  (72)(0.25) + var (d1) 

and with algebraic manipulation of these numbers, I find that  

var (d1) = 225 - (49)(0.25) =  212.75   

I next specify the values of a1, a2 and p2. The intercept a1 is the mean M score for the 
control group, i.e., when T = 0. I decide based on past experience with the scale that a score 
of 60 is a reasonable value for it. In practice, I can rescale M by mean centering it, i.e., by 
subtracting 60 from the raw M scores. This transformation keeps the variance of M at 225 
but it recenters M so that a score of 60 on the original metric corresponds to a score of 0 
on the transformed M. Using the transformed M in the simulation, the intercept a2 becomes 
the probit value or Z score associated with the proportion of individuals who have a high 
pass when M is at its average score on the original metric. I decide to set this equal to a 
probit value mapping onto a proportion of 0.20, which is -0.8416212. The threshold 
counterpart of this value is 0.8416212.  

My presentation of probit regression in Chapter 5 noted that the probit coefficient for 
a predictor is the number of Z scores in a cumulative normal distribution that the outcome 
changes for every one unit increase in the predictor, in this case M. If I set p2 equal to 0.05, 
then for every one unit increase in M, the Z score for Y increases by 0.05 units. For 
example, if when the transformed M equals 0 the Z score for Y is -0.8416212, then 
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increasing M by one unit will increase the Z score to -0.8416212 + 0.05 = -0.791621. The 
latter value corresponds to a change from a probability of 0.200 to a probability of 0.214 
or about 0.014 probability units. A 10 unit change in M will lead to a Z score change from 
-0.8416212 to -0.8416212 + (10)(0.05) = -0.341621 or a change from 0.200 to 0.366 
probability units or about 0.166 probability units. Suppose I decide to set p2 = 0.05 for the 
minimally important effect size for the M→Y link. 

Given the above parameterizations, I write the Mplus syntax in Table 11 and where 
m has already been transformed via mean centering. The syntax should be self-explanatory.  

Table 11: Binary Outcome with Continuous Mediator and Probit Analysis  

1.  TITLE: LOCAL SIMULATION PROBIT MEDIATION; 
2.  MONTECARLO: 
3.  NAMES ARE t m y ;  
4.  CUTPOINTS = t(0); 
5.  NOBS = 150 ;         !sample size 
6.  NREPS = 20000 ;      !number of replicates 
7.  SEED = 2222 ;        !random seed 
8.  GENERATE = y(1 p) ;  !binary DVs 1 threshold with probit link 
9.  CATEGORICAL = y ; 
10. ANALYSIS:  
11. ESTIMATOR = ML ; LINK = PROBIT ;  
12. MODEL POPULATION:      !specify population model 
13. [t*0] ;                !set mean when generating original continuous t  
14. t*1 ;                  !set var when generating original continuous t 
15. [m*0];                !set intercepts to 0 
16.  m ON t*7.0 ;         !set effect of t on m 
17.  m*212.75 ;           !set disturbance variance for M  
18.  [y$1*0.8416212] ;    !set threshold for y 
19.  y ON m*.05 ;         !set effect of m on y   
20. MODEL:                 !specify analysis model 
21. [m*0];        
22.  m ON t*7.0 ;        
23.  m*212.75 ;  
24.  [y$1*0.8416212] ; 
25.  y ON m*.05 ;  
26. MODEL INDIRECT: 
27. y IND t ;           !evaluate omnibus mediation effect 
28,  OUTPUT: TECH9 ;;  
 

Here are the results for the key parameter estimates:  
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                              ESTIMATES                S. E.    M. S. E.    95%  % Sig 
                 Population   Average   Std. Dev.  Average              Cover Coeff 
 
M          ON 
  T                   7.000     7.0255     2.3984     2.3701     5.7528   0.947  0.838 
 
 Y          ON 
  M                   0.050     0.0514     0.0101     0.0098     0.0001   0.953  1.000 
 

All seems to be in order in terms of bias and confidence interval coverage. The statistical 
power for the effect of T on M is 0.838 and for the effect of M on Y it is >0.999. Here are 
the results for the overall omnibus test of mediation:  
 
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                              ESTIMATES                S. E.    M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
Effects from T to Y 
 
  Indirect            0.350     0.3609     0.1437     0.1414     0.0208   0.947  0.793 
  Direct effect       0.000     0.0000     0.0000     0.0000     0.0000   0.000  1.000 

 
In the current case, the indirect effect is the same as the total effect because there is only 
one mediator and there is no direct effect of T on Y over and above the mediator. The 
product of the two coefficients, p1 times p2, is (7.0)(0.05) = 0.350. The statistical power for 
it is 0.793. Many researchers prefer to use bootstrapping when evaluating omnibus indirect 
effects and total effects of this type. When I did so, the results for T→M and M→Y were 
comparable to the non-bootstrap analyses but this was only approximately so for the 
indirect effect of T→M→Y. With bootstrapping, the statistical power was 0.84 and the 
confidence interval coverage was 0.949. When I used the joint significance test to assess 
the statistical significance of the indirect effect, the statistical power of it for the omnibus 
indirect effect test was 0.86.  

I do not pursue the analyses further, but I could explore other analyses for the current 
model to explore the implications of increased sample sizes, effect size sensitivity, 
exploring viable uses of bootstrapping, Type I error rates and reducing margins of errors. 
I leave that as an exercise for you if you are so inclined.  

Mediation Analysis with a Binary Mediator and Binary Outcome  

In this simulation, I again work with the model in Figure 1 but study skills is defined as a 
dichotomous variable (1 = achieved high mastery of the targeted study skills, 0 did not 
achieve high mastery of the targeted study skills) as is exam performance (1 = obtained a 
high pass, 0 = did not obtain a high pass). I have two equations, each of which I will analyze 
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using logistic regression, although I could use probit regression instead: 

M = a1 + p1 T   

ln(Odds(Y=1)) = a2 + p2 M 

The population parameters I specify are: 

var(T), a1, a2, p1, and p2,  

The variance of T, as before, is 0.25, a1 is the intercept for M and is a Z score that maps 
onto the probability of M=1 for the control group (which I will set to 0.15) or -1.7346. I 
set the probability of M=1 equal to 0.30 for the intervention group, which maps onto a Z 
score of -0.847298. The coefficient p1 is the difference between these two Z scores which 
is (-0.847298) – (-1.7346) = 0.887302. I set the coefficients for a2 and p2 to the same values, 
a2 = -1.7346 and p2 = 0.887302. The thresholds for the two equations are each 1.7346. 
Table 12 has the syntax for the program. I use an N=300 in this example. 

Table 12: Binary Outcome with Binary Mediator and Logit Analysis  

1.  TITLE: BINARY OUTCOME AND BINARY MEDIATOR; 
2.  MONTECARLO: 
3.  NAMES ARE t m y ; 
4.  CUTPOINTS = t(0); 
5.  NOBS = 300 ;                !sample size 
6.  NREPS = 20000 ;             !number of replicates 
7.  SEED = 2222 ;               !random seed 
8.  GENERATE = m(1,l) y(1 l) ;  !binary m and y 1 threshold using logit 
9.  CATEGORICAL = m y ;         !declare m and y as categorical 
10. ANALYSIS: 
11. ESTIMATOR=ML ; LINK=LOGIT ;  
12. MODEL POPULATION:           !specify population model 
13. [t*0] ;                  !set mean when generating original continuous t  
14. t*1 ;                    !set var when generating original continuous t 
15.  [m$1*1.7346] ; 
16.   m ON t*.887302  ; 
17.  [y$1*1.7346]  ; 
18.  y ON m*.887302    ; 
19. MODEL:                       !specify analysis model 
20.  [m$1*1.7346] (thresh1) ; 
21.  m ON t*.887302 (p1) ; 
22.  [y$1*1.7346]  (thresh2) ; 
23.  y ON m*.887302 (p2)   ; 
24. MODEL INDIRECT: 
   25. y IND m t ;                !evaluate omnibus mediation effect 
   26. OUTPUT: TECH9 ;  
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Here are the key results for the core parameters in the model:  
 
                              ESTIMATES                S. E.    M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 M          ON 
  T                   0.887     0.8929     0.2936     0.2934     0.0862   0.953  0.878 
 
 Y          ON 
  M                   0.887     0.8877     0.3305     0.3282     0.1092   0.955  0.767 
 

All looks reasonable in terms of bias and confidence interval coverage. The statistical 
power for the T→M link is 0.878 and for M→Y it is 0.767. Mplus does not print the output 
for the traditional indirect and total effects because the results are mathematically 
intractable for this scenario. However, the counterfactual effects are tractable: 
   
TOTAL, INDIRECT, AND DIRECT EFFECTS BASED ON COUNTERFACTUALS (CAUSALLY-DEFINED EFFECTS, 
CONDITIONAL ON ALL OTHER COVARIATES BEING ZERO) 
 
                              ESTIMATES                S. E.    M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average             Cover  Coeff 
 
Effects from T to Y 
 
  Tot natural IE      0.022     0.0224     0.0117     0.0118     0.0001   0.920  0.401 
  Pure natural DE     0.000     0.0000     0.0000     0.0000     0.0000   0.000  1.000 
  Total effect        0.022     0.0224     0.0117     0.0118     0.0001   0.920  0.401 

 
The statistical power for the total and indirect effects is 0.401. Here are the results for a 
comparable bootstrap analysis:  
  
                              ESTIMATES                S. E.   M. S. E.    95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
Effects from T to Y 
 
  Tot natural IE      0.022     0.0225     0.0118     0.0121     0.0001   0.948  0.622 
  Pure natural DE     0.000     0.0000     0.0000     0.0000     0.0000   0.000  0.000 
  Total effect        0.022     0.0225     0.0118     0.0121     0.0001   0.948  0.622 

 
The statistical power for the indirect and total effects improves considerably.  

LATENT VARIABLE LOCALIZED SIMULATIONS 

In this section, I conduct a localized simulation for a model that contains a latent variable. 
I use the model shown in Figure 3, which is the same as Figure 1 but where the study skills 
mediator has three interchangeable indicators.  
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e1 e2 e3

L1 L2 L3

 

FIGURE 3. Simulation Example with Latent Variables 

I signify the paths from the latent variable to the indicators by Ls because the paths are 
analogous to (unstandardized) factor loadings. Measurement errors are indicated by e and 
are distinct from disturbance variables which usually are designated as d. With 
interchangeable indicators, it is common to conceptualize the error variances of indicators 
as reflecting measure unreliability. The study skill indicators all are measured on a 0 to 100 
scale with higher scores indicating better skills. The scales usually have standard deviations 
of about 15. The outcome is performance on the final math exam with scores typically 
ranging from 0 to 100 with a standard deviation usually near 15.  
 When I conduct power analyses with latent variables, I often use a standardized 
metric approach because it tends to be more intuitive with factor loadings. Given this, the 
variances of the observed variables SS1, SS2, SS3, and Y are set to 1.0 as is the variance 
of the latent mediator, LM. I make one exception to this parameterization for reasons I 
explain shortly. The population parameters I need to specify for the model in Figure 3 are: 

var(T), L1, L2, L3, var(e1), var(e2), var(e3), var(d1), var(d2), p1, p2  

but doing so in ways that respect var(SS1), var(SS2), var(SS3), var(LM) and var(Y) all 
being equal to 1.0.  

As in previous programs, var(T) is set to 0.25 to reflect the variance of a dummy 
variable with dummy coding for two same-sized groups vis-à-vis random assignment. I 
want the variance of LM to equal 1.0 because it is continuous and such an assignation 
honors the spirit of a standardized metric strategy. However, a complication results because 
traditional practice is to fix one of the loadings of the latent variable indicators, in this case 
L1, to 1.0 to define the metric of LM. If LM has a variance of 1.0 and L1 is fixed at 1.0, 
then it follows that the variance of SS1 must be larger than 1 unless there is no measurement 
error in SS1, which usually is unrealistic. This is because the variance of SS1 is an additive 
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function of the LM variance plus the error variance for SS1, as follows: 

var(SS1) = L12 var(LM) + var(e1) 

Substituting the values of L1 and var(LM) into this equation, I obtain 

var(SS1) = (12) (1) + var(e1) 

Suppose I want to model a case where SS1 has a reliability of 0.80. Given this, I need 
to determine the value for which (12) (1) represents 80% of it, which is [(12)(1)]/.80 = 1.25. 
This yields 

1.25 = (12) (1) + var(e1) 

 and with algebraic manipulation, I find 

1.25 - (12) (1) = var(e1) = 0.25. 

Thus, to mimic a situation where I fix L1 to 1.0 and where I want SS1 to have reliability of  
0.80, I need to set var(e1) to 0.25 and let var(SS1) = 1.25, not 1.0. This results in the 
following population parameterizations so far: 

var(T)=0.25, L1=1.0, var(e1)=0.25, and, by implication, var(LM)=1.0 and var(SS1)=1.25 

Continuing with the measurement model, I define L2, L3, var(e2) and var(e3) such that 
both var(SS2) and var(SS3) equal 1.0 per my standardized metric strategy and so that the 
reliabilities of SS1 and SS2 also equal 0.80. Note that I do not have to set all indicators to 
have the same reliabilities; I just do so here because that is what I think is the case.  
 It turns out that if the variance of the latent variable is 1.0, and the variance of its  
indicator also is 1.0, the value of the loading, L, for the indicator, will equal the square root 
of the indicator reliability assuming (a) there are no correlated errors among the indicators 
(which there are not) and (b) there are no cross loadings with other latent variables (which 
there are not). This means that 

L2 = L3 = 0.80  = 0.894427  

Yet another regularity for the above measurement scenario is that the measure error 
variance will equal the unreliability of the measure, or one minus its reliability. This yields 

var(e2) = var(e3) = 1 – 0.80 = 0.20 
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Updating our population parameterizations thus far, we have 

var(T)=0.25, L1=1.0, L2=0.894427, L3=0.894427, var(e1)=0.25, var(e2)=0.20, 
var(e3)=0.20, and, by implication, var(SS1)=1.25, var(SS2)=1.0, var(LM)=1.0, and 
var(SS3)=1.0 

Continuing the parameter designation process, LM is a function of T. I must decide 
how much of the variation in LM that I want T to account for. Suppose I choose a value 
near Cohen’s medium effect size, namely an eta squared or proportion of explained 
variance of 0.069. Given that var(LM) = 1, the disturbance variance, var(d1), must be 1 - 
0.069 = 0.931. I use this information to calculate the value of p1. Using Equation 28.6: 

var(LM) = p12 var(T) + var (d1) 

I substitute into the equation the known values: 

1.0 = p12 (0.25) + 0.931 

and with algebraic manipulation, I obtain 

(1.0 – 0.931)/0.25 = 0.276 =  p12   

Taking the square root of 0.276, I obtain 

p1 = 0.525357 

 To set the values of p2 and var(d2), I must decide what proportion of the variance I 
want LM to account for in Y. Suppose I decide on an eta squared of 0.09 or 9% explained 
variance. Because LM is the only predictor of Y, this means var(d2) = 1 – 0.09 = 0.91. To 
determine the value of p2, I use the equation 

var(Y) = p22 var(LM) + var (d2) 

I substitute into the equation the known values: 

1.0 = p22 (1.00) + 0.910 

and with algebraic manipulation, I obtain 

(1.0 – 0.910)/1.00 = 0.090 =  p22   

Taking the square root of 0.090, I obtain 
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p2 = 0.30 

 With these parameter values in hand, I can write the Mplus syntax for the power 
simulation, which is shown in Table 13. 

Table 13: Simulation with Latent Variable  

1. TITLE: LATENT VARIABLE POWER ANALYSIS; 
2. MONTECARLO: 
3. NAMES ARE t ss1 ss2 ss3 y ; 
4. CUTPOINTS = t(0); 
5. NOBS = 150 ;                  !sample size 
6. NREPS = 20000 ;               !number of replicates 
7. SEED = 2222 ;                 !random seed 
8. ANALYSIS: 
9. ESTIMATOR = MLR ; 
10. MODEL POPULATION:   !specify population model 
11. [t*0] ;             !set mean when generating original continuous t  
12. t*1 ;               !set var when generating original continuous t 
13. [ss1*0]; [ss2*0] ; [ss3*0] ;      !indicator intercepts 
14. ss1*0.25 ; ss2*0.29 ; ss3*0.29 ;  !indicator error variances 
15. LM BY ss1@1 ss2*0.89442 ss3*0.89442 ;  
16. [LM@0] ; LM*0.931 ;               !intercept of LM and LM disturbance var 
17. [y*0]; y*0.91 ;                   !y intercept and y disturbance var 
18. y ON LM*0.30 ;                    !effect of LM on Y 
19. LM ON t*0.525357 ;                !effect of t on M 
20. MODEL:                            !specify analysis model 
21. [ss1*0]; [ss2*0] ; [ss3*0] ; 
22. ss1*0.25 ; ss2*0.2 ; ss3*0.2 ; 
23. LM BY ss1@1 ss2*0.89442 ss3*0.89442 ; 
24. [LM@0] ; LM*.931 ; 
25. [y*0]; y*0.91 ; 
26. y ON LM*0.30 ; 
27. LM ON t*0.525357 ; 
28. MODEL INDIRECT: 
29. y IND t ;                   !evaluate omnibus mediation effect 
30. OUTPUT: TECH9 ; 

Most of the syntax should be familiar and at this point is self-explanatory. I set the 
measurement intercepts to zero, which has the effect of treating SS1, SS2, and SS3 as 
having means of zeros, which is consistent with the standardized metric strategy. On Line 
15, I specify the indicators for LM and their loadings. On Line 16, I fix the intercept for 
LM to zero because it is not a formal part of the model that has any implications for model 
fit or for meaningful parameter tests. 
   I do not delve into all of the output details which should already be familiar to you. 
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Here is the output for the core parameters of interest: 

                                ESTIMATES              S. E.    M. S. E.   95%   % Sig 
                 Population    Average   Std. Dev.  Average              Cover  Coeff 
 
LM       BY 
  SS1                 1.000     1.0000     0.0000     0.0000     0.0000   1.000  0.000 
  SS2                 0.894     0.8961     0.0587     0.0576     0.0035   0.946  1.000 
  SS3                 0.894     0.8964     0.0586     0.0576     0.0034   0.944  1.000 
 
 LM       ON 
  T                   0.525     0.5261     0.1679     0.1652     0.0282   0.944  0.887 
 
 Y        ON 
  LM                  0.300     0.3012     0.0837     0.0822     0.0070   0.941  0.953 
 
 Residual Variances 
  SS1                 0.250     0.2465     0.0449     0.0443     0.0042   0.848  1.000 
  SS2                 0.200     0.1975     0.0359     0.0355     0.0013   0.937  1.000 
  SS3                 0.200     0.1970     0.0359     0.0354     0.0013   0.938  1.000 
  Y                   0.910     0.8970     0.1050     0.1030     0.0112   0.927  1.000 
  LM                  0.931     0.9180     0.1350     0.1325     0.0184   0.928  1.000 

All appears to be in order in terms of bias and confidence interval coverage. The statistical 
power for the effect of T on LM is 0.887 and for the effect of LM on Y, it is 0.953. The 
margins of error for the loadings are about ±0.12. Here is the output for the indirect effect 
of T→LM→Y: 

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 

                              ESTIMATES               S. E.    M. S. E.   95%  % Sig 
                 Population    Average   Std. Dev.  Average              Cover  Coeff 
 
Effects from T to Y 
 
  Total               0.158     0.1581     0.0671     0.0662     0.0045   0.925  0.713 
  Tot indirect        0.158     0.1581     0.0671     0.0662     0.0045   0.925  0.713 
 

The statistical power for the effect is 0.71. For bootstrapping, I found the statistical power 
to be 0.77. 

MULTIPLE GROUP LOCALIZED SIMULATIONS 

In this section, I demonstrate how to conduct a power analysis simulation for a multi-group 
SEM. I use the model in Figure 1 as applied to two groups defined by biological sex, males 
and females. For females, I use the same population parameterizations as those derived in 
the main chapter text: 
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var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2)=204.75, p1=7.0, p2=0.30 

For males, I use the same values but with the modification that the treatment T has no effect 
on M. This means var(d1) = 225 and p1 = 0, yielding   

var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=225, var(d2)= 204.75, p1=0, and p2=0.30 

I will focus on the statistical power associated with the contrast comparing p1 for 
females versus males and the difference in the total effect of T on Y for the two groups. 
Table 14 presents the Mplus syntax for the simulation. The programming is based on 
multigroup analyses described  in Chapter XX. Recall that in multiple group programming, 
there are two variants of the population MODEL command, MODEL and MODEL followed by a 
label. The unqualified  MODEL command describes the overall model to be estimated for 
each group. MODEL followed by a label describes differences between the overall model and 
the model for the group designated by the label, i.e., specialized group parameter 
qualifications in the model that I want to introduce. Although it is not necessary, I make it 
a habit of describing  the full model in the individual groups so I can see explicitly what I 
am up to when changing group parameters and to make sure I override certain unwanted 
defaults that Mplus sometimes invokes. In addition to these population specifications, the 
group specific MODEL variants comprise the model analyses section of the simulation 
syntax, per lines 41 to 52 below. 

Table 14: Multigroup Simulation   

1. TITLE: MULTIGROUP SIMULATION ; 
2. MONTECARLO: 
3. NAMES ARE t m y ; 
4. NGROUPS=2 ;  
5. CUTPOINTS = t(0) | t(0) ; 
6. NOBS = 125 125 ;       !sample size 
7. NREPS = 20000 ;        !number of replicates 
8. SEED = 2222 ;          !random seed 
9. ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:   !specify population model 
12. [t*0] ;             !set mean when generating original continuous t  
13. t*1 ;               !set var when generating original continuous t 
14. [y*0]; [m*0];       !intercepts to 0 
15. y ON m*.30 ;        !effect of m on y 
16. m ON t*7.0 ;        !effect of t on m 
17. y*204.75 ;          !disturbance variance for y   
18. m*212.75 ;          !disturbance variance for m   
19. MODEL POPULATION-G1: 
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20. [t*0] ;             !mean of treatment to 0 for cutoff  
21. t*0.25 ;            !define var of treatment variable 
22. [y*0]; [m*0];       !intercepts to 0 
23. y ON m*.30 ;        !effect of m on y 
24. m ON t*7.0 ;        !effect of t on m 
25. y*204.75 ;          !disturbance variance for y   
26. m*212.75 ;          !disturbance variance for m   
27. MODEL POPULATION-G2: 
28. [t*0] ;             !mean of treatment to 0 for cutoff  
29. t*0.25 ;            !define var of treatment variable 
30. [y*0]; [m*0];       !intercepts to 0 
31. y ON m*.30 ;        !effect of m on y 
32. m ON t*0  ;         !effect of t on m 
33. y*204.75 ;          !disturbance variance for y   
34. m*225.0 ;           !disturbance variance for m   
35. MODEL : 
36. [y*0]; [m*0] ;       
37. y ON m*.30   ;    
38. m ON t*7.0   ;    
39. y*204.75 ;             
40. m*212.75 ;             
41. MODEL G1: 
42. [y*0]; [m*0];       
43. y ON m*.30 (p2g1) ;   
44. m ON t*7.0 (p1g1) ;   
45. y*204.75 ;          
46. m*212.75 ;           
47. MODEL G2: 
48. [y*0]; [m*0];       
49. y ON m*.30 (p2g2) ;  
50. m ON t*0  (p1g2) ;  
51. y*204.75 ;          
52. m*225.00 ;           
53. MODEL INDIRECT: 
54. y IND t ;        !evaluate omnibus mediation effect 
55. MODEL CONSTRAINT : 
56. NEW (DIFF1*7 DIFF2*2.1) ; 
57. DIFF1 = p1g1 - p1g2 ;             !p1 group difference  
58. DIFF2 = p1g1*p2g1 - p1g2*p2g2 ;   !total effect group difference 
59. OUTPUT: TECH9 ; 

Most of the syntax should be familiar. Line 5 specifies the cutpoints for the treatment 
dummy variable for each group per standard simulation practice discussed in Chapter 28, 
with the group-specific specifications separated by a “|”. Line 6 specifies the sample size 
for each group. In this case, they are equal (n = 125 per group). On Lines 55 to 58, I use 
MODEL CONSTRAINT for the two contrasts I am interested in for the analysis.  
 Here is the output for the overall chi square test of fit, which is the combined group 
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chi square that is applicable to multi-group solutions: 
 
Chi-Square Test of Model Fit 
 
        Degrees of freedom                       2 
 
        Mean                                 2.056 
        Std Dev                              2.056 
        Number of successful computations    20000 
 
             Proportions                   Percentiles 
        Expected    Observed         Expected       Observed 
           0.990       0.991            0.020          0.022 
           0.980       0.980            0.040          0.041 
           0.950       0.950            0.103          0.103 
           0.900       0.902            0.211          0.215 
           0.800       0.804            0.446          0.460 
           0.700       0.709            0.713          0.739 
           0.500       0.511            1.386          1.423 
           0.300       0.311            2.408          2.486 
           0.200       0.206            3.219          3.283 
           0.100       0.106            4.605          4.732 
           0.050       0.055            5.991          6.215 
           0.020       0.023            7.824          8.130 
           0.010       0.011            9.210          9.466 

All seems to be in order. The mean chi square value (2.056) is close to the value of its 
degrees of freedom (2) and the square root of double the degrees of freedom is close to the 
value of the standard deviation of the chi square statistic. The expected and observed values 
in the respective distributions are close, all of which suggests a well behaved solution.  
 Here are the results for the core parameter values of interest to me: 
 
                              ESTIMATES                S. E.   M. S. E.  95%   % Sig 
                 Population    Average   Std. Dev.  Average             Cover  Coeff 
 
Group G1 
 
 Y        ON 
  M                   0.300     0.3002     0.0859     0.0845     0.0074   0.941  0.935 
 
 M        ON 
  T                   7.000     7.0302     2.6212     2.5926     6.8715   0.946  0.769 
 
Group G2 
 
 Y        ON 
  M                   0.300     0.2995     0.0867     0.0843     0.0075   0.938  0.932 
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                              ESTIMATES                S. E.   M. S. E.  95%   % Sig 
                 Population    Average   Std. Dev.  Average             Cover  Coeff 
 
 M        ON 
  T                   0.000     0.0082     2.6639     2.6659     7.0961   0.949  0.051 
 
New/Additional Parameters 
  DIFF1               7.000     7.0220     3.7328     3.7226    13.9332   0.948  0.472 
  DIFF2               2.100     2.1090     1.3059     1.3205     1.7053   0.951  0.338 

 
The statistical power for the group differences in p1 is in the New/Additional 
Parameters section and is 0.472. For group differences in the total effects, the statistical 
power is 0.338. I also can take note of the magnitude of the margins of errors and other 
facets of localized power analysis described earlier and in Chapter 28.. 

MISSING DATA LOCALIZED SIMULATIONS 

The simulations described thus far have used complete data. It is possible to incorporate 
missing data into your simulations. I illustrate doing so using the study skills example in 
Figure 1 with both M and Y as continuous variables. Suppose I think a likely missing data 
scenario is where my data are missing completely at random (MCAR) and I have about 
15% missing data on M and 5% missing data on Y. I will first evaluate statistical power 
when using FIML to adjust for it and then I will evaluate addressing missing data using 
listwise deletion (see Chapter 26). 
 To conduct the simulation based on FIML, I will use the same parameter values and 
sample size I used in the main text in section on Choosing Parameter Values in the context 
of the model in Figure 1. Here are the parameter values I used in that section: 

var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2) = 204.75, p1=7.0, p2 = 0.30 

The Mplus syntax I used is shown in Table 15 but with the addition of two statements, 
Lines 4a and 4b, that introduce the missing data. 

Table 15: Local Simulation with Missing Data  

1. TITLE: LOCAL SIMULATION 1; 
2. MONTECARLO: 
3. NAMES ARE t m y ;  
4. CUTPOINTS = t(0); 
4a. PATMISS = m(.15) y(.05) ; 
4b. PATPROBS = 1.0 ; 
5. NOBS = 150 ;         !sample size 
6. NREPS = 20000 ;      !number of replicates 
7. SEED = 2222 ;        !random seed 
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8. !SAVE = temp.dat; 
9. ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:   !specify population model 
12. [t*0] ;             !set mean when generating original continuous t  
13. t*1 ;               !set var when generating original continuous t 
14. [y*0]; [m*0];       !set intercepts to 0 
15. y ON m*.30 ;        !set effect of m on y 
16. m ON t*7.0 ;        !set effect of t on M 
17. y*204.75 ;          !disturbance variance for y   
18. m*212.75 ;          !disturbance variance for m   
19. MODEL:              !specify analysis model 
20. y ON m*.30 ;        !outcome equation 
21. m ON t*7.0 ;        !mediation equation 
22. y*204.75 ;          !disturbance variance for y   
23. m*212.75 ;          !disturbance variance for m   
24. MODEL INDIRECT: 
25. y IND t ;           !evaluate omnibus mediation effect 
26. OUTPUT: TECH9 ;  

 
All lines other than 4a and 4b should be familiar. These latter two lines define the 

nature and amount of missing data. Missing data in the Mplus simulation package are by 
default MCAR but this can be overridden as desired (see Muthén, Muthén & Asparouhov, 
2016, for examples). For each endogenous variable, the PATMISS command specifies the 
proportion of scores on the variable that I want to be randomly missing. For m the value of 
0.15 on Line 4a means I want 15% of the cases on it to have missing values. For y I request 
5% missing data. If a variable is not listed, it is assumed to have no missing data. As I 
explain in the missing data simulation document on my web page, you can have multiple 
patterns of missing data but describing how to do so is beyond the scope of what I want to 
show you here. The PATPROBS command on Line 4b specifies the proportion of the total 
number of cases in the study that you want to have the missing data pattern(s) applied to. 
In this case, there is only one pattern and it will be applied across the total N, so I enter a 
value of 1.00. For a more detailed explanation of the use of these two commands, see the 
document on my web page for missing data simulations. The bottom line is that for the 
current RET, I will have data that are MCAR with 15% missing data on m and 5% missing 
on y by virtue of including lines 4a and 4b. 
 The results for the chi square statistic of global fit were favorable in terms of 
asymptotic theory and the applicability of the chi square statistic. Here is the output for the 
core model parameters, first with no missing data from my analysis at the outset of the 
chapter and then with the missing data from the current section: 
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                              ESTIMATES              S. E.  M. S. E.  95%   % Sig 
                 Population    Average   Std. Dev. Average               Cover  Coeff 
 
 Y        ON 
  M                   0.300     0.3001     0.0789     0.0772     0.0062   0.939  0.966 
 
 M        ON 
  T                   7.000     7.0181     2.3648     2.3693     5.5924   0.948  0.842 

 
and here are the results with missing data: 

                              ESTIMATES               S. E.  M. S. E.   95%   % Sig 
                 Population    Average   Std. Dev. Average               Cover  Coeff 
 
Y        ON 
  M                   0.300     0.3006     0.0861     0.0844     0.0074   0.940  0.931 
 
 M        ON 
  T                   7.000     7.0175     2.5485     2.5435     6.4949   0.946  0.785 

The missing data slightly lowered statistical power, but not by much. In this case, the 
effects of the missing data on statistical power are modest.  
 What would the simulation results be if I used listwise deletion instead of FIML? 
Evaluating listwise deletion in the Mplus Monte Carlo package requires two steps because 
you must use the Mplus external simulation option. In the first step, you generate separate 
data files for each of the Monte Carlo replications and store those files on your computer. 
For the second step, you ask Mplus to analyze each data file separately and then combine 
the results in a format similar to other Monte Carlo simulations. Table 16 shows the syntax 
I used to generate the data files (step 1).  

Table 16: Local Simulation with Missing Data  

1. TITLE: LOCAL SIMULATION 1; 
2. MONTECARLO: 
3. NAMES ARE t m y ;  
4. CUTPOINTS = t(0); 
4a. PATMISS = m(.15) y(.05) ; 
4b. PATPROBS = 1.0 ; 
5. NOBS = 150 ;           !sample size 
6. NREPS = 5000 ;        !number of replicates 
7. SEED = 2222 ;         !random seed 
8a. REPSAVE = ALL ;      ! Save the files 
8b. SAVE = rep*.dat ;    ! Name of files to save 
9. ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:   !specify population model 
12. [t*0] ;             !set mean when generating original continuous t  
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13. t*1 ;               !set var when generating original continuous t 
14. [y*0]; [m*0];       !set intercepts to 0 
15. y ON m*.30 ;        !set effect of m on y 
16. m ON t*7.0 ;        !set effect of t on M 
17. y*204.75 ;          !disturbance variance for y   
18. m*212.75 ;          !disturbance variance for m   
19. MODEL:              !specify analysis model 
20. y ON m*.30 ;        !outcome equation 
21. m ON t*7.0 ;        !mediation equation 
22. y*204.75 ;          !disturbance variance for y   
23. m*212.75 ;          !disturbance variance for m   
24. MODEL INDIRECT: 
25. y IND t ;           !evaluate omnibus mediation effect 
26. OUTPUT: TECH9 ;  
 

 The syntax is identical to that of Table 16 with some exceptions. First, I changed the 
number of replications in Line 6 to 5000 so that the number of files littering my computer 
is reduced (the lower number does not affect results in any notable way in this case). 
Second, I added Lines 8a and 8b to tell Mplus to save the generated data files (Line 8a) and 
what names to give to the files (Line 8b). The naming convention is the same as for 
generating imputed data sets that I described in Chapter 26. Each data set will be named 
“rep” (you can use any name you want per Line 8b) followed by a number from 1 to 5000 
(the number of requested data sets) and the tag will be dat (you can use any tag designation 
you want per Line 8b). Mplus will also generate a file called replist.dat, which is named 
using the name you gave to each data set (in this case “rep”) followed by the word “list.dat” 
instead of a number with the tag “dat.” This file contains the list of the names of all the 
generated data sets in a single column for input into the step 2 program. The files will be 
in the same folder that the input syntax is stored in because I do not specify a folder path. 
 The data are written to the data files in an order that Mplus tells you at the end of the 
step 1 output, like this: 
 
SAVEDATA INFORMATION 
 
  Order of variables 
 
    M 
    Y 
    T 
    PATTERN 
 
  Save file 
    rep*.dat 

 
An additional variable is added by Mplus called PATTERN that I ignore at step 2. 
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 Table 17 presents the syntax for the step 2 analysis.  

Table 17: Local External Simulation: Step 2  

1. TITLE: LOCAL SIMULATION DATA ANALYSIS ; 
2. DATA: 
3. FILE = replist.dat ; 
4. TYPE = MONTECARLO ; 
5. LISTWISE = ON ; 
6. VARIABLE: 
7. NAMES ARE m y t PATTERN ; 
8. USEVARIABLES ARE m y t  ; 
9. MISSING = ALL(999); 
10. ANALYSIS:  
11. ESTIMATOR = MLR; 
12. MODEL:        ! specify analysis model 
13. y ON m*.30 ;        !outcome equation 
14. m ON t*7.0 ;        !mediation equation 
15. y*204.75 ;          !disturbance variance for y   
16. m*212.75 ;          !disturbance variance for m   
17. MODEL INDIRECT: 
18. y IND t ;      ! analyze indirect effects   
19. OUTPUT: 
 
Most of the syntax is self-explanatory. Line 4 tells Mplus to do a Monte Carlo simulation 
and Line 5 tells Mplus to use listwise deletion. Note the input file in Line 3 is the replist.dat 
file. This tells Mplus where to find all the separate externally generated files. 
 The fit indices and parameter estimates across the 5,000 replications were well 
behaved which is to be expected given MCAR. Here are the results for the key model 
parameters: 
 
                              ESTIMATES               S. E.     M. S. E.   95%   % Sig 
                 Population    Average   Std. Dev.  Average              Cover  Coeff 
 
 Y        ON 
  M                   0.300     0.2999     0.0868     0.0855     0.0075   0.941  0.931 
 
 M        ON 
  T                   7.000     7.0066     2.6297     2.6217     6.9140   0.942  0.760 
 
Residual Variances 
  M                 212.750   208.7959    26.9334    26.2277   740.8978   0.917  1.000 
  Y                 204.750   202.1090    26.3337    25.4252   700.3012   0.921  1.000 

 
The results are similar to those for FIML, suggesting the choice of FIML versus listwise 
deletion in this case matters little. This will not always be the case.  
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LOCALIZED SIMULATIONS WITH NON-NORMALITY 

The primary approach Mplus uses to evaluate the effects of non-normality on statistical 
power vis-à-vis local simulations is by mixing together two or more normal distributions 
that then results in a non-normal distribution in the mixed distribution. The mixing is 
typically (but not always) applied to the disturbance term of the outcome or endogenous 
variable.   
 In this next section, I show you how to explore the implications of the distribution 
that results when you mix different normal distributions using R. The code I provide allows 
you to make more informed decisions about how you want to mix normal distributions 
when you conduct a formal simulation in Mplus that uses mixed normal distributions to 
create non-normality.   

For symmetric unimodal distributions, excessive positive kurtosis reflects the 
presence of heavy tails and peakedness relative to the normal distribution whereas 
excessive negative kurtosis suggests light tails and flatness. Many statistical tests face 
challenges when confronted with heavy tailed distributions (Wilcox, 2021), so you might 
want to be sure to explore cases where positive kurtosis is likely to be present. Here is R 
syntax that combines two normal distributions, computes the skewness and kurtosis of the 
mixed distribution, and plots the densities of the distribution and superimposes a normal 
distribution onto the plot: 

 
library(distr) 
library(moments) 
# Construct the mixed distribution  
myMix <- UnivarMixingDistribution(Norm(mean=0, sd=1),  
                                  Norm(mean=0, sd=3),  
                                  mixCoeff=c(0.9,0.1)) 
# create function to sample cases  
rmyMix <- r(myMix)  
# Sample a million cases 
x <- rmyMix(1e6) 
# Generate a normal distribution to overlay 
xnorm<-rnorm(1000000,mean=mean(x),sd=sd(x)) 
#create plot 
plot(density(x),col='blue',lwd=2) 
lines(density(xnorm),col='red',lwd=2)  #omit to not superimpose normal 
#report descriptive statistics 
skewness(x) 
kurtosis(x)-3  
mean(x)  
var(x)  
sd(x) 
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In this code, I use the R package called distr to accomplish the mixing. On Lines 4 
and 5, I specify the two normal distributions I want to mix. The term Norm indicates a 
normal distribution and it is followed by specification of the mean and standard deviation 
of the distribution. Line 4 specifies the first distribution and Line 5 specifies the second 
distribution. In this case, the means of each distribution are zero but the standard deviation 
of the second distribution is three times larger than that of the first distribution. Line 6 
specifies the proportion of cases from the first normal distribution (0.90) that should 
comprise the mixed distribution and the corresponding proportion for the second normal 
distribution (0.10). You change these values to match the respective proportions you want 
to use, but they must sum to 1.0. In the current example, 90% of the cases in the mixed 
distribution will have been sampled from the first normal distribution and 10% from the 
second normal distribution. If I wanted the split to be 50-50, I would change the values to  
mixCoeff=c(0.5,0.5).  The Line x <- rmyMix(1e6) says to sample one million cases 
from the mixture population (using scientific notation; if you want to sample two million, 
change  change 1e6 to 2e6).  I use a large N so as to minimize sampling error, allowing 
me to better appreciate what is happening at the population level when normal distributions 
are mixed. The remaining lines plot the scores for the mixed normal distribution, overlays 
a normal distribution on the plot, and calculate descriptive statistics using the R package 
moments. The skewness and kurtosis indices are defined so that the standard normal 
distribution has a skewness and kurtosis value of zero.   

Figure 4 shows the density plot that results when I execute the above R code with the 
mixed distribution in blue and a normal distribution with the same mean and variance as 
the mixed distribution in red. The mixed distribution in this case has skewness of -0.02 and 
kurtosis of 5.39. Note that it is more peaked and the tails are heavier than  the corresponding 
normal distribution. Figure 5 shows a 75% and 25% mix from a normal distribution with a 
mean of 0 and a SD of 2.0 mixed with a normal distribution with a mean of 1 and a SD of 
2.0. The skewness and kurtosis of the mixed distribution are 1.04535 and 1.84266, 
respectively. I omit the normal distribution from this plot to accentuate the shape of the 
mixed distribution. I eliminate the normal plot by adding the # symbol to code line that 
generates the normal overlay, which then comments out the entire line, like this 

#lines(density(xnorm),col='red',lwd=2)  

The strategy you use for creating skew is to create a “base” distribution and then shift 
the second distribution to the right or left by altering its specified mean depending on the 
desired direction of skewness. If you shift it considerably the result will be a bimodal 
distribution. With practice, the amount and types of non-normality you can create using a 
mixture distribution strategy is considerable (see Ray & Lindsay,2005).  
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FIGURE 4. Mixed normal distribution, skewness = 0.0196, kurtosis = 5.253  

 

FIGURE 5. Mixed normal distribution, skewness = 1.04535, kurtosis = 1.84266 
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 Muthén and Asparouhov (2015) present an example that shows a mixture of three 
distributions that when combined produce a skewed distribution, per Figure 6 that shifts 
the means of the Y variable to the right. Note that even though the combined distribution 
looks “normal,” it is not. There is right skew.  

 

FIGURE 6. Mixture of three normal distributions to create skewness 

Here is R code for mixing and plotting three normal distributions that follows the 
same structure as the previous R code focused on mixing two distributions (I highlight in 
yellow the changes in code I made to accommodate three versus two mixtures):   
 
library(distr) 
library(moments) 
# Construct the distribution  
myMix <- UnivarMixingDistribution(Norm(mean=0, sd=1),  
                                  Norm(mean=0, sd=3), 
                                  Norm(mean=0, sd=3),  
                                  mixCoeff=c(0.8,0.1,0.1)) 
# create function to sample cases  
rmyMix <- r(myMix)  
# Sample a million cases 
x <- rmyMix(1e6) 
# Generate a normal distribution to overlay 
xnorm<-rnorm(1000000,mean=mean(x),sd=sd(x)) 
#create plot 
plot(density(x),col='blue',lwd=2) 
lines(density(xnorm),col='red',lwd=2)  #omit to not superimpose normal 
#report descritive statistics 
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skewness(x) 
kurtosis(x)-3  
mean(x)  
var(x)  
sd(x) 

 The program is flexible and allows you to mix many types of distributions other than 
normal distributions (see the library distr for details). However, Mplus only allows us to 
work with mixed normal distributions for its internal simulations.4 
 With this as background, I now show you how to conduct a simulation in Mplus that 
introduces non-normality. The strategy uses mixture modeling, which I described in 
Chapter XX.5 I consider first the simplest case of comparing the mean outcome values of 
a treatment versus control condition to familiarize you with the basic structure of such 
simulations. I then describe programming a simulation for a more complex RET using non-
normal data.  

Localized Simulation for a Total Effect: Non-normal Data 

In this example, I program a simulation to compare the mean outcome, Y, for a treatment 
and control condition, T, in a limited information estimation context using mixture 
modeling in which I apply mixing to the disturbance term for Y. I set the population mean 
outcome difference on Y between the treatment and control conditions to 0.50, so the path 
coefficient when I regress Y onto T in the population is 0.50. I explore the statistical power 
I obtain for a total sample size of 125 but I introduce non-normality into the analysis by 
creating two different “classes” or subgroups of cases in the population with each class 
having normally distributed disturbance scores when I regress Y onto T for the people in a 
given class. In one of the classes, the disturbance variability for Y after regressing Y onto 
T maps onto a standard deviation of 1.0. For the other class, the  disturbance standard 
deviation  after regressing Y onto T is three times larger than this, namely 3.0. I decide to 
create a scenario where 90% of the population is in the first class and only 10% is in the 
second class. When I combine these two classes into a single group to define my 
population, the disturbance term when I regress Y onto T will now be non-normal with 
heavy tails. The question becomes what is the statistical power for the traditional test of 
the mean difference on Y as a function of the treatment condition when this type of non-
normality characterizes the disturbances? Table 18 presents the syntax for the simulation.  

 
4 You can use other mixtures and forms of nonnormality in Mplus using its external simulation feature, which I 
illustrate below.  
5 Another approach is to use the Mplus skewt feature to generate nonnormal data for use in the Mplus external 
simulation. Consideration of such an approach is beyond the scope of the current document. 
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Table 18: Simulation for Non-normality for Total Effect  

1.  TITLE: MIXTURE SIMULATION ; 
2.  MONTECARLO: NAMES ARE y t; 
3.  CUTPOINTS = t(0); 
4.  NOBSERVATIONS = 125; 
5.  NREPS = 20000; 
6.  SEED = 2222; 
7.  GENCLASSES = c(2);  !generate two classes named c 
8.  CLASSES = c(1);     !number of classes called c to analyze 
9.  ANALYSIS: TYPE = MIXTURE; 
10. ESTIMATOR = MLR; 
11. MODEL MONTECARLO: 
12. %OVERALL% 
13. [t*0] ;            !set mean when generating original continuous t  
14. t*1 ;              !set var when generating original continuous t 
15. [y*0];             !set y intercepts to 0 
16. y ON t*.50 ;       !set effect of t on y 
17. y*1 ;              !set disturbance variance for y but will override   
18. [c#1*2.19722];     !logit to define proportion of cases in c1 90% 
19. %c#1% 
20. [y*0];             !set intercept in class 1 to shift mean y if desired  
21. y*1 ;              !set disturbance variance for y in class 1  
22. %c#2% 
23. [y*0];             !set intercept in class 2 to shift mean y if desired 
24. y*9 ;              !set disturbance variance for y in class 2  
25. MODEL:             !analysis model 
26. %OVERALL% 
27. [y*0];             !population intercept for y on t ignoring classes  
28. y ON t*0.50 ;      !population effect of m on y ignoring classes  
29. y*1.8058 ;           !population disturbance variance for y ignoring classes     
30. OUTPUT: TECH9;  

 

Most of the syntax should be familiar. Line 7 is new as is the GENCLASSES 
subcommand. It tells Mplus to generate two mixture classes and provides the labels to refer 
to the two classes. The number of classes is contained in parentheses and I use the letter c 
as the label for each class. You can use a different label if you want. The label occurs just 
before (2)in Line 7. Mplus will add a # followed by a sequential integer to the label to 
give a unique name to each class. In this case, the classes will be labeled c#1 and c#2.  

Line 8 tells Mplus the number of classes to actually analyze. In this case, I combine 
the two classes into a single group and analyze the data as if there is only one class.  

Line 9 tells Mplus to use a mixture model. In the MODEL MONTECARLO section starting 
on Line 11, I specify an overall model that applies to each class/group (in the section 
labeled %OVERALL%). Later I will specify deviations from the overall model within each 
class that I want the classes to differ on, first for the c#1 class and then for the c#2 class.  
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On Lines 13 and 14 in the %OVERALL% section, I define the treatment condition as a 
continuous variable with a mean of 0 and a standard deviation of 1 but this variable is 
converted to a 0-1 dummy variable using the CUTPOINTS command on Line 3 per my 
discussion of the command in the main text. Line 15 arbitrarily sets the intercept of Y to 
zero because it does not factor into the model. Line 16 regresses Y onto T in both classes 
with a path coefficient of 0.50 to reflect the population coefficient for the effect of T on Y 
in each class. Line 17 sets the disturbance variance for Y at 1.0 in both classes, but I will 
override this later when I specify the specific parameter values for c#1 and c#2. Line 18 
tells Mplus the proportion of the overall sample size to assign to the first class, with the 
remaining proportion of cases assigned to the second class. I assign 90% of the sample to 
c#1 and 10% of the sample to c#2. The value in the brackets is 2.19722, which is the 
proportion 0.90 translated into a logit scale, the latter of which Mplus makes use of. I 
calculated this value by converting 0.90 to an odds (0.90/(1-0.90)) = 9.0 and then taking 
the natural log of this result, which yielded 2.19722. 

Lines 20 and 21 reassert the parameters in the %OVERALL% model as applied to the 
first class or group, c#1. The same is true of Lines 23 and 24 for c#2 but note that I now 
set the disturbance variance of Y to 9 (which is a standard deviation of 3 squared). This 
will override the disturbance variance I specified in the %OVERALL% model specification 
when data are generated for c#2. Now the standard deviation for c#2 will be 3 times larger 
than that for the standard deviation of c#1. 

Line 25 specifies the analysis model to be applied. In this case, only the analytics of  
%OVERALL% are specified because I am analyzing only one class, namely the combined c#1 
and c#2 classes. On Line 29, I specify the population value of the disturbance variance for 
the mixed normal distribution that has 90% of the cases representing random draws from 
a normal distribution with a mean of 0 and a standard deviation of 1.0 and 10% of the cases 
from a normal distribution with a mean of 0 and a standard deviation of 3.0. I obtained the 
value 1.8058 from the R syntax I provided above for mixing normal distributions. Note 
also I make no reference to mean or variance of the exogenous dummy variable T, which 
is standard practice in Mplus simulations. 

Here are the results of the simulation as focused on the main parameters of interest: 
 
                              ESTIMATES                S. E.    M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 Y          ON 
  T                   0.500     0.5027     0.2414     0.2372     0.0583   0.947  0.570 
 
 Residual Variances 
  Y                   1.806     1.7698     0.4274     0.3870     0.1840   0.847  1.000 
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The statistical power for the effect of T on Y is 0.570. The confidence interval coverage 
seems good as does the lack of bias for the path coefficient per se. The estimated margin 
of error using the standard error  (2 times 0.24 = 0.48) is fairly large.  

How does this compare to the case where the assumption of normally distributed 
disturbances is met? I can determine this by changing Line 24 from a disturbance variance 
of 9 to a disturbance variance of 1.0 (so that it is the same as the disturbance variance of 
c#1) and on Line 29 from 1.8058 to 1.0. I am mixing two identical normal distributions 
represented by the two classes, the result of which is the same normal distribution. Here 
are the results: 

 
                              ESTIMATES                S. E.    M. S. E.   95%  % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
Latent Class 1 
 
 Y          ON 
  T                   0.500     0.5032     0.1794     0.1778     0.0322   0.947  0.805 
 
 Residual Variances 
  Y                   1.000     0.9847     0.1261     0.1224     0.0161   0.920  1.000 

  The statistical power under normality is 0.80, which is substantially higher than the 
power of 0.57 with the heavy tailed non-normal distribution from the prior analysis (note 
how much lower the margin of error is as well). This decrease in power occurs despite the 
fact that only 10% of the sample (class 2) was “acting up” to disrupt normality. Note also 
that most canned power analysis software assumes normally distributed disturbances and 
would inform you your statistical power is 0.80 when it is, in fact, considerably lower. For 
those who advocate examining plots to detect heavy tailed mixed normal distributions as a 
post data collection warning of low power, keep in mind how difficult it is for the naked 
eye to detect such non-normality in many cases.    
 In this example, I applied robust maximum likelihood (MLR) but the results seem 
anything but robust. It turns out the results are robust to the nonnormality with respect to 
Type I errors (the rate maintains near 0.05 even in the face of the non-normality when I set 
the path coefficient from T to Y to zero in a new analysis) but statistical power and MOEs 
are affected by the non-normality. This has been a theme of Rand Wilcox’s work as 
emphasized in his 1998 American Psychologist article “How many discoveries have been 
lost by ignoring modern statistical methods?” Wilcox suggests the use of specialized robust 
analytic methods that do not show such power loss, usually in the context of a LISEM 
framework. See Wilcox (2021) for details. The methods include the analysis of M 
estimators or trimmed means, among others.    
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Localized Simulations for Complex Mediation Model: Non-normal Data 

In this section, I apply the same logic as above but to the model from the section Working 
with Complex Models: Part II (per Figure 2). The model of interest has a treatment versus 
control group (0 = control, 1 = treatment), three posttest mediators (M1, M2, M3) each 
with a baseline measure (M1B, M2B, M3B), and a follow-up outcome, Y, coupled with a 
baseline Y (YB). All mediator and outcome measures have a metric from 0 to 100 with a 
standard deviation of 10, as do their baseline counterparts.  
 I show a mixture scenario for the disturbance variance (var(d4) in Figure 2) in which 
85% of the cases in the population have a disturbance normal distribution with a mean of 
zero and variance equal to 48.923 (SD = 6.9945) and 15% of the cases  have a different 
disturbance distribution in which the mean is zero and the standard deviation of the 
disturbances is twice the size of the first normal distribution (SD = 13.989, variance = 
195.692). Figure 7 shows the densities of this mixed normal distribution with a normal 
distribution superimposed on it generated from my R code.  

 

FIGURE 7. Mixed normal distribution, skewness = 0.0040, kurtosis = 1.6096 

Table 19 presents the Mplus syntax to evaluate the statistical power for the model. 
All syntax should be self-explanatory at this point. The population value for the variance 
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of the mixed normal distribution in Line 44 was taken from execution of the previous R 
code where I set the first distribution to have a mean of 0 and a standard deviation of 6.99 
and the second distribution to have a mean of 0 and a standard deviation of 13.99 coupled 
with the a priori proportion of cases to sample from each distribution.  

Table 19: Simulation for Non-Normality for Mediator Equation 

1.  TITLE: NON-NORMALITY FOR MEDIATOR EQUATION; 
2.  MONTECARLO: 
3.  NAMES ARE t m1 m2 m3 m1b m2b m3b y yb ; 
4.  CUTPOINTS = t(0); 
5.  NOBS = 100 ;        !sample size 
6.  NREPS = 20000 ;     !number of replicates 
7.  SEED = 2222 ;       !random seed 
8.  GENCLASSES = c(2);  !generate two classes named c 
9.  CLASSES = c(1);     !number of classes to analyze 
10. ANALYSIS: TYPE = MIXTURE; 
11. MODEL MONTECARLO: 
12. %OVERALL% 
13. [t*0] ;             !set mean when generating original continuous t  
14. t*1 ;               !set var when generating original continuous t 
15.  [m1b*0]; [m2b*0]; [m3b*0]; [yb*0];    !set means 
16.  m1b*100; m2b*100; m3b*100; yb*100 ;   !set variances 
17.  [y*0]; [m1*0]; [m2*0]; [m3*0];        !set intercepts 
18.  m1b WITH m2b*30 m3b*30 yb*30 ;        !set covariances 
19.  m2b WITH m3b*30 yb*30 ; 
20.  m3b WITH yb*30 ; 
21.  t WITH m1b*0 m2b*0 m3b*0 yb*0 ; 
22.  m1 ON m1b*0.30 t*0 ;   !define equations 
23.  m2 ON m2b*0.30 t*5.0 ; 
24.  m3 ON m3b*0.30 t*8.0 ; 
25.  y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 
26.  m1*91.0 ;     !define disturbance variances 
27.  m2*84.75 ; 
28.  m3*75.0 ; 
29.  y*48.923 ; 
30.  [C#1*1.7346]; 
31. %C#1% 
32. [y*0];         !set intercept to shift mean y if desired  
33.  y*48.923  ;   !disturbance variance for y 
34. %C#2% 
35. [y*0];         !set intercept to shift mean y if desired  
36.  y*195.692  ;  !disturbance variance for y 
37. MODEL:         !specify analysis model; don't mention exogenous 
38. %OVERALL% 
39.  m1 ON m1b*0.30 t*0 ; 
40.  m2 ON m2b*0.30 t*5.0 ; 
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41.  m3 ON m3b*0.30 t*8.0 ; 
42.  y ON yb*.30 m1*0 m2*0.20 m3*0.40 t*5 ; 
43.  m1*91.0 ; 
44.  m2*84.75 ; 
45.  m3*75.0 ; 
46.  [y*0];      
47.  y*71.085 
48. MODEL INDIRECT: 
49.  y IND t ;        !evaluate omnibus mediation effect 
50. OUTPUT: TECH9 ;      
 

Here are the results for the key parameters in the analysis:  
 

                              ESTIMATES                S. E.   M. S. E.    95%   % Sig 
                 Population   Average   Std. Dev.   Average             Cover  Coeff 
 
Latent Class 1 
 
 M1         ON 
  M1B                 0.300     0.2988     0.0978     0.0941     0.0096   0.933  0.871 
  T                   0.000    -0.0050     1.9334     1.8937     3.7379   0.943  0.056 
 
 M2         ON 
  M2B                 0.300     0.3006     0.0940     0.0907     0.0088   0.936  0.898 
  T                   5.000     5.0105     1.8709     1.8270     3.5004   0.941  0.774 
 
 M3         ON 
  M3B                 0.300     0.3011     0.0882     0.0853     0.0078   0.938  0.927 
  T                   8.000     8.0075     1.7243     1.7182     2.9731   0.946  0.996 
 
 Y          ON 
  YB                  0.300     0.3007     0.0882     0.0837     0.0078   0.933  0.928 
  M1                  0.000    -0.0005     0.0872     0.0831     0.0076   0.934  0.066 
  M2                  0.200     0.2000     0.0908     0.0857     0.0082   0.933  0.640 
  M3                  0.400     0.3995     0.0958     0.0908     0.0092   0.933  0.981 
  T                   5.000     5.0110     1.9377     1.8640     3.7546   0.938  0.758 
 

Here are the results when I used normally distributed disturbances with var(d4) = 48.923 in 
both classes so that the assumption of normality of disturbances is met:   
 

                              ESTIMATES                S. E.    M. S. E.    95%  % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
Latent Class 1 
 
 M1         ON 
  M1B                 0.300     0.2988     0.0978     0.0941     0.0096   0.933  0.871 
  T                   0.000    -0.0050     1.9334     1.8937     3.7379   0.943  0.056 
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                              ESTIMATES                S. E.    M. S. E.    95%  % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
M2         ON 
  M2B                 0.300     0.3006     0.0940     0.0907     0.0088   0.936  0.898 
  T                   5.000     5.0105     1.8709     1.8270     3.5004   0.941  0.774 
 
M3         ON 
  M3B                 0.300     0.3011     0.0882     0.0853     0.0078   0.938  0.927 
  T                   8.000     8.0075     1.7243     1.7182     2.9731   0.946  0.996 
 
 Y          ON 
  YB                  0.300     0.3006     0.0731     0.0698     0.0053   0.934  0.982 
  M1                  0.000    -0.0002     0.0726     0.0694     0.0053   0.933  0.067 
  M2                  0.200     0.1999     0.0753     0.0715     0.0057   0.931  0.782 
  M3                  0.400     0.3999     0.0795     0.0757     0.0063   0.933  0.998 
  T                   5.000     5.0087     1.6112     1.5519     2.5959   0.936  0.884 

 
 I expect to see adverse effects of non-normality, if any, for the equation predicting Y 
from the mediators and the treatment (plus covariates) because it is this equation where I 
introduced the disturbance non-normality. In this equation, for M1, the Type I error rate 
was relatively unaffected by the nonnormality, which is not surprising given my use of a 
robust estimator. The statistical power for M2 was non-trivially affected by the non-
normality, with power decreasing from 0.782 to 0.640. This also tended to be true for the 
statistical power for the direct effect of T on Y over and above the mediators and covariates, 
where the power decreased from 0.884 to 0.758. The statistical power for M3 was relatively 
unaffected by the non-normality because it was quite high to begin with (0.998 that 
decreased to 0.981). 
 
Non-Normality for External Simulations in Mplus  

Local simulations with non-normality also can be conducted using the Mplus external 
simulation feature. This strategy has the advantage of being able to introduce non-
normality other than via mixed normal distributions. I provide two programs on my website 
for generating such data (Generate Data I and Generate Data II). 
 In the first program, Generate Data I, you input a covariance matrix and the program 
then generates data that are randomly selected from a population with that covariance 
structure. For each variable in the covariance matrix, you specify the amount of population 
skewness and excess kurtosis that you want the variable to have. The program uses the R 
package covsim and outputs the generated data based on this information in a format that 
is compatible with Mplus external simulation syntax. If you specify 0 skewness and 0 
kurtosis, the variable will have a population normal distribution. Positive numbers for 
skewness indicate positive skew and negative numbers indicate negative skew. Positive 
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numbers for kurtosis indicate excess leptokurtosis and negative numbers indicate excess 
platykurtosis. The program on my website can only be used with continuous variables, 
although the covsim package is more flexible than this and can be used with ordinal 
variables as well.   
 The generation of non-normal data from a population characterized by an a priori 
specified covariance matrix has received considerable attention from statisticians and is 
somewhat controversial. Multiple methods have been proposed for doing so and each has 
strengths and weaknesses. One popular approach uses polynomial transformations on data 
sampled from a population based on normally distributed variables so as to create the 
nonnormal data. Vale and Maurelli (1983) proposed such a method as an extension of an 
earlier technique by Fleishman (1978). A flexible method that uses fifth-order polynomial 
transformations was proposed by Headrick (2002, 2004). The disadvantages of these power 
methods are that they are limited in the types of non-normal distributions they can generate 
and they tend to yield somewhat biased skewness and excessive kurtosis relative to that 
requested by the user (Astivia & Zumbo, 2015). Cario and Nelson (1997) developed an 
alternative algorithm called the NORTA (NORmal To Anything) method. Like power 
methods, NORTA tends to rely on an underlying normal distribution to generate the 
nonnormal data. Foldnes and Gronneberg (2015) argue that by doing so, it may not capture 
the types of nonnormality observed in the real world.  
 The covsim package has several state of the art data generation methods. In my 
program, I use an approach by Foldnes and Olsson (2016) called the independent 
generator (IG) algorithm. Covsim offers a powerful method called vita (VIne-To-
Anything) that is more flexible than the IG algorithm but it also is complicated and 
computer intensive. The IG approach with a non-normal vector ξ is defined as  

ξ = A X 

where A is a square matrix and X a vector consisting of mutually independent generator 
variables with unit variance. The user specifies desired skewness and kurtosis values in ξ, 
and the IG algorithm numerically determines the skewness and kurtosis in each generator 
variable to match these values. The A matrix is a square root of the specified covariance 
matrix, which can be calculated using either a triangular square or a symmetrical square 
root, yielding two different types of distributions. The marginal distributions for X can be 
freely chosen.  

The IG approach in covsim uses the Pearson family of distributions. For example, a 
chi-square distribution with one degree of freedom has skewness equal to 2.83 and excess 
kurtosis equal to 12. To generate scores for a variable that are roughly distributed as such, 
one would specify these values for skewness and kurtosis in the IG algorithm for that 
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variable. The resulting distribution will not exactly be a 1single degree of freedom chi 
square because the program makes adjustments to obtain the mean you requested and the 
desired covariance structure. But it usually will be in the ballpark. Among the distributions 
in the Pearson family are the beta distribution, the beta prime distribution, the Cauchy 
distribution, the chi-squared distribution, the continuous uniform distribution, the 
exponential distribution, the gamma distribution, the F distribution, the inverse-chi-squared 
distribution, the inverse-gamma distribution, the normal distribution, and Student's t-
distribution. For details, see Grønneberg, Foldnes and Marcoulides (2022). 
 Users of the IG method sometimes specify a desired covariance matrix between 
variables with values of skewness and kurtosis that are incompatible because they are 
mathematically intractable or statistically impossible to co-exist. The IG algorithm may 
produce an error message if the inconsistencies are too great. My program provides 
diagnostics to help determine how close the approximation is. I review these shortly. 
 Another important point to keep in mind is that a univariate distribution is determined 
by more than just its skewness and kurtosis. Given this, by specifying the desired 
covariance matrix and the respective skewness and kurtosis values of the separate 
variables, there are different data-generating processes that can reproduce the target 
covariance matrix, skewnesses and kurtosis. For this reason, some methodologists suggest 
using multiple simulation algorithms for data generation and then replicating results across 
those algorithms (e.g., Fairchild et al., 2024).  

A core concept in generating simulation data is that of a copula. Copulas are 
mathematical specifications that implement the dependency structure between variables 
after taking the marginal distributions of the variables into account. There are many classes 
of copulas. Each class includes one or more parameters that control the strength of 
dependence between the variables. One copula class is called the normal or Gaussian 
copula. It is popular in many simulation packages in the social and health sciences. 
Shortcomings associated with this copula have been described by Astivia & Zumbo (2015) 
and Foldnes and Gronneberg (2015). The IG method uses a non-normal copula that 
produces different distributions than those of Gaussian copulas. When applied to SEM, it 
is possible for the data generated by Gaussian copulas to produce different results for 
robustness to nonnormality despite sharing the exact same covariance matrix and  
univariate skewness and kurtosis values for the variables comprising the covariance matrix 
(Foldnes & Gronneberg, 2015). One also can obtain differences as a function of the two 
distribution forms generated with the IG algorithm using the triangular square versus 
symmetrical square of the covariance matrix. Mplus uses a Gaussian copula. 

I consider here an example that examines the relationship between an outcome, Y, 
and three mediators in a linear regression. The first mediator is a latent variable and has 
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three normally distributed indicators, the second mediator has a single indicator that is 
positively skewed and leptokurtic, and the third mediator is normally distributed. The latent 
variable has a variance of 1.0 as does M2, M3 and Y. In the study I am planning, I evaluate 
the regression of Y onto the three mediators using robust maximum likelihood in Mplus 
with a sample size of 120.  I expect the outcome variable Y also to have a degree of non-
normality. Figure 8 presents the relevant path diagram with the population values of the 
core parameters that I want to simulate. Of concern to me in my study is M2 and the fact 
that it almost certainly will be positively skewed and highly leptokurtic and the non-
normality in Y. Granted, I will be using a robust estimation method, but I am uncertain 
with the smaller sample size if it will perform satisfactorily. I expect LM1, M1a, M1b, M1c 
and M3 all to be normally distributed. 
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Mediator 3
M3
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Mediator 1
LM1
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FIGURE 8. Model to be evaluated using covsim 

In many SEM simulations, the researcher first specifies a referent SEM model 
together with its population parameter values, as I have done above. The simulation study 
is designed to select random samples from a multivariate distribution whose covariance 
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matrix equals the model-implied covariance matrix. The scores are “selected” from the 
population (i.e., generated) in this case using the IG method but I first need to determine 
the model-implied covariance matrix for input into my program. I can  derive this 
covariance matrix for the model in Figure 8 either by hand (which can be quite 
cumbersome) or using Mplus as a computational aid. Here is the Mplus program I use to 
derive it: 

 
 1. TITLE: GENERATE MODEL IMPLIED COVARIANCE ; 
 2. DATA: 
 3. FILE IS c:\ret\covsimcovdat.txt ; 
 4. TYPE IS CORRELATION ; 
 5. NOBSERVATIONS = 1000; 
 6. VARIABLE:  
 7. NAMES ARE  m1a m1b m1c y m2 m3 ; 
 8. ANALYSIS: ESTIMATOR = ML ;  
 9. MODEL:    
10.  lm1 BY m1a@1 m1b@1 m1c@1 ;  
11.  lm1@1; m2@1 ; m3@1 ; y@.512 ;   
12.  m1a@.25 ; m1b@.25 ; m1c@.25;  
13.  lm1 WITH m2@.3  ; 
14.  lm1 WITH m3@.3 ; 
15.  m2 WITH m3@.3 ; 
16.  y ON lm1@.5 m2@.3 m3@.1 ;                
17. OUTPUT: SAMP STDYX TECH4 RESIDUAL;   

 
Most but not all of the syntax should be familiar. As with all my examples, you do 

not number the lines in Mplus per se; I do so here just so I can refer to them. The program 
uses summary data as input, in this case a correlation matrix (see Lines 3 to 5). The 
correlation matrix I input is not real data. It is a placeholder that I use as a device to allow 
me to calculate the model-implied covariance matrix. As such, the values in the correlation 
matrix can be any values as long as they are not degenerate. Line 3 identifies the free format 
ASCII file where the correlation matrix is located, Line 4 tells Mplus the matrix is a 
correlation matrix, and Line 5 tells Mplus the sample size for the correlation matrix, which 
can be any positive integer. It also is arbitrary and irrelevant to the real task at hand. I 
usually set it to 1000. The input correlation matrix stored in the data file is a lower 
triangular matrix (including the diagonals) with the same number of variables that your 
desired model-implied covariance matrix for covsim will have, in this case 6 (because there 
are six observed variables). Here is the correlation matrix I used exactly as it appears in the 
referenced data file (c:\ret\covsimcovdat.txt): 
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1.00    
0.30    1.00    
0.30    0.30    1.00   
0.30    0.30    0.30    1.00    
0.30    0.30    0.30    0.30    1.00    
0.30    0.30    0.30    0.30    0.30    1.00 

The entries are either space or tab delimited and the values are such that I am certain 
the matrix is positive definite, i.e., that all of its eigenvalues are positive. Creating a matrix 
with small but equal positive correlations typically is a safe bet.  

Line 7 of the syntax provides the names of the model variables in the correlation 
matrix from first to last. Lines 10 to 16 specify the model but note that I have fixed the 
values of every parameter to its corresponding  population value using the @ character. 
There is no formal estimation of these parameters when I run the program. The syntax will 
apply these values and then produce output that contains the model-implied covariance 
matrix. It occurs in the output section called RESIDUAL OUTPUT as follows: 

 
           Model Estimated Covariances/Correlations/Residual Correlations 
 
              M1A           M1B           M1C           Y             M2 
              ________      ________      ________      ________      ________ 
 M1A            1.250 
 M1B            1.000         1.250 
 M1C            1.000         1.000         1.250 
 Y              0.620         0.620         0.620         1.000 
 M2             0.300         0.300         0.300         0.480         1.000 
 M3             0.300         0.300         0.300         0.340         0.300 
 
           Model Estimated Covariances/Correlations/Residual Correlations 
              M3 
              ________ 
 M3             1.000    

 
This is the covariance matrix I input into the program on my website including my 

choices for skewness and excess kurtosis for each variable. For the latter, I decide to set all 
variables except M2 and Y to have zero skewness and zero excess kurtosis, i.e., to be 
normally distributed. I set M2 to have skewness of 2.82 and kurtosis of 12 (roughly 
mapping onto a chi square distribution with 1 df) and Y to have skewness of .9 and excess 
kurtosis of 1.2, a milder form of non-normality (roughly mapping onto a chi square 
distribution with 10 df). The video associated with the program shows you the steps I used 
to execute it. I created data sets for 1,000 simulation replications with a sample size of 120 
per replication. Across all simulation replicates, the sample size was (1,000)(120) = 
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120,000 but the simulation itself was conducted assuming a per replicate N of 120.  
 To help gain a sense of the IG based population distributions of the generated 
variables, the program plots histograms for the generated scores of each of the variables 
collapsing across all simulation replicates (N = 120,000). Here are the histograms for M2 
(which should be decidedly non-normal with positive skew and positive excess kurtosis), 
M3 (which should be normally distributed), and Y (which should have some positive skew 
and positive excess kurtosis). The variables are labeled by the program as var5, var6, and 
var4 to reflect M2, M3, and Y, respectively. The densities for a normal distribution are 
superimposed on the histograms in red : 
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The program also produces a scatter matrix of all possible pairs of variables for 1,000 
cases randomly selected from the 120,000 cases. In the scatter matrix, var1 = M1a, var2 = 
M1b, var3 = M1c, var4 = Y, var5 = M2, and var6 = M3. Here is the scatter matrix that has 
a scatterplot with smoothers in the lower triangle and the correlations in the upper triangle.  

 
The scatterplots appear as expected given the mixture of variables with normal and 

non-normal distributions.  
Here is the requested covariance matrix and the computed covariance matrix for the 

120,000 cases of generated data, for which I expect close correspondence:  
 

Input covariance matrix 
       var1   var2   var3   var4   var5   var6 
var1   1.25   1.00   1.00   0.62   0.30   0.30 
var2   1.00   1.25   1.00   0.62   0.30   0.30 
var3   1.00   1.00   1.25   0.62   0.30   0.30 
var4   0.62   0.62   0.62   1.00   0.48   0.34 
var5   0.30   0.30   0.30   0.48   1.00   0.30 
var6   0.30   0.30   0.30   0.34   0.30   1.00 
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Covariance matrix from generated data 
           var1       var2       var3       var4       var5       var6 
var1  1.2519659  0.9986506  1.0009941  0.6232038  0.2989172  0.3044287 
var2  0.9986506  1.2461415  1.0000638  0.6220878  0.2991803  0.3035087 
var3  1.0009941  1.0000638  1.2504359  0.6248098  0.3006416  0.3047523 
var4  0.6232038  0.6220878  0.6248098  1.0033469  0.4782759  0.3432240 
var5  0.2989172  0.2991803  0.3006416  0.4782759  1.0012994  0.3027376 
var6  0.3044287  0.3035087  0.3047523  0.3432240  0.3027376  0.9996258 

 
The requested values are reasonably close to the generated values. The statistics based on 
the generated data will not be exact reproductions because there is sampling error in them, 
but with an N of 120,000, sampling error should be small. Here are the descriptive statistics 
for the generated data  

 
Descriptive statistics for generated data 
           n  mean   sd median trimmed  mad   min   max range skew kurtosis 
var1  120000 -0.01 1.12  -0.01   -0.01 1.12 -4.91  4.81  9.72 0.01     0.00 
var2  120000 -0.01 1.12  -0.01   -0.01 1.11 -5.05  4.85  9.90 0.00     0.01 
var3  120000 -0.01 1.12  -0.01   -0.01 1.12 -4.68  5.29  9.96 0.01     0.00 
var4  120000  0.00 1.00  -0.16   -0.09 0.86 -3.15  5.17  8.32 0.91     1.21 
var5  120000  0.00 1.00  -0.26   -0.17 0.57 -1.87 10.31 12.18 2.80    11.91 
var6  120000 -0.01 1.00   0.00   -0.01 1.01 -4.23  4.43  8.66 0.00    -0.01 

 
Of interest are the last two columns that indicate the amount of skew and excess kurtosis 
in the generated data. The values are reasonably close to those values that were requested.   

Mplus uses an estimation strategy where non-normality in the exogenous variables is 
not typically problematic because they are treated as fixed predictors. However, because 
of the  exogenous latent variable, all the exogenous variables are treated as random 
predictors rather than fixed predictors. In such cases, distributional assumptions are made 
about the exogenous as well as the endogenous variables. The simulation reported below 
evaluates if the specified levels of non-normality create inferential problems.      

I next wrote and executed the external simulation code in Mplus to conduct the 
simulation analysis on the generated data. Here is the code (as usual, ignore the numbering 
of lines, which are for referring in the text to the lines):  

 
 1. TITLE: LOCAL EXTERNAL SIMULATION ; 
 2. DATA: FILE = c:/ret/covsimdatlist.txt ; 
 3. TYPE = MONTECARLO ; 
 4. VARIABLE: 
 5. NAMES ARE trial id m1a m1b m1c y m2 m3 ; 
 6. USEVARIABLES ARE m1a m1b m1c y m2 m3 ; 
 7. ANALYSIS:  
 8. ESTIMATOR = MLR ;  
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 9. MODEL:         
10.  lm1 BY m1a@1 m1b*1 m1c*1 ; d 
11.  lm1*1; m2*1 ; m3*1 ; y*.512  
12.  m1a*.25 ; m1b*.25 ; m1c*.25  
13.  lm1 WITH m2*.3 ; 
14.  lm1 WITH m3*.3 ; 
15.  m2 WITH m3*.3 ;  
16.  y ON lm1*.5 m2*.3 m3*.1 ;               
17. OUTPUT: TECH9 ;       

 
Most of the syntax is self-explanatory. Line 4 tells Mplus to do a Monte Carlo 

simulation. Note the input file in Line 3 is the replist.dat file. This is the file that tells Mplus 
where to find all of the separate externally generated files. It was generated by the Data 
Generation 1 program. The syntax assumes the separate files are located in the same folder 
that the above Mplus program is in given the absence of a folder path specification. Lines 
10 to 16 describe the model to be fit to the data but they also include the values of the 
population parameters preceded by a * or a @.  
 The output is the same as that for any Mplus simulation which you should now be 
familiar with. Here are the results for the chi square test of global fit: 

 
Chi-Square Test of Model Fit 
 
        Degrees of freedom                       6 
 
        Mean                                 6.734 
        Std Dev                              4.302 
        Number of successful computations     1000 
 
             Proportions                   Percentiles 
        Expected    Observed         Expected       Observed 
           0.990       0.989            0.872          0.771 
           0.980       0.984            1.134          1.288 
           0.950       0.961            1.635          1.729 
           0.900       0.909            2.204          2.278 
           0.800       0.808            3.070          3.121 
           0.700       0.721            3.828          4.043 
           0.500       0.559            5.348          5.769 
           0.300       0.381            7.231          8.272 
           0.200       0.273            8.558          9.585 
           0.100       0.150           10.645         12.001 
           0.050       0.089           12.592         14.697 
           0.020       0.042           15.033         17.480 
           0.010       0.026           16.812         20.013 

 
The average chi square value (6.734) should approximate the degrees of freedom, 6. 
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The two values seem reasonably close. The standard deviation of the chi square values 
should equal the square root of double the degrees of freedom. The square root of 12 is 
3.46, which is reasonably close to the reported standard deviation value of 4.302 on the 
output. In the column Proportions Expected at the row for a theoretical p value of 0.05, 
the entry in the Proportions Observed column is 0.089. This indicates that the chi square 
test is rejecting about 9% of the models when it should be rejecting only 5% of the models, 
the alpha level expressed in percent from. As such, the test shows a tendency to over-reject 
correctly specified models. I also note that in a chi square distribution with 6 degrees of 
freedom, one expects the critical value of chi square that rejects 5% of the models to equal 
12.592. The critical value in the observed data was 14.697. Overall, in my opinion, the chi 
square test is in the ball park of adequacy but I wish it had done better.  

Here are the results for the parameter estimates: 
 

MODEL RESULTS 
 
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                 Population   Average   Std. Dev.   Average             Cover Coeff 
 
 LM1      BY 
  M1A                 1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 
  M1B                 1.000     1.0010     0.0726     0.0713     0.0053 0.939 1.000 
  M1C                 1.000     1.0037     0.0741     0.0713     0.0055 0.942 1.000 
 
 Y        ON 
  LM1                 0.500     0.4946     0.0912     0.0835     0.0083 0.916 1.000 
 
 Y        ON 
  M2                  0.300     0.3370     0.1636     0.1283     0.0281 0.878 0.729 
  M3                  0.100     0.0960     0.0738     0.0714     0.0055 0.941 0.276 
 
 LM1      WITH 
  M2                  0.300     0.2976     0.0974     0.0963     0.0095 0.947 0.883 
  M3                  0.300     0.3010     0.1021     0.0979     0.0104 0.940 0.889 
 
 M2       WITH 
  M3                  0.300     0.3000     0.1101     0.1034     0.0121 0.913 0.888 

 

Scanning down the Estimates column, there is no disconcerting parameter bias, although 
the parameter estimate for M2 is flirting with unacceptable positive bias (population value 
= 0.300 as compared with the average estimate across the 1,000 trials being 0.3370). 
However, there is some notable downward bias in the standard errors (compare the Std. 
Dev. column  with the S.E. Average column). For example, the standard error for the 
coefficient regressing Y onto M2 is 0.1636 and the average standard error for this 
coefficient across the 1,000 trials was 0.1283. The 95% confidence interval coverage 
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should be near 0.95 for each coefficient. There are several exceptions to this were the 
coverage is too low. For example, the coverage for the coefficient regressing Y onto M2 is 
0.878 and the coverage for the coefficient regressing Y onto LM1 it is 0.916. 

My overall conclusion is that there are sufficient deviations in the above that I can’t 
move forward with my study as planned. Perhaps a larger N than 120 would help because 
larger N sometimes improves the robustness qualities of estimators. When I repeated the 
simulation but used a sample size of 200 per trial, the performance of the global chi square 
test of fit improved to acceptable levels as did estimation of most of the separate parameter 
estimates with the one exception being the Y on M2 coefficient 95% confidence interval 
coverage, which improved to 0.92. This point is important more generally because it 
indicates that the performance of the MLR estimation strategy in Mplus can be influenced 
by sample size and that for small N, it may not perform as well as we might assume. Also, 
the results are dependent on my presumed levels of skewness and kurtosis in the 
population. Perhaps when I conduct my actual study, the non-normality will not be as 
extreme as what I modeled here. I can get a handle on the extent to which this matters by 
re-doing the simulation with less extreme values for skewness and kurtosis. Another 
corrective strategy might be  to introduce covariates that when included in the model may 
reduce some of the consequential skewness or kurtosis in the endogenous variable. The 
important point here is that localized simulations can provide useful perspectives on sample 
size selection and robustness and that the covsim package in R in conjunction with Mplus 
allows us to explore the effects of different types of non-normality other than through 
mixed normal distributions in Mplus and using a non-Gaussian copula (which is used by 
Mplus).          
 Another way of using the Data Generation I program is to use it to generate scores 
for parts of a population model and then add the additional data using the R random number 
generators to finish out score generation. I illustrate this approach for the design of a 
simulation in Mplus that uses the Mplus external simulation. The population model for my 
simulation is a simple two factor model where I want to estimate the covariance/correlation 
between the two latent factors but where one of the factors has a non-normal distribution 
(typically in SEM, latent variables are assumed to be normally distributed). Each factor has 
three indicators. Here is the population model and the parameter values I will use (note: 
each latent factor has a variance of 1.0 and hence, a standard deviation of 1.0): 
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Factor 1

X1 X2 X3

.25 .25 .25

1.0 1.0
1.0

Factor 2

X4 X5 X6

.25 .25 .25

1.0 1.0
1.0

0.00

 
 
All indicators have unstandardized factor loadings of 1.0. The error variance for each 
indicator is 0.25 which maps onto each indicator having a reliability of 0.80, that is 80% 
of the variation in each X indicator is systematic and 20% is random error. 
 I begin by creating a partial data set in R using the Data Generation I program. I 
specify 1,000 simulations each with my target sample size per simulation replicate, which 
in this example will be  300. If I collapse across the simulation trials, I have 300,000 cases 
from the larger population. I specify a 2X2 covariance matrix for input into the Data 
Generation I program that sets the variances of the two variables to be generated to 1.0 and 
the covariance between them to 0.00. These scores represent scores on Factor 1 and Factor 
2, respectively. I set the covariance between the factors to zero because I am interested in 
whether the non-normality I introduce affects the Type I error rate for the test of the 
covariance between the factors. Suppose I decide to explore the case where the non-
normality for one of the factors has a skewness value of 1.4 and an excess kurtosis value 
of 3.0. (I show you the resulting histogram for it shortly so you can see the distribution 
shape). I therefore specify 1.4 and 3.0 as my skewness and excess kurtosis values when 
generating the scores in Data Generation I. For the second factor, I set the skewness and 
excess kurtosis values to 0 thereby creating a normal distribution for that factor. I set the 
data generation option to 2 in the Data Generation I program and the file format option to 
2. After creating the relevant R syntax in Data Generation I and pasting it into R and 
executing it, there will be two generated scores in an R data file called var1 and var2. The 
histogram generated by the program for var2 will look like a normal distribution. Here is 
the histogram generated by the program for var1with a normal curve superimposed on it: 
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I keep R open with access to var1 representing factor scores for Factor 1 and var2 

representing factor scores for Factor 2. I next use R to generate the error scores for the X 
variables.  I use the R command rvnorm(300000,mean=0,sd=.50) which I execute six 
times, one for each X indicator. The command generates a random variable for 300,000 
cases where scores on the variable are normally distributed with a mean of zero and a 
standard deviation of 0.50 (which corresponds to a variance of 0.25):  

e1<-rnorm(300000,mean=0,sd=.50) 
e2<-rnorm(300000,mean=0,sd=.50) 
e3<-rnorm(300000,mean=0,sd=.50) 
e4<-rnorm(300000,mean=0,sd=.50) 
e5<-rnorm(300000,mean=0,sd=.50) 
e6<-rnorm(300000,mean=0,sd=.50) 

I next create the scores for the six X variables by executing the following commands 
(which capitalizes on the already executed R code in the main run, which created a data 
file called dat2): 

attach(dat2) 
X1<-(1.0)*var1+e1 
X2<-(1.0)*var1+e2 
X3<-(1.0)*var1+e3 
X4<-(1.0)*var2+e4 
X5<-(1.0)*var2+e5 
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X6<-(1.0)*var2+e6 

 
The next two R commands combine the generated variables into a single data file 

called dat3 followed by the creation of a new variable that contains the name of the folder 
and data file (with no tag) where you want to store the Mplus external simulation files: 
    
dat3<-as.data.frame(cbind(trial,id, X1,X2,X3,X4,X5,X6)) 
namefile<-'c:/ret/simdat' 

 
Finally, you need to save the 1,000 data files in a way that is compatible with the 

external simulation structure of Mplus. The following code will accomplish this task, so 
you copy and paste it into R after typing the above two lines (which assume your saved 
data files will be named simdat): 
 
simdat<-split(dat3,trial) 
jtemp<-list()  
filename2<-paste(namefile,'list.txt',sep='') 
for (i in names(simdat)) { 
filename1<-paste(namefile,i,'.txt',sep='') 
jtemp[[i]]<-filename1 

write.table(simdat[[i]],filename1,row.names=F,col.names=F,quote=F,sep='  ') } 
jtemp2<-as.matrix(jtemp) 
write.table(jtemp2,filename2,row.names=F,col.names=F,quote=F) 

This code writes onto your computer separate files called simdat#.txt for each simulation 
trial but substitutes a number for the # to correspond to the trial number. In addition, a file 
called simdatlist.txt is written to your computer that lists all of the replication files for 
input into the primary Mplus syntax that is shown below. Watch the video associated with 
the Data Generation I program to see how I execute the above.   
 After executing the above R syntax, I execute the following Mplus syntax to conduct 
the simulation: 
 
TITLE: LOCAL EXTERNAL SIMULATION ; 
DATA: FILE is c:/temp/simdatlist.txt ; 
TYPE = MONTECARLO ; 
VARIABLE: 
 NAMES ARE trial id x1 x2 x3 x4 x5 x6  ; 
 USEVARIABLES ARE x1 x2 x3 x4 x5 x6 ; 
ANALYSIS:  
 ESTIMATOR = MLR ;  
MODEL:         
 f1 BY x1@1 x2*1 x3*1 ;  
 f2 BY x4@1 x5*1 x6*1 ;  
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 x1*.25 ; x2*.25 ; x3*.25 ; 
 x4*.25 ; x5*.25 ; x6*.25 ; 
 f1 WITH f2*0 ; 
OUTPUT: TECH9 ; 

 
All of the syntax should be familiar. Note that I specify the population values for each 
parameter after a @ or * in the MODEL section. This tells Mplus the population values to 
use when calculating confidence interval coverage. Here is the simulation output for the 
chi square statistic:  
 
Chi-Square Test of Model Fit 
 
        Degrees of freedom                       8 
 
        Mean                                 8.268 
        Std Dev                              4.387 
        Number of successful computations     1000 
 
             Proportions                   Percentiles 
        Expected    Observed         Expected       Observed 
           0.990       0.984            1.646          1.508 
           0.980       0.971            2.032          1.693 
           0.950       0.939            2.733          2.487 
           0.900       0.888            3.490          3.378 
           0.800       0.790            4.594          4.493 
           0.700       0.706            5.527          5.554 
           0.500       0.524            7.344          7.591 
           0.300       0.336            9.524         10.057 
           0.200       0.230           11.030         11.428 
           0.100       0.120           13.362         13.967 
           0.050       0.061           15.507         16.052 
           0.020       0.028           18.168         19.922 
           0.010       0.019           20.090         21.743 

 
 The average chi square value (8.268) should approximate the degrees of freedom, 8. 
The two values are reasonably close. The standard deviation of the chi square values should 
equal the square root of double the degrees of freedom. The square root of 16 is 4.00, which 
roughly equals the reported standard deviation value of 4.387 on the output. In the column 
Proportions Expected at the row for a theoretical p value of 0.05, the entry in the 
Proportions Observed column is 0.06. This indicates that the chi square test is rejecting 
about 6% of the models when it should be rejecting only 5% of the models, the alpha level 
expressed in percent from. However, these values seem reasonably close. I also note that 
in a chi square distribution with 8 degrees of freedom, one expects the critical value of chi 
square that rejects 5% of the models to equal 15.507. The critical value in the observed 
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data that did so was 16.052.   
Here are the results for the parameter estimates: 
 

MODEL RESULTS 
 
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                 Population   Average   Std. Dev.   Average             Cover Coeff 
 
 F1       BY 
  X1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 
  X2                  1.000     0.9998     0.0463     0.0456     0.0021 0.953 1.000 
  X3                  1.000     0.9986     0.0451     0.0455     0.0020 0.954 1.000 
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                 Population   Average   Std. Dev.   Average             Cover Coeff 
 
 F2       BY 
  X4                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 
  X5                  1.000     1.0013     0.0464     0.0456     0.0021 0.944 1.000 
  X6                  1.000     1.0003     0.0464     0.0455     0.0022 0.943 1.000 
 
 F1       WITH 
  F2                  0.000    -0.0005     0.0598     0.0620     0.0036 0.951 0.049 
 
Residual Variances 
  X1                  0.250     0.2473     0.0330     0.0318     0.0011 0.932 1.000 
  X2                  0.250     0.2468     0.0326     0.0320     0.0011 0.934 1.000 
  X3                  0.250     0.2498     0.0322     0.0320     0.0010 0.937 1.000 
  X4                  0.250     0.2479     0.0327     0.0319     0.0011 0.939 1.000 
  X5                  0.250     0.2477     0.0332     0.0319     0.0011 0.930 1.000 
  X6                  0.250     0.2482     0.0322     0.0320     0.0010 0.946 1.000 

None of the estimates show consequential bias in either the parameter estimate per se or 
their standard errors. The confidence interval coverage is generally reasonable although a 
bit on the low side for the residual variances. The Type I error rate for the factor covariance 
was 0.049 which is close to the theoretical alpha level of 0.05. Overall, the non-normal  
factor does not seem to be creating problems, at least for the levels of skewness and excess 
kurtosis I explored. 

The second program on my website relevant to simulations is Data Generation II.   
This program shows you histograms and descriptive statistics for a wide range of non-
normal distributions that helps you make choices about levels of skewness and excess 
kurtosis to use for distributions from the Pearson distribution family in Data Generation I. 
For example, my choice of skewness and excess kurtosis for the non-normal distribution 
in the prior example was based on my examination of different chi squared distributions in 
Data Generation I.  Watch the video for the Data Generation I program to see strategies 
you can use to help you select distribution values. The Data Generation II program also 
generates randomly selected scores from non-normal distributions of your choice that you 
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can then use in conjunction with R code and Mplus to conduct simulations. For example, 
in the above simulation on factor analysis, instead of using a non-normal distribution with 
a priori specified levels of skewness and excess kurtosis, I might use scores from an 
exponential distribution generated by the Data Generation II program.    

LOCALIZED SIMULATIONS FOR MODERATION 

In this section, I show you how to conduct power analysis simulations for moderated effects 
in which the variables are measured with single indicators. Ironically, this scenario can be 
more challenging to simulate than moderation between two latent variables or between an 
observed variable and a latent variable. The latter cases use Mplus programming with the 
XWITH command and can be implemented straightforwardly using methods discussed in 
Chapter 28 and in this document. In this section, I focus on the case where Y is an outcome 
that ranges from, say, -5 to +5, Z is a continuous moderator that ranges from -5 to +5, and 
T is a binary treatment condition, 1 = intervention, 0 = control group. The model focuses 
on how the effect of T on Y varies as a function of Z and relies on the use of product terms. 
The programming logic readily generalizes to cases where Z is binary or where both the 
predictors are continuous, such as the case of two continuous mediators. I also have 
discussed in another section of this document how you would evaluate power in a 
simulation study for moderation with multigroup analysis, so I do not consider that here.  

To make the logic explicit, I briefly review the core equations from product term 
analysis of moderation as discussed in Chapter 19. The equation has the form 

Y = a1 + b1 T + b2 Z + b3 TZ              [14] 

The coefficient b1 reflects the estimated effect of T on Y when Z = 0; a1 reflects the 
estimated mean of Y when both T and Z = 0, so it is the mean for the control group when 
the moderator equals 0, in this case the middle score of the Z metric. For traditional product 
term analysis, the coefficient b1 is conceptualized as a linear function of Z, as follows: 

b1j = a2 + b4 Zj                         [15] 

where a2 is the value of b1 when Zj = 0 and b4 tells us for every one unit that Z increases, 
how much b1 is predicted to change. If a2 is 0.3, it means that when Z = 0, the effect of T 
on Y (or the mean Y difference between the intervention and control groups) is 0.30. As 
such, a2 often is of interest when a value of Z = 0 is substantively meaningful. It turns out 
that the value of a2 will equal the value of b1 in Equation 11. It also turns out that the value 
of b4 will equal the value of b3 in Equation 11. Given this, when we estimate Equation 11 
with sample data, the coefficients for b1 and b3 provide useful information about 
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moderation (see Chapter 19 for more details). Note that for later programming purposes, 
Equation 12, does not have a disturbance term, i.e., its variance is fixed at zero. I discussed 
the reasons for this property in Chapter 19.  
 The programming strategy I show you makes use of the Mplus external simulation 
features, which I illustrated in Chapter 28 when I considered listwise deletion of missing 
data. I use this strategy because of its flexibility, as illustrated later. I assume you have read 
the section on listwise deletion of missing data in Chapter 28 to provide an appropriate 
framework for my exposition here. The analysis requires two steps. The first step is to 
generate the data on your computer for purposes of simulation analysis. The second step is 
to analyze the generated data. Table 20 presents the relevant syntax for Step 1 in which I 
evaluate power of the moderation effect for a sample size of 250 and where the population 
product term coefficient equals 0.30 and the population b1 equals 0.30.  
 
Table 20: Simulation for Product Terms: Step 1 
 
1.  TITLE: STEP 1 FOR PRODUCT POWER ANALYSIS 
2.  MONTECARLO: 
3.  NAMES = y z t; 
4.  NOBS = 250; 
5.  NREPS = 500; 
6.  SEED = 2222 ; 
7.  REPSAVE = all; 
8.  SAVE = rep*.dat; 
9.  CUTPOINTS = t(0); 
10. MODEL POPULATION: 
11.  t*1; 
12.  [t*0] ; 
13.  t WITH z *0 ; 
14.  [z*0];        !set mean of moderator z to 0 
15.  z*1;          !set moderator variance to 1.0 
16.  b1 | y on t;  !define b1 as the effect of t on y 
17.  y ON z*.2 ;   !this is b2 in Eq 11 
18.  b1 ON z*.2;   !this is b3 in Eq 11 and b4 in Eq 12, which are equal 
19.  [b1*.3];      !this is b1 in Eq 11 and a2 in Eq 12, which are equal 
20.  b1@0;         !set the disturbance variance of Eq 12 to zero 
21.  [y*0];        !mean y when t = 0 and z = 0 
22.  y*1;          !set disturbance variance to 1.0 
23. ANALYSIS: 
24.  TYPE=RANDOM ; !need to invoke to use Line 16 
25. MODEL: 
26.  b1 | y on t;  !define b1 as the effect of t on y 
27.  y ON z*.2 ;   !this is b2 in Eq 11 
28.  b1  ON z*.2;  !this is b3 in Eq 11 and b4 in Eq 12, which are equal 
29.  [b1*.3];      !this is b1 in Eq 11 and a2 in Eq 12, which are equal 
30.  b1@0;         !set the disturbance variance of Eq 12 to zero 
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31.  [y*0];        !mean y when t = 0 and z = 0 
32.  y*1;          !set disturbance variance to 1.0 
33. OUTPUT: TECH9 ;  
 
The syntax coupled with the comment lines should be self-explanatory given material 
already covered in Chapter 28 and this supplement. The primary function of this program 
in to generate the data sets for analysis and the file that lists those data sets vis-à-vis Lines 
7 and 8 (the format of these lines is discussed in the listwise missing data example in 
Chapter 28). I make careful note at the end of the Step 1 output the order in which variables 
are written to the data sets as this impacts the NAMES statement in the Step 2 program: 
 
SAVEDATA INFORMATION 
 
  Order of variables 
 
    Y 
    Z 
    T 
 
  Save file 
    rep*.dat 

 
 Table 21 presents the syntax for Step 2 that performs the simulation analysis. 
 
Table 21: Simulation for Product Terms: Step 2 
 
1.  TITLE: STEP 2 PRODUCT POWER ANALYSIS ; 
2.  DATA: 
3.  FILE = replist.dat ; 
4.  TYPE = MONTECARLO ; 
5.  VARIABLE: 
6.  NAMES ARE y z t  ; 
7.    USEVARIABLES ARE y z t prod ; 
8.  DEFINE: 
9.   !z = z-1 ; 
10.  prod=z*t ; 
11. ANALYSIS: 
12. ESTIMATOR = MLR; 
13. MODEL: 
14. y ON z*.20 t*.30 prod*.20  ; 
15. y*1 ; 
16. OUTPUT: TECH9 ; 

 
All of the syntax should be familiar. Line 3 points to the file that was generated by the Step 
1 program that lists the different data set names. Note that I can use the DEFINE command 
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to calculate the product term for analysis per Line 10. However, it was essential in the Step 
1 program that I made the product term impact the outcome and that I coordinate the values 
between the programs for everything to work properly. Although I commented it out, Line 
9 can be used to redefine the zero point of Z per chapter 19 to explore power for the simple 
effect of T on Y at different levels or values of Z.  
 Here is the core output: 
 
                              ESTIMATES                S. E.   M. S. E.   95%  % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 Y        ON 
  Z                   0.200     0.2042     0.0875     0.0877     0.0077   0.936  0.658 
  T                   0.300     0.3120     0.1286     0.1262     0.0166   0.944  0.698 
  PROD                0.200     0.1988     0.1293     0.1253     0.0167   0.938  0.370 
 

The statistical power for the coefficient associated with the product term is 0.37. 
 As another example, I show the Step 1 syntax in Table 22 for the case of an equation 
with a continuous outcome and two continuous mediators, m1 and m2, and where m2 
moderates the effect of m1 on y. The sample size I use is again 250 and the population 
product term coefficient equals 0.15 and the population b1 equals 0.30.  
  
Table 22: Simulation for Continuous Variable Product Term: Step 1 
 
1.  TITLE: STEP 1 FOR PRODUCT POWER ANALYSIS 
2.  MONTECARLO: 
3.  NAMES = y m2 m1; 
4.  NOBS = 250; 
5.  NREPS = 500; 
6.  SEED = 2222 ; 
7.  REPSAVE = all; 
8.  SAVE = rep*.dat; 
9.  MODEL POPULATION: 
10.  m1*1;              !set variance of m1 to 1  
11.  [m1*0] ;           !set mean of m1 to 0  
12.  m2*1 ;             !set variance of m2 to 1  
13.  [m2*0] ;           !set mean of m2 to 0  
14.  m1 WITH m2 *.25 ;  ! covariance between m1 and m2 
15.  b1 | y on m1;      !define b1 as the effect of m1 on y 
16.  y ON m2*.2 ;       !this is b2 in Eq 11 
17.  b1 ON m2*.15;      !this is b3 in Eq 11 and b4 in Eq 12, which are equal 
18.  [b1*.30];          !this is b1 in Eq 11 and a2 in Eq 12, which are equal  
19.  b1@0;              !set the disturbance variance of Eq 12 to zero 
20.  [y*0];             !mean y when t = 0 and z = 0  
21.  y*1;               !set disturbance variance to 1.0 
22. ANALYSIS: 
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23. TYPE = RANDOM ; 
24. MODEL: 
25.  b1 | y on m1;      !define b1 as the effect of m1 on y 
26.  y ON m2*.2 ;       !this is b2 in Eq 11 
27.  b1 ON m2*.15;      !this is b3 in Eq 11 and b4 in Eq 12, which are equal 
28.  [b1*.30];           !this is b1 in Eq 11 and a2 in Eq 12, which are equal  
29.  b1@0;              !set the disturbance variance of Eq 12 to zero 
30.  [y*0];             !mean y when t = 0 and z = 0  
31.  y*1;               !set disturbance variance to 1.0 
32. OUTPUT: TECH9 ;  
 

Table 23 shows the Step 2 syntax, which is self-explanatory.  
 
Table 23: Simulation for Continuous Variable Product Term: Step 2 
 
1.  TITLE: STEP 1 FOR PRODUCT POWER ANALYSIS 
2.  DATA: 
3.  FILE = replist.dat ; 
4.  TYPE = MONTECARLO ; 
5.  VARIABLE: 
6.  NAMES ARE y m2 m1  ; 
7.  USEVARIABLES ARE y m2 m1 prod ; 
8.  DEFINE:  
9.  !m2 = m2-1 ; 
10. prod=m1*m2 ; 
11. ANALYSIS:  
12.   ESTIMATOR = MLR; 
13. MODEL:         
14.  y ON m1*.30 m2*.20 prod*.15  ;    
15.  y*1 ;        
16. OUTPUT: TECH9 ; 

Here is the output table with the relevant power values: 
 
 
                              ESTIMATES               S. E.    M. S. E.   95%  % Sig 
                 Population   Average   Std. Dev.   Average              Cover  Coeff 
 
 Y        ON 
  M1                  0.300     0.3018     0.0680     0.0653     0.0046   0.942  0.998 
  M2                  0.200     0.2032     0.0635     0.0646     0.0040   0.954  0.894 
  PROD                0.150     0.1518     0.0642     0.0608     0.0041   0.930  0.698 
 

The statistical power for the coefficient associated with the product term is 0.70. 
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CREATING UNEQUAL N AND THREE OR MORE TREATMENT GROUPS 

Throughout this document, I have defined two groups of equal size for the treatment versus 
control conditions for an RET by use of the Mplus CUTPOINTS option. If need be, you can 
create unequal sizes between the groups in the referent populations. Mplus initially defines 
the specified variable in the CUTPOINTS command, in this case t, as continuous and 
normally distributed with a mean of 0 and a variance of 1. When I specify a cutpoint of 0 
on the command, I essentially create equal sample sizes in the resulting two groups for t. 
because half the scores are above zero in the distribution and half are below zero. If I 
instead specify the cutpoint as 1.0, t is cut at the value of 1.0, which is one standard 
deviation above the mean (because the mean and variance used for data generation are zero 
and one). This means that after the cut, t is a 0/1 binary variable where 16 percent of the 
population have the value of 1. The default cutpoint values in Mplus essentially take the 
form of a z-score, so you can use a z-score table to select the value that corresponds to the 
proportional split you desire. For example, a cutpoint of -1.65 creates a variable with 5% 
zeros and 95% 1s. 

In multiple group analysis, the CUTPOINT option is specified as follows where the 
cutpoints for the groups are separated using the | symbol:  

CUTPOINTS = x1 (0) x2 ( 1) | x1 (1) x2 (0);  

where the cutpoints before the | symbol are the cutpoints for group 1 and the cutpoints after 
the | symbol are the cutpoints for group 2. 
 If you want to conduct a simulation with more than two groups (e.g., a three group 
treatment condition variable), then you will need to either use a multigroup strategy or use 
a dummy variable strategy with the two step external Mont Carlo approach, much like I 
illustrated for listwise deletion of missing data in Chapter 28. In the dummy variable 
approach, the Step 1 program generates the continuous variable and the Step 2 program 
uses the DEFINE command to cut it up into categories using the CUT option (not the 
CUTPOINT option) in the DEFINE command at Step 2. See the Mplus manual for how the 
CUT option works. 

LOCALIZED SIMULATIONS FOR MULTILEVEL SEM 

In this section, I show you how to conduct power analysis simulations for multilevel SEM 
models. I use an example with an outcome variable (y) and two mediators (m1 and m2) 
and a treatment variable (treat) in which 50 clusters of size 20 each are randomly assigned 
to a treatment or control condition. The Mplus code uses principles already developed in 
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this document, so I do not repeat those principles here. I used Bayes estimation and 
constructed the simulation such that the across cluster effect of the treatment condition on 
the outcome accounted for 1% of the variation in m1 (a Cohen’s d of approximately 0.10) 
and 6% of the variation in m2 (a Cohen’s d of approximately 0.50). The two mediators 
accounted for approximately 30% of the variance in the across cluster outcomes, 
representing standardized regression coefficients of approximately 0.20 and 0.50, 
respectively. To make it easier to specify parameter values, I structured the simulation so 
that the within and between clusters variances of the variables were approximately equal 
to 1.0. Table 24 presents the Mplus syntax.   
 
Table 24: Syntax for Multilevel SEM for Clustered RET 
 
1.  TITLE: Multilevel SEM  ; 
2.  MONTECARLO: 
3.  NAMES ARE 
4.    y t m1 m2 ; 
5.  NREPS = 1000 ;                ! number of simulation reps 
6.  !NREPS = 1 ;                  ! used to test choice of parameter values 
7.  NCSIZES = 1  ;                ! just one cluster size 
8.  NOBSERVATIONS = 1000 ;        ! sample size per simulation replicate 
9.  !NOBSERVATIONS = 1000000 ;    ! used to test choice of parameter values  
10. CSIZES 50(20) ;               ! number of clusters and size of clusters 
11. !CSIZES 50000(20) ;           ! used to test choice of parameter values 
12. SEED = 89939 ; 
13. !SAVE = simpow.dat;             ! used to test choice of parameter values 
14. CUTPOINTS = t(0); 
15. BETWEEN IS t ; 
16. ANALYSIS: 
17.   TYPE = TWOLEVEL  ; 
18.   ESTIMATOR = BAYES ; 
19. MODEL POPULATION: 
20.   %WITHIN%  
21.    y*.71 
22.    m1*1 ; m2*1 ; 
23.    y ON m1*.20 m2*.50  ;  
24.    m1 WITH m2*.1 ;             ! covariance between m1 and m2 
25.   %BETWEEN%  
26.    [t*0]; t*1 ; 
27.    [y*0] ;  y*.71 ; 
28.    [m1*0] ; m1*.99; 
29.    [m2*0] ; m2*.9375 ; 
30.    y ON m1*.20 m2*.50 ; 
31.    m1 on t*.2; 
32.    m2 ON t*.5 ; 
33.    m1 WITH m2*.1;              ! covariance between m1 and m2 
34.  MODEL : 
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35.   %WITHIN%  
36.    y*.71 
37.    m1*1 ; m2*1 ; 
38.    y ON m1*.20 m2*.50  ;  
39.    m1 WITH m2*.1 ; 
40.   %BETWEEN%  
41.    [y*0] ;  y*.71 ; 
42.    [m1*0] ; m1*.99; 
43.    [m2*0] ; m2*.9375 ; 
44.    y ON m1*.20 m2*.50 ; 
45.    m1 on t*.2; 
46.    m2 ON t*.5 ; 
47.    m1 WITH m2*.1; 
48. OUTPUT: 
 

Lines 6, 9 11 and 13 are used to double check the parameter values. I will explain their use 
shortly. Line 7 specifies the number of different cluster sizes you want to use. In this case, 
there is only one cluster size. Line 10 tells Mplus how many clusters you want (in this case 
50) and the size of each cluster (in this case, 20 observations per cluster). Suppose instead 
I specified 3 cluster sizes. The format of CSIZES might then be as follows: 

CSIZES = 40 (5) 50 (10) 20 (15);  

This tells Mplus to create 40 clusters of size 5, 50 clusters of size 10 and 20 clusters of size 
15. Line 8 tells Mplus the total number of observations to generate. The remainder of the 
syntax is self-explanatory. 
 I like to double check the parameter values I chose and examine the squared 
correlations for the endogenous variables to gain additional perspectives on the simulated 
effect sizes. By uncommenting Lines 6, 9, 11 and 13 and commenting out the duplicate 
lines just above Lines 6, 9 and 11. This has the effect of creating one very large data set of 
1,000,000 cases that I then analyze using a standard Bayesian multilevel SEM (note: I need 
to be careful to reorder the input variables because Mplus saves them to the data file in a 
different order than how they were generated; Mplus also generates a cluster number 
variable). Table 25 presents the “test” syntax code I execute:  
 
Table 25: Syntax for Test Run 
 
  TITLE: Test analysis ; 
  DATA: FILE IS simpow.dat ; 
  VARIABLE: 
  NAMES ARE 
     y  m1 m2 t clus ; 
  USEVARIABLES ARE 
     y  m1 m2 t ; 
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  CLUSTER is clus ; 
  BETWEEN IS t ; 
  ANALYSIS: 
    TYPE = TWOLEVEL  ; 
    ESTIMATOR = bayes ; 
  MODEL: 
   %WITHIN%  
    y*.71 
    m1*1 ; m2*1 ; 
    y ON m1*.20 m2*.50  ; !100+100+2*10*10*.3 = 260 
    m1 WITH m2*.1 ; 
   %BETWEEN%  
    [y*0] ;  y*.71 ; 
    [m1*0] ; m1*.99; [m2*0] ; m2*.9375 ; 
    y ON m1*.20 m2*.50 ; 
    m1 on t*.2; 
    m2 ON t*.5 ; 
    m1 WITH m2*.1; 
  OUTPUT: Samp STAND(STDYX) Cinterval ; 

    
Here is the output for the squared correlations, which is in accord with what I expected: 
 
R-SQUARE 
 
Within Level 
 
                                Posterior  One-Tailed         95% C.I. 
    Variable        Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5% 
 
    Y                  0.305       0.001      0.000       0.304       0.306 
 
Between Level 
 
                                Posterior  One-Tailed         95% C.I. 
    Variable        Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5% 
 
    Y                  0.303       0.004      0.000       0.296       0.311 
    M1                 0.010       0.001      0.000       0.009       0.012 
    M2                 0.063       0.002      0.000       0.058       0.066 

Returning to the simulation in Table 24, here is the core output for the power analysis: 

                              ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                 Population   Average   Std. Dev.   Average             Cover Coeff 
Within Level 
 
 Y          ON 
  M1                  0.200     0.1999     0.0274     0.0275     0.0008 0.944 1.000 
  M2                  0.500     0.5009     0.0281     0.0275     0.0008 0.926 1.000 
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Between Level 
 
 Y          ON 
  M1                  0.200     0.1990     0.1343     0.1362     0.0180 0.944 0.334 
  M2                  0.500     0.4986     0.1303     0.1366     0.0170 0.947 0.948 
 
 M1         ON 
  T                   0.200     0.2010     0.3004     0.3068     0.0901 0.947 0.117 
 
 M2         ON 
  T                   0.500     0.4981     0.2848     0.3006     0.0810 0.946 0.373 
 

The parameter estimates generally were unbiased as were the “standard errors.” The 
power estimates are in the last column. Information about the width and coverage of the 
credible intervals also is provided. 

LOCALIZED SIMULATIONS FOR ROBUST CLUSTERED SEM 

Mplus does not have the option to directly conduct a Monte Carlo simulation using 
COMPLEX analysis. Rather, you must do so in two steps by invoking the Mplus external 
simulation approach. The first step generates the clustered data to be analyzed. In this 
example, I use the multilevel SEM program from Table 24, which I reproduce here but 
with two changes shown in red that save the data for the external simulation. The name of 
the data file in Line 11 must end with a * because each separate saved data file is 
differentiated with a number in place of the *.  
 
Table 26: Step 1 for External Simulation 
 
1.  TITLE: Multilevel SEM  ; 
2.  MONTECARLO: 
3.  NAMES ARE 
4.    y t m1 m2 ; 
5.  NREPS = 1000 ;                ! number of simulation reps 
6.  NCSIZES = 1  ;                ! just one cluster size 
7.  NOBSERVATIONS = 1000 ;        ! sample size per simulation replicate 
8.  CSIZES 50(20) ;               ! number of clusters and size of clusters 
9.  SEED = 89939 ; 
10. REPSAVE = ALL ;               ! save generated data for Step 2 input 
11. SAVE = extern*.dat;           ! name of file to save data in  
12. CUTPOINTS = t(0); 
13. BETWEEN IS t ; 
14. ANALYSIS: 
15.   TYPE = TWOLEVEL  ; 
16.   ESTIMATOR = BAYES ; 
17. MODEL POPULATION: 
18.   %WITHIN%  
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19.    y*.71 
20.    m1*1 ; m2*1 ; 
21.    y ON m1*.20 m2*.50  ;  
22.    m1 WITH m2*.1 ;             ! covariance between m1 and m2 
23.   %BETWEEN%  
24.    [t*0]; t*1 ; 
25.    [y*0] ;  y*.71 ; 
26.    [m1*0] ; m1*.99; 
27.    [m2*0] ; m2*.9375 ; 
28.    y ON m1*.20 m2*.50 ; 
29.    m1 on t*.2; 
30.    m2 ON t*.5 ; 
31.    m1 WITH m2*.1;              ! covariance between m1 and m2 
32.  MODEL : 
33.   %WITHIN%  
34.    y*.71 
35.    m1*1 ; m2*1 ; 
36.    y ON m1*.20 m2*.50  ;  
37.    m1 WITH m2*.1 ; 
38.   %BETWEEN%  
39.    [y*0] ;  y*.71 ; 
40.    [m1*0] ; m1*.99; 
41.    [m2*0] ; m2*.9375 ; 
42.    y ON m1*.20 m2*.50 ; 
43.    m1 on t*.2; 
44.    m2 ON t*.5 ; 
45.    m1 WITH m2*.1; 
46. OUTPUT: 

 
In Step 2, I execute the COMPLEX samples program of interest and direct it to the saved data 
file from Step 1, per Table 27. Note that the name of the data file corresponds to the name 
of the data file in Step 1 but now has “list” at the end of the file name.  
 
Table 27: Sep 2 for External Simulation 
 
TITLE: Step 2 of external simulation ; 
DATA: FILE = externlist.dat ; 
TYPE = MONTECARLO; 
VARIABLE: NAMES = y m1 m2 t clus ; 
USEVARIABLES = y m1 m2 t ; 
CLUSTER = clus;  
ANALYSIS: TYPE = COMPLEX; 
MODEL:  
Y ON m1*.2 m2*.5 ; 
m1 ON t*.2 ; 
m2 ON t*.5 ; 
[y*0] ; [m1*0] ; [m2*0] ;  



                                                                                                             Simulation Variants 94 

 
 

OUTPUT: TECH9; 

 
 Here are the core results for the power analysis: 
 
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                 Population   Average   Std. Dev.   Average             Cover Coeff 
 
 Y        ON 
  M1                  0.200     0.1997     0.0638     0.0616     0.0041 0.934 0.878 
  M2                  0.500     0.4994     0.0626     0.0612     0.0039 0.941 1.000 
 
 M1       ON 
  T                   0.200     0.2002     0.2980     0.2854     0.0887 0.943 0.124 
 
 M2       ON 
  T                   0.500     0.4977     0.2835     0.2783     0.0803 0.939 0.435 
 

LOCALIZED SIMULATIONS WITH BOOTSTRAPPING 

W conduct many analyses in SEM using bootstrapping. There are conflicting  
recommendations on the what sample size is appropriate for bootstrapping. This is not 
surprising because the performance of the bootstrap can be both model and data dependent. 
You can use localized simulations to determine how bootstrapping fares in terms of 
parameter bias, standard error bias, and confidence interval coverage for your model and 
for different sample sizes. You structure the simulation exactly as you would for a standard 
simulation with MLR, but on the ANALYSIS command, you indicate use of bootstrapping 
in the usual fashion. For example, here are the two relevant syntax lines from the simulation 
that uses MLR in Table 1: 
ANALYSIS:  
ESTIMATOR = MLR ;   

These would be changed to 
ANALYSIS:  
ESTIMATOR = ML ; BOOTSTRAPS = 1000 ;  

The simulation study will then use bootstrapping with 1,000 bootstrap replicates per 
simulation replicate. These simulations can take considerable processing time to execute, 
so be patient. You can speed things up by setting the number of bootstrap and simulation 
replicates to a smaller number, but this can lead to a sacrifice in precision.    
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APPENDIX: LOCATING VALUES IN RESULTS.TXT FILES 

This Appendix describes an alternative method for identifying the location of parameters 
in the results.txt file for the joint significance test power analysis other than using the 
technical matrices associated with TECH1. When you run the Step 1 syntax, Line 8 of Table 
6 saves the data for the first simulated replicate in the file called temp.dat. We can analyze 
that data for the first replicate by applying the sample model to it using the following Mplus 
syntax: 
 
TITLE: FILE CHECK ; 
DATA: 
FILE IS temp.dat ; 
VARIABLE:  
NAMES ARE m y t ;  
ANALYSIS:  
ESTIMATOR = MLR ;  
MODEL:           !specify analysis model 
y ON m  ;        !outcome equation 
m ON t ;         !mediation equation 
y* ;             !disturbance variance for y   
m* ;             !disturbance variance for m   
MODEL INDIRECT: 
y IND t ; 
OUTPUT: SAMP STDYX TECH1 ; 
 

After the syntax is executed, we examine the output for the values of p1 and p2 and their 
estimated standard errors. Here is the relevant output: 
 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E. P-Value 
 
 Y        ON 
    M                  0.168      0.079      2.115      0.034 
 
 M        ON 
    T                  2.710      2.093      1.295      0.195 
 

Using a text editor, I next open the results.txt file that lists the results for all 20,000 
replicates and I examine the results shown just for the first replicate. Here are the contents 
of the file for the first three replicates (note that most of the numbers are represented using 
scientific notation): 
 
 
1 
0.17702861E+001 0.27500146E+001 0.27109617E+001 0.16757173E+000 0.15808479E+003 0.20312839E+003 
0.16206239E+001 0.12099228E+001 0.20933450E+001 0.79233057E-001 0.17054334E+002 0.21856593E+002 
0.60000000E+001 -.12039552E+004 -.12039234E+004 0.24199105E+004 0.24379743E+004 0.24189854E+004 
0.59860959E-001 0.10000000E+001 0.80671584E+000 0.10000000E+001 
0.10000000E+001 0.00000000E+000 0.76612416E-002 
2 
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0.41656261E+000 0.13437156E+001 0.67715328E+001 0.14607882E+000 0.23088046E+003 0.22836936E+003 
0.18083595E+001 0.13039331E+001 0.24851695E+001 0.84489915E-001 0.24050656E+002 0.24166802E+002 
0.60000000E+001 -.12411463E+004 -.12404379E+004 0.24942926E+004 0.25123564E+004 0.24933676E+004 
0.14261109E+001 0.10000000E+001 0.23240019E+000 0.95196738E+000 
0.85590214E+000 0.53298586E-001 0.35373158E-001 
3 
-.19770407E+001 0.21149300E+000 0.96978656E+001 0.31756576E+000 0.21319533E+003 0.16896376E+003 
0.16622254E+001 0.11095465E+001 0.23673605E+001 0.76849539E-001 0.24555815E+002 0.19786739E+002 
0.60000000E+001 -.12125743E+004 -.12116511E+004 0.24371487E+004 0.24552125E+004 0.24362237E+004 
0.19576898E+001 0.10000000E+001 0.16176061E+000 0.97188661E+000 
0.91565984E+000 0.79903683E-001 0.37165227E-001 
 

The first line has the replicate number followed by the results for that replicate. I scan the 
numbers for the first replicate and find the numbers that match the p1 and p2 values and 
their estimated standard errors from the prior output. I have highlighted them in yellow 
here. I then count the entries sequentially starting from the beginning until I reach the 
highlighted numbers, and note that they are the third, fourth, ninth and tenth entries, 
meaning they will be in f3, f4, f9 and f10 in the Step 2 program.  


