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1 Introduction

Currently a comprehensive multilevel multiple group modeling framework is
not well established and well defined. This is particularly true when the
group variable is defined on the individual level. Consider the following sim-
ple example where students are nested within classrooms/teachers and are
grouped by gender. Naturally we want to know if the teachers effect on the
student’s performance is the same or different across gender. If the teacher
effect on the students is different for boys and girls we would want to know
if these effects are correlated and to what extent. If the teacher effect on
the students is different across gender, are these differences the same across
the teachers and could these differences be predicted by the gender of the
teacher, the teacher’s qualifications or the subject that is taught. A com-
prehensive modeling framework should be able to address all these questions
while accounting further for any group specific differences such as for example
different variability within group.

In this note we describe various multiple group modeling possibilities
available in Mplus for multilevel data. We discuss the advantages and dis-
advantages for the different models. Interpretation and comparison for the
models are provided as well as the the specific estimation limitations for each
model and estimation method. Models with continuous and categorical de-
pendent variables are discussed using three different estimators: ML, Bayes
and WLSMV. Input files for Montecarlo data generation and input files for
all modeling possibilities are provided in the Appendices at the end of this
note. All examples can be replicated by the reader using Mplus Version 7.

We focus on two-level modeling, however, many of the concepts and issues
can be extended to three-level modeling as well. Mplus modeling capabilities
for three-level multiple group analysis are not as extensive as those for two-
level models and thus not all of the illustrations presented here can be easily
extended to three-level models.

In single level models a discrete/group variable can affect only the means
of the dependent variables or the means and the variance/covariances. We
call the first model M1 and the second model M2. An example of an M1

model is a MIMIC model or a CFA model with covariates where the group
variable is treated as a covariate. Dummy indicator variables are created for
each group, i.e., for each group a variable is created that is 1 if the observation
belongs to that group and 0 otherwise. To estimate the M1 model the dummy
variables are used as covariates for the dependent variables. An example of
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an M2 model is multiple group CFA model where some parameters are held
equal across the groups and some are not held equal. If loadings or variance
parameters are group specific then the estimated variance/covariance matrix
for the observed variables will be group specific.

In twolevel multiple group modeling, however, there are more variation
and complexities because not only can the parameters be different across
groups but also the latent variables. More specifically, if a cluster contains
observations from several groups the between level cluster variables can be
group specific, in particular the between level part of an observed variable can
be group specific. This modeling concept occurs only when there are multiple
groups in each cluster. For example, if the grouping variable is gender and
the cluster variable is school and there are males and females in each or some
schools then the between part of an observed variable can be different across
the two genders. The interpretation of the between part of a variable in two-
level modeling is as usual the average cluster value across all individuals in
that cluster. Thus having separate between parts for the two genders simply
amounts to accommodating in the model the belief that the average values for
males and females is different for all or some of the clusters. This modeling
concept is quite natural, however, there are several hurdles that have to be
overcome in the process of establishing this. The overall means are different
across gender, because the fixed intercept or mean parameters are different
across groups. Thus when we are considering the concept of group specific
between parts we are modeling cluster specific gender effects that go beyond
the overall gender differences that hold for the entire population which is
already modeled in model M1. We discuss these concepts in greater details
below and will illustrate with specific Mplus examples.

The group specific between latent variables concept exists only when a
clusters contain observations from different groups. If for example the group-
ing variable is public v.s. private schools then each cluster contains obser-
vations only from one group and there is no need to model group specific
between level latent variables. Thus in the discussion below we make a clear
separation between these two types of grouping variables. The first type is
when the grouping variable is a between level discrete variable and all the
observations in each cluster belong to exactly one group. The second type is
when the grouping variable is a within level discrete variable and the clusters
can contain observations from more than one group. The modeling options
for a between level group variables are discussed in Section 2 and for a within
level group variables are discussed in Section 3.
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This note is intended to challenge the reader and stir more questions
than to provide all answers. We illustrate some of the modeling and estima-
tion choices available in Mplus. For simplicity we first present the modeling
possibilities using only a single dependent variable although the discussion
below applies to general multivariate models. Many more combinations and
approaches can in principle be constructed for the multivariate case. Models
with a single dependent variable are sufficient to illustrate the main modeling
concepts, but those concepts can be extended to the multivariate case and
they can be extended to latent variables as well. In Section 2 we discuss
between level group variable modeling. In Section 3 we discuss within level
group variable modeling. In both Section 2 and 3 we use simulated example
with one dependent variable. In Section 4 we illustrate some multivariate
multilevel multiple group modeling with real data examples for continuous
and ordered categorical indicators in a factor analysis model.

2 Between level group variable

An example of a between level group variable is the binary variable indicator
for private v.s. public schools when the cluster variable is the school. Another
example is the teacher’s gender when the cluster variable is the classroom.
This is the simplest case of multilevel multiple group analysis. The general
model is described as follows. Let Yijg be the observed variable for individual
i in cluster j in group g

Yijg = YWijg + YBjg (1)

YWijg ∼ N(µ1g,Σ1g) (2)

YBjg ∼ N(µ2g,Σ2g). (3)

The meaning of the last two equations is that the within and the between
level components can be structured for each group separately. Consider as
an example a two-level model with one factor on both levels

YWijg = µ1g + Λwgηwijg + εijg (4)

YBjg = µ2g + Λbgηbjg + εjg. (5)

All of the parameters in the above equations are group specific, including
the means, the loadings as well as the residual or factor variances. Certain
equality constraints are typically needed for the model to be identified which
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we will not discuss here. The above model is illustrated in Mplus user’s guide
example 9.11, Muthén and Muthén (1998-2012). The corresponding Monte-
carlo and data generation example is included with the Mplus installation.
Using the maximum-likelihood estimation in these settings with normally
distributed variables does not need numerical integration. The maximum-
likelihood estimation is explicit and is based on the EM algorithm. Because
the groups are independent of each other the complete log-likelihood is simply
the sum of the log-likelihoods across the different groups

LL =
G∑

g=1

LLg (6)

where LLg is the log-likelihood for group g, LL is the total log-likelihood,
and G is the total number of groups. Thus the optimization algorithm is a
simple repetition of the optimization algorithm used for the estimation of a
single group multilevel model with the added complexities of across groups
parameter equalities.

In these settings, the grouping variable is nested above the cluster vari-
able. Thus if the number of groups is 10 or more, then three level modeling
should be considered as this will yield a more parsimonious and accurate
model. The third level will be the grouping variable. An example for this
kind of analysis is Mplus User’s Guide example 9.21. Using three level mod-
eling only the means are group specific, i.e., this modeling yields an M1

model.
It is possible to use the WLSMV estimator in these settings when there

are normal and categorical dependent variables, however this estimator does
not currently allow multiple group modeling for two-level analysis and thus
only the dummy variable approach can be used to estimate M1 models, see
Mplus user’s guide example 9.4.

When using the maximum-likelihood estimator with two-level categorical
data numerical integration is used. Each observed variable can potentially
lead to one dimension of integration because it adds one random intercept.
Thus with many categorical outcomes it is important to reduce the number
of dimensions of integration by retaining only the most important features
in the model. For example, model (5) can be replaced with this model

YBjg = µ2g + Λbgηbjg (7)

if estimation problems occur due to the numerical integration. Model (5)
estimation uses P dimensional integration, where P is the number of ob-
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served categorical variables, while model (7) estimation uses M dimensional
integration, where M is the number of latent variables.

In Appendix A we include an Mplus input file for data generation for a
two-level two-group model with one binary variable. The setup for this data
generation uses two-level mixture model with two classes. Note here that in
order to conduct a simulation study for the two-level two-group model this
setup is not sufficient because the class variable is latent instead of observed.
To make the class variable observed one has to add to this setup a categorical
variable or a nominal variable that is a perfect indicator for the latent class
variable, i.e., is equal to the latent class variable. This will essentially convert
the latent class variable into an observed grouping variable. In Appendix B
we include the input file for analyzing the data generated in Appendix A
with a two-level two-group model with a between level group variable. Note
here that instead of an observed categorical or nominal perfect class indicator
variable we have used the KNOWNCLASS option which is another alterna-
tive to convert a latent class variable into an observed grouping variable.
This option is not available, however, in Montecarlo studies. Note again
that Appendices A and B should be used for the analysis of categorical data.
For the analysis of continuous data one should use the simpler User’s guide
example 9.11.

It is possible to estimate the model in Appendix B also with the Bayes
estimator through an entirely different setup. Multiple group or two-level
mixture modeling options are not currently available in Mplus for the Bayes
estimator in two-level settings and thus we need to use an entirely different
setup. The Bayes estimator has the advantage over the ML estimator that it
can handle any number of observed and latent variables because it does not
use numerical integration. The setup for the Bayes estimator is included in
Appendix C. In this setup we create two dummy variables for the two groups
d1 and d2 and we regress the dependent variable on these dummy variables
with random regression slopes S1 and S2. These regression slopes are essen-
tially the between parts of the categorical variable for the two groups. Note
here that since the between parts are never measured for the same cluster
the covariance between the two random slopes is an unidentified parameter
which should therefore be fixed to 0 to make the model identified. Note
also that with the Bayes estimator such a setup is needed also with con-
tinuous variables and not just categorical. Note also that with categorical
variables the parameter estimates with the Bayes estimator are computed
on a probit scale rather than on the logit scale as in Appendices A and B.
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We therefore include the MODEL CONSTRAINTS command in Appendix
C to compute the parameters in the logit scale. The threshold parameters
here are computed as the means of the random slopes and thus the signs
should be reversed as well to match the scale of the parameters computed in
Appendix B with the ML estimator.

3 Within level group variable

A model with a within level group variable is generally more difficult to es-
timate because the fundamental equation (6) does not generally hold. The
log-likelihood is not a simple sum of the the log-likelihoods across the dif-
ferent groups because the variables from the different groups are generally
not independent. In fact the log-likelihood can not be expressed separately
for the different groups because the groups share common variables. Each
cluster now contains observations from different groups and the cluster level
random effects can be different in all the groups. The general model is again
given by equations (1-3), however, in each cluster there are multiple random
effects and they can be correlated. Thus we have to replace equation (3) with
the following equation

YBj. ∼ N(µ2.,Σ2.) (8)

where YBj. is a vector that contains all the random effects for all the groups
YBj. = (YBj1, ..., YBjG). The mean vector µ2. and the variance covariance
matrix Σ2. give the joint distribution of all the random effects YBj. and thus
the random effects in cluster j for the different groups can be correlated.
Consider for example the case where the grouping variable is gender for stu-
dents clustered within classrooms and an observed variables Yijg is influenced
by different classroom effects for female and male students. The classroom
effect for the two genders are naturally correlated due to the fact that the
students are in the same classroom, however the classroom effect need not
be the same for the two genders, i.e., the average value for the two genders
need not be the same. In this example equation (8) can be explicated by
following two equations

YBjg ∼ N(µ2g, σ2g) (9)

Cov(YBj1, YBj2) = ρ. (10)

Equation (10) clearly shows the difference between modeling within and be-
tween level group variables. For between level group variables the random
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effects are not correlated, i.e., are modeled as independent. The correla-
tion parameter ρ is not an identifiable parameter in the between level group
variable case as only one of the two random effects exist.

In Appendix D we include an Mplus input file that can be used to generate
data according to the above model. The data generation uses the two-level
mixture module of the Mplus program. In this input file we include just the
model population command which specifies the parameters that are used for
the data generation and we don’t specify a model command that would be
used for the model estimation. The Mplus program instead assumes a default
model specification and uses that model in the estimation. The goal however
of this input file is not to estimate a model but only to generate the data. In
principle we can specify a model command in this input file which is a simple
copy of the model population command, however, this model specification
yields a mixture model where the binary grouping variable is unobserved,
i.e., a latent grouping variable. This is not our goal since we are interested in
observed grouping variables such as gender. If we are interested in conduct-
ing a simulation study for this multiple group model rather than a two-level
mixture model we have to include as a dependent variable a binary variable
that is a perfect indicator for the latent class variable. This way we convert
the grouping latent variable into an observed variable. Alternatively a sim-
ulation study can be conducted using the input file provided in Appendix
D and the external Montecarlo facilities illustrated in example 12.6 in the
Mplus user’s guide. In Appendix D we include an Mplus input file for data
generation for a two-level two-group model with one continuous variable. We
use this data to illustrate the alternative modeling possibility in Mplus.

The input file in Appendix D also illustrates how Mplus treats within level
groups and how between level random effects have to be specified. Unlike
the between level group case discussed in the previous section, here Mplus
will not allow the specification of the between level random effect to be done
with the name of the observed variable. If the random effect is specified
using the same name as the observed variable that will mean that there is
only one between level effect that is the same for both groups. Instead we
are interested in the model where the random effect is different for the two
groups and this is why two latent variables are introduced to represent these
between level random effects e1 and e2. By specifying zero residual variance
for Y and loadings that are 0 or 1 in the two groups we essentially specify
a model where Yb is represented by the different eg in the different groups.
It is also important to note here that the two random effects e1 and e2 are
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correlated during the data generation process.
The Mplus input file that can be used to analyze the data generated in

Appendix D is included in Appendix E. With this input file we analyze the
data using the exact same model that was used to generate the data, i.e.,
with this input file we estimate different between level effect for each group.
We call this model the H1 model. Note however that this model estimation
uses 2 dimensions of numerical integration. In fact if there are G groups the
model would use G dimensions of numerical integration. Note that the nu-
merical integration is used even when the dependent variable is continuous.
In principle the likelihood is explicit for this model when the dependent vari-
able is continuous and it could be maximized without numerical integration,
however, such an explicit likelihood approach is not implemented in Mplus
yet for this model and thus the numerical integration approach is the only
one available. If the model has more than one variable there could be G
random effects for each variable and that will yield even more dimensions of
numerical integration. This model has 7 parameters. Note that the Mplus
output reports 8 parameters because it includes the parameter that deter-
mines the percentage of observations in each group which is typically not
included in a multiple group model so we will not count this parameter here.
The 7 parameters are: the two group specific means, the two group specific
variances on the within level and the two on the between level as well as the
covariance parameter between the two group specific cluster effects. The H1

model can be described with the following equations

Yijg = µg + ξgj + εijg (11)

where Yijg is the dependent variable for an observation i belonging to group
g and cluster j, µg are the intercept parameters,

εijg ∼ N(0, θg) (12)

ξjg ∼ N(0, ψg) (13)

and
Cov(ξjg1 , ξjg2) = ρg1g2 . (14)

There are several competing models that are not as general and flexible
as the H1 model. These models are more restricted, but have easier and more
scalable estimation methods. The models are generally nested in the above
model and the likelihood ratio test can be used to test if these more restricted
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models are sufficiently good fit for the data compared to the H1 model. Note
that for small data sets with small number of clusters the LRT test may
accept the simpler models as sufficient only because of the lack of power to
establish the need for the more general H1 model. Practical applications of
this methodology are needed to determine the performance of the LRT test
with real data.

The first alternative to model H1 is model H2. This model is estimated
with the input file included in Appendix F. In this model the different groups
have different cluster level effects, however the correlation between these
effects is fixed to 1 and thus there is only one continuous latent dimension
and the estimation uses only 1 dimension of numerical integration. The
cluster specific deviation from the fixed effect of the group variable on the
dependent variable are proportional. Since in many applications the cluster
effects will be highly correlated, the assumption of correlation 1 between
the cluster level effects maybe reasonable in many real data examples. The
model uses one latent variable on the between level while the loadings vary
across the groups to provide group specific variance for the cluster effect.
Model H2 has 6 parameters. The only parameter that is missing here is
the correlation parameter on the between level which is essentially fixed to
1. This model can be estimated with 1 dimensional numerical integration
regardless of how many groups there are. This is a computational advantage
over model H1. The H2 model estimation uses numerical integration even
when the dependent variable is continuous, just like the H1 model estimation.
The H2 model can be described with the following equations

Yijg = µg + λgξj + εijg (15)

where µg are the intercept parameters, λg are loading parameters

εijg ∼ N(0, θg) (16)

and
ξj ∼ N(0, 1). (17)

Here λ2g can be interpreted as the variance of the group specific cluster effect.
Model H3 is estimated with the input file included in Appendix G. In

this model the correlation between the two between level random effects is
fixed to 0 instead of 1. This model does not require numerical integration at
all and is estimated with the non-mixture module of Mplus using standard
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multiple group analysis. If the random effects are independent across groups
then we can split each cluster into two independent clusters each consisting
of the observations in the two groups. This is achieved simply by redefining
the cluster variable so that the cluster variable has different values in the
different groups. This method could perform quite poorly in practice because
we can assume in general that the random effects will be correlated. Note
also that in this model the likelihood does not include the likelihood for the
grouping variable and also does not include as a parameter the proportion of
observations in each group. Thus in order to conduct the LRT test between
model H1 and model H3 for example the likelihood of the grouping variable
has to be computed separately and added to the likelihood of the H3 model.
The likelihood of the grouping variable is simply the likelihood for a binary
variable in this case. To estimate model H3 we do not need to specify a
model statement because the default model statement in Mplus is the H3

model. This model also has 6 parameters. The advantage of this model is
again a computational advantage. The model does not require any numerical
integration regardless of how many variables are used. To estimate this model
with a categorical variable however numerical integration will still be used
and the estimation should be done through the twolevel mixture module of
Mplus. The H3 model can be described with the following equations

Yijg = µg + ξgj + εijg (18)

where µg are the intercept parameters,

εijg ∼ N(0, θg) (19)

and
ξjg ∼ N(0, ψg). (20)

The cluster effects ξjg are not correlated within cluster j.
Model H4 is another slightly restricted model. The model is equivalent to

model H1 with the restriction that the within level residual variances are the
same across the two groups. The model setup is included in Appendix H. The
model doesn’t use multiple group or mixture setup. Instead as in Appendix
C the model uses dummy variables to create the cluster random effects as
random slopes for the dummy variables. The model can be estimated with the
ML or Bayes estimator with categorical or continuous variables. The model
also has 6 parameters. The only missing parameter is the group specific
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residual variance on the within level. Here again the log-likelihood does not
include the log-likelihood of the grouping variable so to conduct the LRT
between model H1 and this model the log-likelihood has to be adjusted by
the grouping variable log-likelihood. The H4 model can be described with
the following equations

Yijg = µg + ξgj + εijg (21)

where µg are the intercept parameters,

εijg ∼ N(0, θ) (22)

ξjg ∼ N(0, ψg) (23)

and
Cov(ξjg1 , ξjg2) = ρg1g2 . (24)

Model H5 is another slightly restricted model. The model is a restriction
of model H4. The new restriction here is that the residual variance on the
between level is also not a group specific parameter. This model is estimated
as a three-level model where the grouping variable is transformed into a
new clustering variable. The original cluster variable is now the cluster level
variable at the highest level. The multiple groups within the original clusters
now represent the second level clustering. The input file for this model
is included in Appendix I. The groups specific means are retained via a
regression on the grouping variable, or in case of more than two groups on
the dummy variables. The group specific cluster effect is also retained in
this model as these are the effects from the middle clustering level and they
are different across the groups. The group specific cluster effects are also
correlated through the level 3 clustering effect. This model has the advantage
over the H4 model in that it can handle more elegantly larger number of
groups, by retaining the group specific cluster effects without increasing the
number of parameters dramatically as the number of groups increase. The
model can be estimated with the ML or Bayes estimators with categorical
or continuous variables. The H5 model can be described with the following
equations

Yijg = µg + ζj + ξgj + εijg (25)

where µg are the intercept parameters,

εijg ∼ N(0, θ) (26)
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ξjg ∼ N(0, ψ) (27)

and
ζj ∼ N(0, σ). (28)

Models H6 and H7 are models where the cluster specific effect is the
same across the groups. These models are simpler to estimate and should
be considered as well because in many practical situations even if the cluster
effects are group specific due to small sample size there will be not enough
power in the data to establish statistical significance for the group specific
cluster effect models H1,...,H5. Model H6 is nested within model H2 and
is based on the restriction that the cluster effects are not just proportional
but actually equal. This is equivalent to saying that the variances of the
cluster specific effect are equal across the groups and since the correlation
between these effects is 1 then the effects are actually equal. In this model
H6 the group variable has a fixed effect on the mean of the variable and the
within level residual varies across the groups. The model has 5 parameters.
The parameters are the same as in model H2 except that the between level
variances are the same across the two groups. Model H6 uses 1-dimensional
integration regardless of the type of dependent variable in the models. The
H6 model can be described with the following equations

Yijg = µg + ξjg + εijg (29)

where µg are the intercept parameters,

εijg ∼ N(0, θg) (30)

and
ξjg ∼ N(0, ψ). (31)

Finally model H7 is a further restriction of model H6 that holds the
within level variances the same across the groups. This model is essentially
equivalent to including the grouping variable as a predictor and it does not
use Mplus multiple group utilities. The model has just 4 parameters, the
two group specific mean parameters as well as the within and the between
variance parameters. Model H7 does not use numerical integration if the
dependent variable is continuous and it uses 1-dimensional integration if the
variable is categorical. The H7 model can be described with the following
equations

Yijg = µg + ξjg + εijg (32)
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Table 1: Log-likelihood values for different model using simulated data

Model Log-likelihood Number of parameters
H1 -20800.8 7
H2 -20948.4 6
H3 -20842.4 6
H4 -21009.7 6
H5 -21011.2 5
H6 -21009.5 5
H7 -21200.2 4

where µg are the intercept parameters,

εijg ∼ N(0, θ) (33)

and
ξjg ∼ N(0, ψ). (34)

Table 1 contains the likelihood values set in the same metric by including
the log-likelihood of the grouping variable and the number of parameters,
excluding the group proportion parameter. Since the data was generated
according to the most flexible model H1 it is no surprise that the best like-
lihood is obtained for this model and a formal LRT test will reject all other
model.

In the settings of within level grouping variable, the grouping variable
is not nested above the cluster variable but it provides a cross nesting for
the observations. Thus if the number of groups is 10 or more, then a cross-
classified model should be considered as this will yield a more parsimonious
and accurate model. The second clustering variable for the cross classified
model will be the grouping variable. Using cross-classified modeling only the
means will be group specific.

4 Two-level two-group factor analysis models

In this section we illustrate the multilevel multiple group modeling described
in Section 3 using real data examples. In Section 4.1 we illustrate the mod-
eling and the estimation issues for a factor analysis model with continuous
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indicators and in Section 4.2 we use a factor analysis model with categorical
indicators. The type of indicator variables determines the estimation meth-
ods that are available, the numerical issues that can be encountered, the
dimensions of numerical integration, and the possible and feasible modeling
extensions. Thus we consider the case of continuous and categorical variables
separately.

4.1 Two-level two-group models with continuous vari-
ables

In this section we illustrate the multilevel multiple group modeling using a 1-
factor analysis model measured by continuous variables. The multiple group
modeling is applied to the factor only. We do not model in these analysis
any item specific group effects.

The data comes from the National Educational Longitudinal Study (NELS).
We analyze the data as described in Muthén et al. (1997). The sample con-
tains data for 5198 students from 235 schools. The variables that are analyzed
are created from testlets covering reading, math, science and history. Sixteen
achievement variables are created for each student. The grouping variable is
the student’s gender and the clustering variable is the school variable. The
log-likelihood for the seven models described in Section 3 are given in Table
2. We adjust the log-likelihood so that it includes the log-likelihood for the
grouping variable but we exclude the parameter for the group proportions.
It is clear from the results in Table 2 that the LRT testing rejects all mod-
els but the most flexible model H1 where the cluster effect is group specific.
Note however that in a practical situation other factors may be important in
selecting the best model. One such factor is the ability of a model to be gen-
eralized easily and elaborated upon. For example if we want to include item
specific cluster effects some of the models will need many dimensions of nu-
merical integrations while others will not. Similarly if more latent variables
are involved some of these models will result in high dimensional numerical
integration while others will not.

The Mplus input files for Models H1-H7 are included in Appendices L-R.
In model H3 we used the define statement to split the clusters in two clusters
by adding gender*3000000. The value 3000000 is bigger than the maximum
cluster value in the original data file and with that statement we are guar-
anteed that when gender=0 all cluster values are below 3000000 and when
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Table 2: Log-likelihood values for different model using NELS data

Model Log-likelihood Number of parameters Dimensions of integration
H1 -128519.0 53 2
H2 -128525.1 52 1
H3 -128607.7 52 0
H4 -128524.5 52 0
H5 -128524.8 51 0
H6 -128525.1 51 1
H7 -128530.9 50 0

gender=1 all values are above 3000000, i.e., each clusters is split by gender
to form two new clusters. In models H3, H5, and H7 we used a regression on
the constant 1 to obtain the random intercepts of the factor on the between
level(s). To include a constant in the model the variance=nocheck; data
command option is needed. An alternative method for estimating this model
is to use the approach used for model H1 but to fix the residual variances
of the observed variables to 0. When numerical integration is not used the
residual variances are actually fixed to a small value of 0.0001 rather than
zero to avoid singularity of the between level variance covariance matrices.
In most applications this will work well. In some applications however that
approach can lead to slow convergence and imprecision in the log-likelihood
value which is the main interest here. In all other examples we hold the
loadings parameter on the within and the between level equal so that the
between factor can be interpreted as the between part / cluster effect of the
main factor.

4.2 Two-level two-group models with categorical vari-
ables

In this section we illustrate the multilevel multiple group modeling using
a 1-factor analysis model measured by ordered categorical items. Here the
multiple group modeling is applied to the factor just as in the previous section
and we do not model any item specific group effects.

The data comes from the Johns Hopkins Center for Prevention and Early
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Intervention Cohort described in Ialongo et al. (1999). We use Cohort 3 of
the TOCA (Teacher Observation of Classroom Adaptation) data. The data
consists of a teacher-rated measurement instrument capturing aggressive-
disruptive behavior among a sample of U.S. students in Baltimore public
schools. The instrument consists of 13 items scored as 1 (almost never)
through 6 (almost always). A total of 678 students are observed in 27 class-
rooms from Fall of Grade 1 through Grade 6 for a total of 8 time points.
The observations are nested within classroom/teacher and we use the gender
variable as a within-level grouping variable and the classroom variable as the
two-level cluster variable. In this analysis we use only the data collected in
the Fall of Grade 1. Using the above models we can understand to what
extent the aggressive-disruptive behavior in students depends on the gender
of the student and the classroom they belong to. The log-likelihood for the
seven models described in Section 3 are given in Table 3. Again we adjust the
log-likelihood so that it includes the log-likelihood for the grouping variable
but we exclude the parameter for the group proportions. It is clear from the
results in Table 2 that the LRT testing rejects all models but the simplest
model H7 where the gender variable has a fixed effect on the factor. It is
also clear from these results the potential drawback of Model H3. It is much
more realistic assumption in this data to assume that the cluster effect is the
same for both genders than to assume that the effects are two independent
variables. The dependence between potential group specific cluster effects
is critical. The fact that no statistically significant differences between the
cluster effects for the different groups was found may reflect the fact that the
sample size is small and there is not enough power in this data to detect such
difference or that gender differences in behavior are quite uniform across the
population, particularly in the early grades.

Another model that is of interest here is a variation of Model H5. We call
this model H5a. In this model we include item specific classroom effects as
well as group specific item classroom effects. This model is not nested within
any of the models H1-H7. The model is estimated with the Bayes estimator
and the interesting finding here is that while the group specific cluster effect
is not significant the group specific item cluster effects are all significant.

All Models H1-H7 as well as model H5a are included in Appendices S-Z.
Some of the technical options in the H1 input are needed only for this data
set to resolve the singularity between the random effects since the correla-
tion between these random effects converges to 1. In model H5 we used a
regression on the constant 1 to obtain the random intercepts of the factor on
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Table 3: Log-likelihood values for different model using TOCA data

Model Log-likelihood Number of parameters Dimensions of integration
H1 -6692.9 83 3
H2 -6692.9 82 2
H3 -6741.3 82 2
H4 -6693.0 82 3
H5 Bayes 81 Bayes
H6 -6693.6 81 2
H7 -6693.6 80 2

level 2 and level 3. To include a constant in the model the variance=nocheck;
data command option is needed. An alternative method for estimating this
model is to use the input for model H5a but to fix the residual variances of
the observed variables to 0. This approach however will yield a suboptimal
estimation and slower mixing due to singularity matrices on the between
level. In all other examples we hold the loadings parameter on the within
and the between level equal so that the between factor can be interpreted as
the between part / cluster effect of the main factor.
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5 Appendix A: Input file for data generation

for a two-level two-group categorical data

montecarlo:
names are u;
nobservations = 10000;
ncsizes = 1;
csizes = 1000(10);
genclasses = cb(2 b);
classes = cb(2);
generate = u(1);
categorical = u;
between = cb;
save=ex1.dat;

analysis: type = twolevel mixture;

model population:

%within%
%overall%

%between%
%overall%
[cb#1*0];

%cb#1%
[u$1*-1];
u*1.1;

%cb#2%
[u$1*0.5];
u*0.6;
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6 Appendix B: Input file for estimating a two-

level two-group model with categorical data

with the ML estimator

variable:
names=u g cluster;
cluster=cluster;
classes = cb(2);
categorical = u;
between = cb;
knownclass = cb (g = 1 2);

data: file=ex1.dat;

analysis: type = twolevel mixture;

model:

%within%
%overall%

%between%
%overall%
[cb#1*0];

%cb#1%
[u$1*-1];
u*1.1;

%cb#2%
[u$1*0.5];
u*0.6;
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7 Appendix C: Input file for estimating a two-

level two-group model with categorical data

with the Bayes estimator

variable:
names are u g cluster;
cluster=cluster;
categorical = u;
within=u d1 d2;
usevar=u d1 d2;

define: d1=2-g; d2=g-1;

data: file=ex1.dat;

analysis: type = twolevel random; estimator=bayes;
biter = (1000); proc=2;

model:

%within%
[u$1@0];
s1 | u on d1;
s2 | u on d2;

%between%
[s1*1] (t1);
s1*1.1 (v1);
[s2*-0.5] (t2);
s2*0.6 (v2);
s1 with s2@0;

model constraints:
new(nt1 nt2 nv1 nv2);
nt1=-t1*1.81; nt2=-t2*1.81;
nv1=v1*3.29; nv2=v2*3.29;
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8 Appendix D: Input file for data generation

for a two-level two-group data with within

level group

montecarlo:
names are y;
nobservations = 10000;
ncsizes = 1;
csizes = 500(20);
genclasses = c(2);
classes = c(2);
save=ex2.dat;

analysis: type = twolevel mixture;

model population:

%within%
%overall%
[c#1*0];

%c#1%
y*1.1;

%c#2%
y*0.6;

%between%
%overall%
e1 by y@0; e2 by y@0; [e1@0 e2@0];
y@0; e1*0.3; e2*0.4; e1 with e2*0.2;

%c#1%
[y*-1]; e1 by y@1;

%c#2%
[y*0.5]; e2 by y@1;
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9 Appendix E: Input file for estimating a two-

level two-group model with within level group-

ing variable. Model H1.

variable:
names are y g cl;
classes = c(2);
knownclass = c (g = 1 2);
cluster=cl;

data: file=ex2.dat;
analysis: type = twolevel mixture;

model:

%within%
%overall%
[c#1*0];

%c#1%
y*1.1;

%c#2%
y*0.6;

%between%
%overall%
e1 by y@0; e2 by y@0; y@0; [e1@0 e2@0];
e1*0.3; e2*0.4; e1 with e2*0.2;

%c#1%
[y*-1]; e1 by y@1;

%c#2%
[y*0.5]; e2 by y@1;
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10 Appendix F: Input file for estimating a

two-level two-group model with within level

grouping variable and proportional effects.

Model H2.

variable:
names are y g cl;
classes = c(2);
knownclass = c (g = 1 2);
cluster=cl;

data: file=ex2.dat;

analysis: type = twolevel mixture;

model:

%within%
%overall%
[c#1*0];

%c#1%
y*1.1;

%c#2%
y*0.6;

%between%
%overall%
e by y; y@0; e@1; [e@0];

%c#1%
[y*-1]; e by y*1;

%c#2%
[y*0.5]; e by y*1;
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11 Appendix G: Input file for estimating a

two-level two-group model with within level

grouping variable and independent effects.

Model H3.

variable:
names are y g cl;
grouping = g (1=g1 2=g2);
cluster=cl;

define: cl=cl+1000*g;

data: file=ex2.dat;

analysis: type = twolevel;
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12 Appendix H: Input file for estimating a

two-level two-group model with within level

grouping variable and no group specific

within level residual variances. Model H4.

variable:
names are y g cl;
within=y d1 d2;
usevar=y d1 d2;
cluster=cl;

data: file=ex2.dat;

define: d1=2-g; d2=g-1;

analysis: type = twolevel random;

model:

%within%
y*1; [y@0];
s1 | y on d1;
s2 | y on d2;

%between%
[s1*-1];
[s2*-0.5];
s1*0.3;
s2*0.4;
s1 with s2*0.2;
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13 Appendix I: Input file for estimating a

two-level two-group model with within level

grouping variable and no group specific

within or between level residual variances.

Model H5.

variable:
names are y g cl;
usevar are y g cl cl2;
cluster=cl cl2;
within=g;

define: cl2=cl+1000*g;
g=g-1;

data: file=ex2.dat;

analysis: type = threelevel;

model:

%within%
y on g;

%between cl2%
y;

%between cl%
y;
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14 Appendix J: Input file for estimating a

two-level two-group model with group in-

variant cluster effects and group specific

mean and within level variance. Model

H6.

variable:
names are y g cl;
classes = c(2);
knownclass = c (g = 1 2);
cluster=cl;

data: file=ex2.dat;

analysis: type = twolevel mixture;

model:

%within%
%overall%
[c#1*0];

%c#1%
y*1.1;
%c#2%
y*0.6;

%between%
%overall%
y*1;

%c#1%
[y*-1];
%c#2%
[y*0.5];
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15 Appendix K: Input file for estimating a

two-level two-group model with group in-

variant cluster effects and within level vari-

ance and group specific mean. Model H7.

variable:
names are y g cl;
cluster=cl;
within=g;

define: g=g-1;

data: file=ex2.dat;

analysis: type = twolevel;

model:

%within%
y*1;
y on g;

%between%
y*1;
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16 Appendix L: NELS Model H1.

variable:
names = ....
cluster is cluster;
usevariables = y1-y16;
classes = c(2);
knownclass = c (gender = 0 1);

analysis:
type = twolevel mixture;
process = 8;
estimator = ml;

model:
%within%
%overall%
gw by y1@1
y2-y16* (lam2-lam16);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by y1@1
y2-y16* (lam2-lam16);
e1 by gb@0; e2 by gb@0; gb@0;
[e1@0 e2@0];
e1*1; e2*1; e1 with e2*0;
%c#1%
[gb@0]; e1 by gb@1;
%c#2%
[gb*0]; e2 by gb@1;
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17 Appendix M: NELS Model H2.

variable:
names = ....
cluster is cluster;
usevariables = y1-y16;
classes = c(2);
knownclass = c (gender = 0 1);

analysis:
type = twolevel mixture;
process = 8;
estimator = ml;

model:
%within%
%overall%
gw by y1@1
y2-y16* (lam2-lam16);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by y1@1
y2-y16* (lam2-lam16);
gb@0;
e by gb; e@1; [e@0];
%c#1%
[gb@0]; e by gb*1;
%c#2%
[gb*0]; e by gb*1;
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18 Appendix N: NELS Model H3.

variable:
names = ....
cluster is cluster;
usevariables = y1-y16 one;
grouping is gender (0 = g1 1 = g2);
within=y1-y16 one;

data: file= ....; variance=nocheck;

define: cluster=cluster+3000000*gender; one=1;

analysis:
type = twolevel random;
estimator = ml;

model:
%within%
gw by y1@1
y2-y16* (lam2-lam16);
y1-y16 (t1-t16);
gb | gw on one;
%between%
[gb@0]; gb*1;

model g2:
%within%
gw*1;
%between%
[gb*0]; gb*1;
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19 Appendix O: NELS Model H4.

variable:
names = ....
cluster is cluster;
usevariables = y1-y16 gender gender2;
within = y1-y16 gender gender2;

analysis:
type = twolevel random;
estimator = ml;

define:gender2=1-gender;

model:
%within%
gw by y1@1
y2-y16* (lam2-lam16);
gw*1; [gw@0];
s1 | gw on gender;
s2 | gw on gender2;
%between%
[s1@0];
[s2*1];
s1*1;
s2*1;
s1 with s2;
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20 Appendix P: NELS Model H5.

variable:
names = ....
cluster is cluster cl2;
usevariables = y1-y16 gender cl2 one;
within= gender y1-y16 one;

data: file= ....; variance=nocheck;

define: cl2=cluster+3000000*gender; one=1;

analysis:
type = threelevel random;
estimator = ml;

model:
%within%
gw by y1@1
y2-y16* (lam2-lam16);
gw*1; [gw@0];
gw on gender;
s | gw on one;
%between cl2%
s*1;
%between CLUSTER%
s*1; [s@0];
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21 Appendix Q: NELS Model H6.

variable:
names = ....
cluster is cluster;
usevariables = y1-y16;
classes = c(2);
knownclass = c (gender = 0 1);

analysis:
type = twolevel mixture;
process = 8;
estimator = ml;

model:
%within%
%overall%
gw by y1@1
y2-y16* (lam2-lam16);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by y1@1
y2-y16* (lam2-lam16);
gb*1;
%c#1%
[gb@0];
%c#2%
[gb*0];
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22 Appendix R: NELS Model H7.

variable:
names = ....
cluster is cluster;
usevariables = y1-y16 gender one;
within=gender one y1-y16;

data: file= ....; variance=nocheck;

define: one=1;

analysis:
type = twolevel random;
estimator = ml;

model:
%within%
gw by y1@1
y2-y16* (lam2-lam16);
gw*1;
gw on gender;
gb | gw on one;
%between%
gb*1; [gb@0];
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23 Appendix S: TOCA Model H1.

variable:
names = ....
usevariables = u1-u13;
categorical = u1-u13;
cluster = sgsf93;
classes = c(2);
knownclass = c (gender = 0 1);

analysis:
type = twolevel mixture;
process = 8;
estimator = ml; cholesky=off;
variance=0; mconv=0.1;

model:
%overall%
gw by u1@1
u2-u13* (lam2-lam13);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by u1@1
u2-u13* (lam2-lam13);
e1 by gb@0; e2 by gb@0; gb@0;
[e1@0 e2@0];
e1*1; e2*1; e1 with e2*0;
%c#1%
[gb@0]; e1 by gb@1;
%c#2%
[gb*0]; e2 by gb@1;
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24 Appendix T: TOCA Model H2.

variable:
names = ....
usevariables = u1-u13;
categorical = u1-u13;
cluster = sgsf93;
classes = c(2);
knownclass = c (gender = 0 1);

analysis:
type = twolevel mixture;
process = 2;
estimator = ml;

model:
%within%
%overall%
gw by u1@1
u2-u13* (lam2-lam13);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by u1@1
u2-u13* (lam2-lam13);
gb@0;
e by gb; e@1; [e@0];
%c#1%
[gb@0]; e by gb*1;
%c#2%
[gb*0]; e by gb*1;

39



25 Appendix U: TOCA Model H3.

variable:
names = ....
usevariables = u1-u13;
categorical = u1-u13;
cluster = sgsf93;
classes = c(2);
knownclass = c (gender = 0 1);
between = c;

define: sgsf93=sgsf93+3000000*gender;

analysis:
type = twolevel mixture;
process = 8;
estimator = ml;

model:
%within%
%overall%
gw by u1@1
u2-u13* (lam2-lam13);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by u1@1
u2-u13* (lam2-lam13);
%c#1%
[gb@0]; gb*1;
%c#2%
[gb*0]; gb*1;
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26 Appendix V: TOCA Model H4.

variable:
names = ....
usevariables = u1-u13 gender gender2;
categorical = u1-u13;
cluster = sgsf93;
within= u1-u13 gender gender2;

define:gender2=1-gender;

analysis:
type = twolevel random;
process = 8;
estimator = ml;

model:
%within%
gw by u1-u13;
gw*1; [gw@0];
s1 | gw on gender;
s2 | gw on gender2;
%between%
[s1@0];
[s2*1];
s1*1;
s2*1;
s1 with s2*0;
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27 Appendix W: TOCA Model H5.

variable:
names = ....
usevariables = u1-u13 gender cl2 one;
categorical = u1-u13;
cluster = sgsf93 cl2;
within= gender u1-u13 one;

data: file= ....; variance=nocheck;

define: cl2=sgsf93+3000000*gender; one=1;

analysis:
type = threelevel random;
process = 2; thin=10;
estimator = bayes;
biter=(10000);

model:
%within%
gw by u1@1
u2-u13* (lam2-lam13);
gw*1; [gw@0];
gw on gender;
s | gw on one;
%between cl2%
s*1;
%between sgsf93%
s*1; [s@0];
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28 Appendix X: TOCA Model H5a.

variable:
names = ....
usevariables = u1-u13 gender cl2;
categorical = u1-u13;
cluster = sgsf93 cl2;
within= gender;

define: cl2=sgsf93+3000000*gender;

analysis:
type = threelevel;
process = 2; thin=10;
estimator = bayes;
biter=(10000);

model:
%within%
gw by u1@1
u2-u13* (lam2-lam13);
gw*1; [gw@0];
gw on gender;
%between cl2%
gw2 by u1@1
u2-u13* (lam2-lam13);
gw2*1;
%between sgsf93%
gw3 by u1@1
u2-u13* (lam2-lam13);
gw3*1;
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29 Appendix Y: TOCA Model H6.

variable:
names = ....
usevariables = u1-u13;
categorical = u1-u13;
cluster = sgsf93;
classes = c(2);
knownclass = c (gender = 0 1);

analysis:
type = twolevel mixture;
process = 2;
estimator = ml;

model:
%within%
%overall%
gw by u1@1
u2-u13* (lam2-lam13);
%c#1%
gw*1;
%c#2%
gw*1;
%between%
%overall%
gb by u1@1
u2-u13* (lam2-lam13);
gb*1;
%c#1%
[gb@0];
%c#2%
[gb*0];
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30 Appendix Z: TOCA Model H7.

variable:
names = ....
usevariables = u1-u13 gender;
within=gender;
categorical = u1-u13;
cluster = sgsf93;

analysis:
type = twolevel;
process = 8;
estimator = ml;

model:
%within%
gw by u1@1
u2-u13* (lam2-lam13);
gw*1;
gw on gender;
%between%
gb by u1@1
u2-u13* (lam2-lam13);
gb*1;
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