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This note discusses the following warning message that sometimes ap-
pears in the Mplus output

THE STANDARD ERRORS OF THE MODEL PARAMETER ESTIMATES MAY NOT BE
TRUSTWORTHY FOR SOME PARAMETERS DUE TO A NON-POSITIVE DEFINITE
FIRST-ORDER DERIVATIVE PRODUCT MATRIX. THIS MAY BE DUE TO THE STARTING
VALUES BUT MAY ALSO BE AN INDICATION OF MODEL NONIDENTIFICATION. THE

CONDITION NUMBER IS 0.889D-10. PROBLEM INVOLVING THE FOLLOWING PARAMETER:

A technical background is given, followed by a description of several inves-
tigation strategies. We then provide an extensive list of common examples
where the message appears and provide guidance on how to resolve the spe-
cific issue.

1 Technical Background

To compute the maximum likelihood estimates, the log-likelihood function L
is maximized with respect to all model parameters. If proper maximization
has been achieved, the negative of the matrix of the second derivatives, also
known as the Fisher information matrix, —L” should be a positive definite
matrix. The information matrix is inverted (—L”)~! to obtain the standard
errors. If the model is not identified, the information matrix is singular,
i.e., it is not invertible and the determinant is 0. Mplus performs a check
to determine if the information matrix is invertible, i.e., it is not singular.
In principle, to do that one can simply compute the determinant of the



matrix and check that it is 0. Numerically, however, the matrix will not be
precisely zero. Mplus uses 15 decimal digits of precision for every number. In
addition, round-off error can accumulate during the computation and thus it
is not uncommon for a number that is theoretically zero to become as large
as 1071°. In addition, computing the determinant of the information matrix
to check the singularity of the matrix, is not a good idea as it exposes the
computation to the scales of the observed variables. Instead of using the
determinant to check for singularity, Mplus uses the condition number of the
matrix. This is defined as the ratio of the smallest eigenvalue to the largest
eigenvalue. If the matrix is singular the condition number is 0. Mplus uses
as a cutoff value 10719, i.e., if the condition number of the matrix is less
than 1071° Mplus concludes that the matrix is close to being singular which
indicates that the model might not be identified. The cutoff value can be
changed using the CONDITION option in the ANALYSIS command. The
condition number can be found in the Mplus output for every model. Small
condition numbers should be viewed as a problem that may or may not need
to be addressed. The smaller the condition number, the flatter the likelihood
of the model is, i.e., the weaker the identifiability of the model, i.e., the data
set contains little or no information for some of the model parameters. The
smaller the condition number, the bigger the round off error in the matrix
inversion, and as a result the bigger the round off error in the standard errors.
In addition to using the information matrix to check model identifiability,
Mplus also uses the first-order derivative product matrix L’(L’)” which pro-
vides an approximation to the information matrix and is available in Mplus
as the MLF estimator. This is the product matrix referred to in the above
error message. Experience has shown that the MLF method is the best
method to catch an unidentified model. It is the most accurate in terms of
false negatives, i.e., least likely to not catch an unidentified model. Thus,
Mplus performs the MLF singularity check even when the estimator that is
used for the estimation is not the MLF estimator but is the MLR or the ML
estimator. Unfortunately the MLF estimator also has a larger false positive
error than the MLL and MLR estimators. That is, the MLF check may report
potential non-identifiability in situations when the model is identified.
When the MLF check fails, Mplus will produce an error message described
above. The parameter number that is listed may be the parameter that is not
identified or may be closely connected to that parameter. The unidentified
parameter can also be a parameter that is close to the listed parameter
in terms of its TECH1 order. The way Mplus identifies the problematic




parameter is by sequentially analyzing the information matrix. First we
analyze the first parameter only, then the first and the second, then the first
three, etc. We conclude that the problematic parameter is the one that when
added, the condition number drops below the cutoff value. Sometimes that
drop will not occur at the exact unidentified parameter but at the next one
(or the next few) as the condition number continues to decrease as we add
more and more parameters.

When the above error message appears, Mplus can not guarantee that
the model is identified. The identifiability of the model must be verified
separately. For example, if the model is a well known model that has been
used successfully with other data sets, the error message can be ignored.

In most situations, a condition number below 1072 indicates a true non-
identification. A condition number between 107!° and 107! is usually an
indication of some other problem that could be addressed by model or data
modification.

2 Investigation Strategies

In this section we describe 4 general investigation strategies that may be
helpful in identifying the source of the problem.

e 1. Using the MLF estimator

The first strategy is to rerun the analysis using the following estimation
settings: ANALYSIS: ESTIMATOR=MLF; CONDITION=0;. Using
this strategy, some of the parameters will get huge / large standard
errors. These are usually reported as actual large numbers or they are
reported as ******  These parameters are directly responsible for the
problem. With this investigation strategy we narrow down the identi-
fiability issue to just one or several parameters rather than the entire
model. All or some of these parameter could be fixed to immediately
resolve the problem.

There are three different scenarios that can easily be recognized when
using this approach. The first scenario is when a parameter p con-
verges to £00. Precise value for the parameter can not be established.
The log-likelihood is virtually indistinguishable when the parameter
takes any large value. Often such parameters are automatically fixed
by Mplus, but in some situations they are not. Such parameters can



be manually fixed to large values or the issue can be ignored, assuming
that proper interpretation is placed regarding what the value is and
why the standard error for this parameter does not carry any informa-
tion. The second scenario is when the model implies a deterministic
relationship between several parameters. For example, due to the way
the model is set up, parameters p; and p, may be tied to a determin-
istic relationship such as 0 = p; + po, i.e., the relationship will hold
regardless of what data is used. In this case, both parameters will get
large standard errors, but the exact deterministic relationship will not
be revealed. If it is possible to determine the deterministic relation-
ship between the parameters, the model can be augmented by a model
constraint that accommodates the deterministic relationship. In the
example, the model constraint will contain exactly 0 = p; + po. This
way the model will contain one less parameter and the singularity will
be resolved. The third scenario is the case where parameters can not be
identified but only a particular part of the parameters can. For exam-
ple, the likelihood may depend on parameters p; and py only through
the difference of the two parameters, i.e., b = p, — py is the identifiable
quantity, but both p; and ps are not. The likelihood value obtained for
p1 and ps = p; + b depends on b but not on p;. In such a hypothetical
example, both p; and p, will get large standard errors when we use the
MLF estimator. If we can determine the precise relationship that holds
and what exactly the identifiable quantities are we can resolve the is-
sue. In the example simply fixing the parameter p; to any value will
solve the identification problem. Here again we reduce the number of
model parameters by 1 parameter without affecting the log-likelihood
value and the model fit.

The technical background for strategy 1 is as follows. The CONDI-
TION option refers to the cut-off value which determines if the in-
formation matrix is considered invertible. By default that setting is
10710, Setting it to zero means that the matrix will be inverted any-
way even if it appears to be singular, due to having a low condition
number. The MLF estimator has the neat property that the condition
number is always positive, i.e., it is never negative. That means that
numerically the matrix can always be inverted, even when the matrix is
technically singular and the inversion essentially uses division by zero.
The outcome of inverting a singular matrix like that is that some of



the resulting values may be huge numbers. This property does not
hold for the ML and MLR estimator where the condition number can
be —1.07*. Even if we wanted to invert such a matrix it would be
impossible because it would require taking a square root of a negative
number.

2. Using the STARTS/OPTSEED

The second investigatory strategy is to use a larger STARTS value
so that the best solution is replicated at least twice. At that point,
comparing the models using the top two OPTSEEDs will reveal if the
point estimates are reliable. If the two models have the same point
estimates, we can be confident that they are reliable. If the point
estimates are different then clearly they are unreliable and there is a
model identification problem. If the parameter estimates are different,
most likely we have a version of the third scenario described above for
the MLF strategy.

3. Simulation study

A third strategy that can further illuminate the problem is to conduct
a monte carlo simulation study with the model in question and a large
sample size, possibly using the model parameters equal to the empirical
estimates. Here we can estimate multiple replications to see how often
such a problem occurs with simulated data. If 100% (or a high percent-
age value) of the replications yield similar identification problems we
can conclude that indeed something is wrong with the model. If 0% of
the replications have an identification problem, then we can conclude
that the issue is with the data. It might be useful to then conduct
simulation studies with small sample size or sample size similar to the
empirical data to see if the problem starts to show up. In some cases,
a small percentage of the replications result in identification problems.
In that case, we can conclude that the identification problem applies
to a particular set of parameters. We usually refer to this as empiri-
cal non-identification. Simulation studies closely resembling empirical
analysis can also be used to verify that even when the MLF warnings
occur, the empirical estimates are fine and the warning can be ignored.
We can make this conclusion if the simulation study results show that
the point estimates are unbiased and that the coverage is near the nom-
inal 95% level. This happens in many situations. The MLF warning



is quite sensitive and can often produce false positive results, i.e., the
MLF warning may indicate that there could be a problem but the ML
or MLR point estimates and standard error are actually good.

e 4. Changing the estimator or estimation settings
Mplus offers a variety of different estimators and estimation settings.
Due to the use of different algorithms, a different estimation setting may
result in a more revealing error message. In our experience the most
successful of these are: adding ANALYSIS: ALGO=INT, or ANALY-
SIS: ESTIMATOR=BAYES.

3 Examples

Here are some common causes of the message and how they can be resolved.

3.1 Binary variables treated as continuous

To avoid listwise deletion due to missing data on covariates, the covariates
are often brought into the model by mentioning their means, variances, or
covariances. With categorical variables, this means that they are treated as
continuous variables. With binary variables, the MLF message gets triggered
in this case because the mean of the variable p is directly related to the
variance p(1—p) (one parameter p exists while two are estimated). In almost
all situations this should be addressed by model modification. Treating the
variable as continuous is not ideal. Missing data estimation for continuous
variables assumes normal distribution and this misspecification will likely
(depending on the amount of missing data) bias the estimation. There are
two options in this case. Option one is to model the variable as categorical.
Option two is to use multiple imputations where the variable is specified
as categorical so that the imputed values are also binary (see User’s Guide
example 11.5 for how to impute missing values in Mplus).

Another situation where a binary covariate is treated as continuous is
the situation where the variable is used in a WITH statement with all other
covariates to ensure that correlations between the covariates are taken into
account. However, if a variable is independent, it is automatically corre-
lated with all other covariates in the model and such WITH statements are
unnecessary and should be removed.



If a dependent binary variable is treated as continuous, causing the MLF
message to appear, the variable should simply be declared as categorical.

3.2 Variables in the model are on very different scales

Sometimes variables have very different variances due to being measured on
different scales and this may trigger the MLF message due to a low con-
dition number. The scales of the variables can be changed so that they
are more similar and that will improve the condition number. The scale of
the variables can be changed either by DEFINE: Y=Y/10; or by DEFINE:
STANDARDIZE Y.

3.3 There are more parameters in the model than ob-
servations or categorical patterns

In this case the MLF check is triggered 100% of the time. It is possible to
verify that the model is identified with a bigger data set. One way to do that
is to use a data set that consists of multiple copies of the original data set. If
the model is a standard well known model the MLF warning should simply
be ignored. If that is not the case, one can conduct a simulation study with
a larger number of observations to verify that the model is identified. If the
model is identified, the standard errors can be considered reliable.

If all observed data is categorical, the number of observations in this
discussion is replaced by the number of different patterns. The number of
different patterns can usually be obtained with OUTPUT:TECH10 using a
simple model (if the current model doesn’t produce that already). What
this means is that for the purpose of identifiability, observations with the
same outcome on all variables will not count as different. As an example, 5
binary variables can produce no more than 32 patterns. Any model with 32
or more parameters is a non-identified model, regardless of the actual data
set. If a particular data set has 15 different patterns, i.e., 17 of the remaining
possible patterns were not observed in the data, a model with 15 or more
parameters will also produce a warning message and will be unidentified.
While the model may be identified with a different data set, numerically, the
model is not identified in this data set. When the number of parameters in
the model is at least as big as the number of categorical patterns, the model
is generally unidentified and at least a portion of the parameters are likely
to have unreliable point estimates and large standard errors.
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3.4 There are more parameters than clusters for type=complex,
type=twolevel or type=threelevel

In this case the MLF check is triggered 100% of the time. It is possible to
verify that the model is identified with a bigger data set. In three-level mod-
els, the number of parameters is compared against the highest level number
of clusters. In multiple group analysis the number of clusters in each group
must be at least as big as the number of parameters identified by that group
to avoid the MLF warning.

Also note that even if the number of clusters is slightly more than the
number of parameters, the MLF matrix may in some cases still become singu-
lar for various additional reasons, which can generally be summarized under
the umbrella that some of the clusters did not provide enough information for
the parameters. This is not an unusual occurrence. We do not recommend
investigating which particular cluster did not provide additional information,
this would not inform us of what to do next. The bottom line is that the
number of clusters is too low, lower than the number of parameters, or barely
above that number.

In principle, when the MLF message occurs and the source of the problem
is precisely the low number of clusters, one may be able to ignore the message.
In some cases, we can be certain that the model is identified simply because
it is a well known model. This would then implicate the low number of
clusters as the most likely source of the warning. If this is the case, the
model results and standard error can actually be trusted. Simulation studies
confirm that the standard errors obtained by ML and MLR estimators are
fairly reliable, even when the MLF warning occurs due to low number of
clusters. That said, however, the quality of the standard errors is directly
tied to the number of clusters. If that number is low, asymptotic standard
error can be somewhat imprecise. A useful action (although not required)
that can be taken in such a situation is to simplify the model so that the
number of parameters becomes much smaller than the number of clusters.
For example, a group variable can be converted to a predictor.

3.5 Parameter appears to be converging to a large
value

Mplus will often identify parameters that are causing identifiability prob-
lems, in terms of causing low condition numbers, and fix those parameters.
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For example, when a binary indicator for a particular class is estimated to
be a perfect indicator for that class, the threshold value will become +-
large values. Such thresholds are equivalent to +- infinity and are essentially
unidentified but are safe to fix. By fixing these parameters Mplus preserves
the quality of the model and avoids the low condition number. Another
example is the situation when a categorical variable is regressed on another
categorical variable (latent or observed) and there are empty cells in the joint
distribution of the two variables. Some of the regression parameters may be
estimated to +- infinity and are safe to fix as well. Mplus automatically fixes
threshold parameters if they reach the values of +-15 (this is controlled by
the LOGHIGH and LOGLOW options of the ANALYSIS command). If a
threshold is estimated at 14, it will not be fixed by Mplus and may produce
a low condition number. You can change the LOGHIGH/LOGLOW options
or ignore the MLF warning message. In this situation it is useful to look at
and report the model parameters in the probability scale as those are well
identified and do not have values converging to +- infinity.

3.6 Cluster invariant variable in two-level models

Suppose that a within-only variable in a two-level model takes the exact
same values in each cluster. An example of such a variable is TIME in a two-
level longitudinal model where the cluster is the person and the observations
within the cluster are the observations at particular time points. If TIME
takes the exact same values in each cluster and is modeled as a dependent
variable, it will result in an MLF warning message due to a lack of variation
in the score of TIME’s parameters. The TIME variable could inadvertently
be made into a dependent variable if it is correlated with other variables in
the model. In this case the message can be ignored or the TIME variable
can be treated as a covariate instead of a dependent variable. If a variable is
correlated with the TIME variable, it should be regressed on it rather than
correlated with it to preserve the exogeneity of the TIME variable.

3.7 Group-mean centered within-only variable with es-
timated intercept or mean

Suppose that a within-only variable Y in a two-level model has been group-
mean centered using the command

DEFINE: CENTER Y(GROUPMEAN);
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This command essentially removes the between part of the variable. The
cluster sample mean is subtracted from each observed value in the cluster.
The centered variable Y has a cluster sample mean of 0 in every cluster. This
kind of centering is necessarily followed by a within-only specification
VARIABLE: WITHIN=Y;
(otherwise the between part will be estimated to the constant 0). The issue
that arises here is that not only the random part of the intercept is removed,
but also the fixed part of the intercept is removed. Therefore, the mean
parameter of Y is necessarily 0. If that parameter is not fixed to 0, but
is estimated as a free parameter, it is very likely that the MLF warning
will appear. There are instances where it won’t appear. For example, if
the variable Y is regressed on another variable X that is not group-mean
centered, the warning will not appear (even though the underlying modeling
problem is still there and should be fixed).

The MLF warning should not be ignored in this situation . The proper
model setup is to have the intercept of Y be fixed to zero and to also group-
mean center all predictors of Y.

3.8 Class specific anomalies in Mixture models

In Mixture models, the classes are unknown and can shift in an unexpected
way. When the estimation has completed, the standard errors are computed
approximately as if the classes are determined and the computation is similar
to known multiple groups. That means that any one of the above listed prob-
lems can occur for just one particular class, in addition to other problems.
The most common situations that occur in Mixture models are as follows

e The number of observations in a particular class are smaller than the
number of parameters estimated in that class. This is the same issue
as in 2.3 but now it occurs in just one specific class.

e When a class specific regression is estimated such as Y on X, and one
or both of the variables are categorical, the class formation may lead
to the following unanticipated outcome: Var(Y)=0 or Var(X)=0. Both
of these would imply that the class specific regression of Y on X is
unidentified and the model must be adjusted accordingly. Using the
option OUTPUT:TECHT is very valuable in such cases as it will clearly
identify this problem.
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3.9 Parameters restricted by inequality constraints

Inequality constraints such as
F(v) >0, (1)

where v is the vector of model parameters and F' is a function of these pa-
rameters can lead to the MLF warning message when the parameters have
converged to the borderline solution, i.e., when F'(v) ~ 0. This happens be-
cause Mplus implements the so-called slack parameter methodology. Instead
of estimating the model under the inequality constraint, Mplus estimates the
model

F(v) = Expla),

where a is a new model parameter. When the parameter estimates are near
the border, the parameter a is near —oo. At that point in the parame-
ter space, small changes in a do not affect the likelihood and therefore the
derivative is 0 and with a very high probability this will cause the MLF
singularity warning. The slack parameter essentially creates the situation
described in Section 3.5.

There is a simple resolution to the problem in this case. Instead of esti-
mating the model under the inequality constraint (1), we can estimate the
model under the constraint

F(v) =0. (2)

Because the original model estimation converged to the border anyway, the
re-estimated model will have the same log-likelihood and will provide the
same data fit. Note that when there are multiple constraints involved in the
model estimation, only those that are at the border need to be converted
to equalities. If there are multiple inequality constraints and the inequality
constraints are complex, it may be unclear which inequality constraints are
at the border. In this case, one can add F'(v) as a new parameter in MODEL
CONSTRAINT. If that new parameter is near 0, clearly the parameter esti-
mation has reached the border.

There is a secondary reason for converting the inequality constraint to an
equality constraint when the parameters converge to that border. Asymp-
totic theory assumes that the likelihood is maximized at an interior point
of the admissible space. When an inequality constraint is imposed in the
estimation and the maximization has converged to the border of the admis-
sible space, the asymptotic variance covariance is unreliable. Converting the
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inequality to equality resolves that problem. The standard errors obtained
under the equality constraint are more reliable as they do not violate the
asymptotic theory assumptions.

3.10 Empty middle categories in ordered categorical
variables

This situation typically arises in Mixture models where in some classes a
middle category of an ordered categorical variable does not occur in a partic-
ular class. In such situations two of the neighboring thresholds 7; and 71
become identical. The MLF matrix will in turn be singular as the asymptotic
correlation between these two parameters will converge to 1. There are two
possible resolutions. If the ordered categorical doesn’t have any direct effects,
i.e., the variable serves as a latent class indicator but there are no additional
predictors for that variable, the most straightforward solution is to simply
declare the variable as NOMINAL instead of as CATEGORICAL. If this so-
lution is not possible, after identifying the identical thresholds by inspecting
the output, this MODEL CONSTRAINT statement can be includes

Tj+1 = Tj + 00001

The model should be re-estimated with the above parameter constraint and
then the asymptotic variable covariance matrix will not be singular. The
pair of identical parameters has been reduced to just one parameter. The
log-likelihood for the two models should be identical, possibly provided with
starting values. Note also that parameter constraints must be used for every
pair of identical thresholds.

3.11 Highly correlated variables

If deterministic relationships exist in the data, such as Y5 = Y; + 1, where
Y; and Y, are dependent variables in the model, the MLF matrix will be
singular because the correlation between the means of the two variables will
be 1. However, such pure relations are likely to cause even bigger prob-
lems, such as convergence problems, and are likely not going to reach the
computation of the standard errors where the MLF error message appears.
Deterministic relationships that hold for almost all observations, however,
may converge but nevertheless have MLF singular matrix. For example,
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situations where Y5 = Y; + 1 holds for all but one observation will have a
non-singular sample variance covariance matrix which can facilitate model
convergence. The MLF matrix, however, will still be singular because the
number of non-deterministic observations is smaller than the number of pa-
rameters (specific to the addition of Y3) that are estimated in the model.
The resolution of this situation is to simply remove one of the variables that
is highly correlated. Such variables contribute essentially no additional in-
formation and removing these from the analysis will cause no harm but will
prevent identification problems.

3.12 General deterministic relations among the vari-
ables

This would essentially be just a generalization of the concept from the pre-
vious section but involving more variables. The most common scenario is if
Y; = Y5 —Y;. In a case like this, the variable Y3 should not be in the model in
the first place. Modeling Y7 and Y5 is sufficient. The distribution of Y3 should
be derived from the estimated model, i.e., from the joint distribution of Y}
and Y5. If the variable Y3 is kept in the model, the Y3 distribution parameters
will be dependent with a deterministic relationship on the model parameters
of Y7 and Y5 and thus the variance covariance matrix will be singular.

If the data is prepared by the same person who analyzes the data, pre-
sumably the deterministic relationships among the variables will be known
and can be avoided. In certain cases, the data is prepared by someone else,
and the analyst inadvertently uses a model that can not be estimated due
to such deterministic relationships. Here we describe a simple strategy that
may help discover these relationships even when they are not known ahead of
time. The first step is to locate the smallest model that contains the problem.
In a series of model reduction we can eliminate all variables from the model
that do not resolve the problem when removed. Suppose that in our example
there are 10 variables Y7, ..., Y. Removing one variable at a time, we re-
estimate the model. If Y] is removed from the model the estimation problem
will disappear. This leads to the conclusion that most likely Y; is involved
in some kind of model violation. Removing Yjo from the model will result
again in a convergence or a standard error problem. That means that Yiq
can be permanently removed from the model for the purpose of identifying
the model violation. The variable Y; can not be permanently removed from
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the model. Continuing with this process removing one variable at a time (or
several variables at a time if the model has a large number of variables) we
will arrive at the minimum number of variables that still exhibit the model
violation. That set in our example will be a model for Y7, Y5 and Y3. At this
point there are several different options. One option is to manually inspect
the data and look for simple deterministic relations such as one variable is
the sum of several other variables, one variable is the product of two other
variables, a sum of several variables is equal to a constant such as 0 or 1.
Although this looks like a random strategy, in practice it usually works as
most dependencies are quite simple. If this doesn’t succeed we would rec-
ommend estimating this specific model Y2 on Y1; Y3 on Y1 Y2; ..., ie.,
sequential regression where each variable is regressed on all prior variables
(where the order of the variables is usually the order assigned in the USE-
VAR option). Estimating this model can quickly identify the deterministic
relationship that is linear or close to it. In the results section for this model,
we look for a residual variance that is 0 or near 0. Such variance indicates
that there is a nearly perfect relationship among the variables and the actual
model parameters reveal the relationship. In our example the residual vari-
ance of Y3 will be zero, the regression coefficient of Y3 on Y, will be 1 and the
regression coefficient for Y3 on Y] will be -1. This process will fully discover
the relationship Y; = Y5 — V7.
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