
 
 

 

 
 

Measurement Invariance for Social Phobia Example 
 

This document reports measurement invariance tests for the social phobia example in 
Chapter 11. I assume you have read the document on measurement invariance tests on the 
resources tab for Chapter 3. Here, I perform two tests. First, I test for longitudinal 
measurement non-invariance of the indicators of social phobia from baseline to 
posttreatment. Second, I test for measurement non-invariance of the indicators at posttest as 
a function of the treatment vs. control conditions. The latter test evaluates if the program 
changed the way people interpret the scales used to measure social phobia. I do not perform 
the latter tests for the baseline indicators of social phobia because assignment to treatment 
condition is random and I would not expect group differences as a function of treatment 
condition. 

LONGITUDINAL MEASUREMENT NON-INVARIANCE 

A goal of longitudinal tests of measurement non-invariance is to evaluate if factor loadings 
and measurement intercepts for latent variable indicators differ across time. My first task is 
to choose a reference indicator for latent social phobia at the two time points under the 
assumption that the reference indicator has an invariant loading and invariant measurement 
intercept across time. Knowing that this is the case, I can then empirically evaluate the 
invariance of the other indicators.  
 There is no assumption free method for choosing the reference indicator for purposes 
of measurement non-invariance testing. The forward analysis strategy I described in the 
Chapter 3 measurement invariance primer makes the assumption that the latent variable 
variances are equal across time. This was a reasonable assumption for the data I analyzed 
in Chapter 3, but it is not reasonable for the social phobia example. For instance, in the 
primary RET analysis I reported in Chapter 11, the estimated latent variance of social phobia 
at baseline was 0.45 and at posttreatment, it was 1.59, with the latter being about 3.5 times 
larger than the former.1 This result rules out the forward analysis strategy for choosing the 
reference indicator. A second strategy is to use a longitudinal implementation of the 
backward analysis method by Raykov et al. (2013) described in the primer. Table 1 presents 
the relevant Mplus syntax.  

 
1 I obtained this information from the TECH4 output section of the analysis output. 
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Table 1: Mplus Syntax to Find Reference Indicator for Across Time Analysis 
 
1. TITLE: MEASUREMENT INVARIANCE BASE MODEL ; 
2. DATA: FILE IS c:\mplus\ret\chap11M.txt ; 
3. VARIABLE: 
4.   NAMES ARE ID CR1 SPAI1 SPIN1 CR3 SPAI3 SPIN3 
5.      NEGAPP2 PSKILLS2 EXTERN2 NEGAPP1 PSKILLS1 EXTERN1 
6.      HYPER SEX TREAT ; 
7.   USEVARIABLES ARE CR1 SPAI1 SPIN1 CR3 SPAI3 SPIN3   ; 
8.   MISSING ARE ALL (-9999) ; 
9. ANALYSIS: 
10.  ESTIMATOR = MLR; 
11. MODEL: 
12.  LSP1 BY CR1* SPAI1* SPIN1* (L1a L2a L3a) ; 
13.  LSP1@1 (varLSP1) ; 
14.  [CR1] (i1a) ;  [SPAI1] (i2a) ; [SPIN1] (i3a) ; 
15.  [LSP1@0] (mean1) ; 
16.  LSP3 BY CR3* SPAI3* SPIN3* (L1a L2a L3a) ; 
17.  LSP3* (varLSP3) ; 
18.  [CR3] (i1a) ;  [SPAI3] (i2a) ; [SPIN3] (i3a) ; 
19.  [LSP3] (mean2) ; 
20.  LSP1 WITH LSP3; 
21. OUTPUT: SAMP RESIDUAL CINTERVAL TECH4 STAND(STDYX) ; 
 
I number lines for purposes of exposition, but the numbers are not part of standard Mplus 
syntax. Lines 1 through 11 should be familiar to you so I do not comment on them. Lines 
12 and 13 use the fixed factor variance method to identify the measurement model for the 
three indicators of latent social phobia at baseline. Line 14 tells Mplus to estimate the 
measurement intercepts for the baseline indicators and line 14 fixes the mean of the baseline 
latent social phobia variable to zero. The entries contained within the parentheses for these 
lines are labels for the parameters.  
 Lines 16 to 19 repeat the above but for the posttreatment latent social phobia variable, 
with some exceptions. First, rather than fix the variance of latent social phobia at 1.0, the 
variance is estimated (line 17). This obviates the need to assume equal latent variances 
across time. Second, the mean of the latent social phobia is estimated rather than fixed at 0 
(Line 19). This permits the latent means to vary across time.  
 An important feature of the code is the use of equality constraints via common labels 
for parameters. Note that the three factor loadings are constrained to be equal across time 
as are the three measurement intercepts. The resulting chi square test of model fit is used as 
a “base model” standard against which significance tests of loading and measurement 
intercept differences across time are evaluated. I illustrate this process shortly. The chi 
square statistic for the model was 7.03, df = 12, p < 0.86, suggesting a reasonable model fit. 
This is important because the Raykov et al. (2013) test can fail if the chi square fit is poor.  
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 With three loading differences and three measurement intercept differences across 
time, I perform a total of six contrasts. Consider the contrast to compare the factor loading 
for CR1 with the factor loading for CR3. To test the difference between these two loadings 
to address across-time loading non-invariance for the clinician rating, I make the labels for 
the two loadings different. I accomplish this by changing Line 16 in Table 1 from  

LSP3 BY CR3* SPAI3* SPIN3* (L1a L2a L3a) ; 

to 

LSP3 BY CR3* SPAI3* SPIN3* (L1b L2a L3a) ; 

I then re-estimate the model with this one equality constraint relaxed and obtain a model chi 
square of  6.74 with df = 11. I perform a chi square difference test of the relaxed model 
relative to the base model but I use  a scaled chi square difference test because of my use of 
robust  MLR estimation. A program called scaled chi sqr difference test is provided on my 
webpage to execute the analysis with the correction factors provided by Mplus. The chi 
square difference was 0.267, df = 1 p < 0.605. The statistically non-significant result means 
the fit of the model is negligibly affected by introducing the equality constraint. The null 
hypothesis of equal loadings across time cannot be rejected, which is consistent with (but 
does not prove) loading invariance, as I discuss in the measurement invariance primer in 
Chapter 3. I repeat this process for each of the five other contrasts. The results are 
summarized in Table 2. Raykov et al. (2013) recommend applying a False Discovery Rate 
(FDR) correction to adjust for contrast multiplicity. I did so using the program called FDR 
p values on my website and these results also appear in Table 2. None of the contrasts were 
statistically significant, which is consistent with loading and intercept invariance.  

Table 2: Scaled chi squared difference test 

Contrast Scaled chi sqr diff p value FDR p value 
    

FL: CR3 0.282 0.595 0.752 

FL: SPAI 0.570 0.450 0.752 

FL: SPIN3 0.018 0.893 0.893 

MI: CR3 0.538 0.463 0.752 

MI: SPAI 1.659 0.198 0.752 

MI: SPIN3 0.236 0.627 0.752 



                                                                                                             Measurement Invariance    4 

 
 

   Based on the above, I can reasonably use any of the three indicators as the reference 
indicator and I can also conclude that there is not empirical support for the presence of 
measurement non-invariance.  
 I supplemented the above analyses using the full FISEM model in the main text to 
evaluate loading non-invariance but taking into account all variables in the model rather 
than just the subset of variables used in the Raykov et al. (2013) procedure. I also used the 
supplemental analysis to bring to bear the effect size perspectives of Oberski as discussed 
in the Chapter 3 primer. Table 3 reproduces the Mplus syntax from the full model per 
Chapter 11. This syntax in its current form ignores matters of measurement non-invariance.  
 
Table 3: Mplus Syntax for Social Phobia Example in Chapter 11 
 
1. TITLE: EXAMPLE CHAPTER 11 ; 
2. DATA: FILE IS c:\mplus\ret\chap11M.txt ; 
3. VARIABLE: 
4. NAMES ARE ID CR1 SPAI1 SPIN1 CR3 SPAI3 SPIN3 
5. NEGAPP2 PSKILLS2 EXTERN2 NEGAPP1 PSKILLS1 EXTERN1 
6. HYPER SEX TREAT ; 
7. USEVARIABLES ARE CR1 SPAI1 SPIN1 CR3 SPAI3 SPIN3 
8. NEGAPP2 PSKILLS2 EXTERN2 NEGAPP1 PSKILLS1 EXTERN1 
9. HYPER SEX TREAT ; 
10. MISSING ARE ALL (-9999) ; 
11. ANALYSIS:  
12. ESTIMATOR = MLR ;  !Robust maximum likelihood 
13. MODEL:  
14. !Specify latent variables 
15.   LSP1 BY CR1 SPAI1 SPIN1 ; 
16.   LSP3 BY CR3 SPAI3 SPIN3 ; 
17. [CR1@0] ; [CR3@0] ; [LSP1] (mean1) ; [LSP3] (int1) ; 
18. !Specify equations 
19. LSP3 ON LSP1 NEGAPP2 PSKILLS2 EXTERN2 TREAT SEX (b10 p4-p7 b11) ;  
20. LSP3 ON HYPER (b12) ; 
21. NEGAPP2 ON TREAT HYPER SEX NEGAPP1 PSKILLS2 (p1 b1-b3 p8) ; 
22. PSKILLS2 ON TREAT HYPER SEX PSKILLS1 (p2 b4-b6) ; 
23. EXTERN2 ON TREAT HYPER SEX EXTERN1 PSKILLS2 (p3 b7-b9 p9) ; 
24. !Specify correlations of latent variable with exogenous variables 
25. LSP1 WITH NEGAPP1 PSKILLS1 EXTERN1 TREAT SEX HYPER ; 
26. MODEL INDIRECT: 
27. LSP3 IND TREAT ; 
28. LSP3 IND PSKILLS2 ; 
29. NEGAPP2 IND TREAT ; 
30. EXTERN2 IND TREAT ; 
31. OUTPUT:  
32. SAMP STANDARDIZED(STDYX) MOD(ALL 4) RESIDUAL CINTERVAL TECH4 ; 

 



                                                                                                             Measurement Invariance    5 

 
 

The model uses CR1 and CR3 as reference indicators for latent social phobia, which the 
backward analysis suggests is loading (and measurement intercept) invariant across time. 
The chi square for the model fit was 50.34, df = 57, p < 0.57. I make the following changes 
to the code. First, I add labels to the indicators on Lines 15 and 16: 
 
LSP1 BY CR1 SPAI1 SPIN1 (L11 L21 L31) ; 
LSP3 BY CR3 SPAI3 SPIN3 (L13 L23 L33) ; 

Second, I remove the MOD(All 4) option in the output line (Line 32). Then I add the 
following syntax before line 31: 

MODEL CONSTRAINT: 
NEW(diff1 diff2) ; 
diff1=L21-L23 ;  
diff2=L31-L33 ; 

This syntax calculates and tests the significance of the loading difference between SPAI1 
and SPAI3 across time and between SPIN1 and SPIN3 across time (see the primer on 
measurement invariance for Chapter 3 for further explication of the syntax). Here is the 
relevant output from the section MODEL RESULTS: 

                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E.    P-Value 

New/Additional Parameters 
    DIFF1             -0.009      0.049     -0.179      0.858 
    DIFF2             -0.003      0.057     -0.055      0.956   

The across time unstandardized loading differences are in the Estimate column, with the 
estimated standard errors of the difference in the S.E. column, the critical ratio for the 
difference in the EST./S.E. column, and the p value for the difference in the last column. 
The results are consistent with the backward analysis of loading invariance but are now 
grounded in the full substantive model. 
 I can alter this new syntax further by removing all of the MODEL CONSTRAINT 
commands and introducing across time equality constraints for the non-reference indictors 
by creating common labels between them in Lines 15 and 16 as follows: 

LSP1 BY CR1 SPAI1 SPIN1 (L11 L21 L31) ; 
LSP3 BY CR3 SPAI3 SPIN3 (L13 L21 L31) ; 

This imposes a model with across time loading invariance and the question is how such an 
imposition affects model fit. The chi square fit for this revised model was 50.45, df = 59 
and p < 0.78, which compares favorably with the chi square for the original model of 50.34, 
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df = 57, p < 0.57. The scaled chi square difference test between the two models was 
decidedly non-significant. However, my primary interest in conducting this analysis is to 
apply the logic of Oberski (2014) to determine how substantive parameters of interest in the 
model are affected by imposing versus ignoring loading invariance. For example, in the 
original model tested in Chapter 11 that ignored loading invariance, the path coefficient 
linking negative cognitive appraisals and posttreatment latent social phobia (NEGAPP2 and 
LSP3) was 0.390 ± 0.19 (critical ratio = 4.10, p < 0.05). In the model that imposed loading 
invariance constraints, the same parameter was 0.391 ± 0.19 (critical ratio = 4.09, p < 0.05). 
The difference in the parameter values was trivial and this was true of other coefficients of 
substantive interest as well. This result provides additional support of modeling the data 
without imposing loading invariance constraints.  

TREATMENT-CONTROL MEASUREMENT INVARIANCE 

To test for measurement invariance for the posttreatment social phobia indicators as a 
function of treatment condition, I used the alignment strategy of Asparouhov and Muthén 
(2014). Table 4 present the relevant Mplus syntax. 

Table 4: Alignment Approach 

1. TITLE: ALIGNMENT TEST ; 
2. DATA: FILE IS invariance.dat ; 
3. VARIABLE: 
4. NAMES ARE id d1 d2 d3 d4 d5 d6 adhere adhere2 dfemale income ethnic ; 
5. USEVARIABLES ARE CR3 SPAI3 SPIN3 ; 
6. MISSING ARE ALL (-9999) ; 
7. CLASSES = c(2) ; !number of classes 
8. KNOWNCLASS = c(TREAT = 0 1) ; !variable  values for groups 
9. ANALYSIS: 
10. TYPE=MIXTURE ; 
11. ESTIMATOR=MLR ; 
12. ! ALIGNMENT=FREE; 
13. ALIGNMENT=FIXED(0); 
14. MODEL: 
15. %OVERALL% 
16. LSP3 BY CR3* SPAI3* SPIN3* ; 
17. [CR3] ; [SPAI3] ; [SPIN3] ; 
18. %c#1% 
19. LSP3 BY CR3* SPAI3* SPIN3* (L1_1 L1_2 L1_3) ; 
20. [CR3] (i1_1) ; [SPAI3] (i1_2) ; [SPIN3] (i1_3); 
21. %c#2% 
22. LSP3 BY CR3* SPAI3* SPIN3* (L2_1 L2_2 L2_3) ; 
23. [CR3] (i2_1) ; [SPAI3] (i2_2) ; [SPIN3] (i2_3); 
24. OUTPUT: ALIGN CINTERVAL SAMP RESIDUAL TECH4 TECH8 ; 
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The syntax format is fully explained in the primer on measurement invariance on the 
resources tab for Chapter 3, so I do not comment on it here. The control group is group 0 
and the treatment group is group 1. The output of primary interest is the alignment output 
that appears in the section called ALIGNMENT OUTPUT. Here is the relevant (edited) output: 
 

 Intercepts/Thresholds 
 Intercept for CR3 
 Group     Group      Value      Value     Difference  SE       P-value 
     1         0      3.069      3.118     -0.049      0.088      0.577 
 Approximate Measurement Invariance Holds For Groups: 0 1 
 
 Intercept for SPAI3 
 Group     Group      Value      Value     Difference  SE       P-value 
     1         0      3.157      3.033      0.124      0.136      0.362 
 Approximate Measurement Invariance Holds For Groups: 0 1 
  
 Intercept for SPIN3 
 Group     Group      Value      Value     Difference  SE       P-value 
     1         0      3.089      3.110     -0.021      0.052      0.686 
 Approximate Measurement Invariance Holds For Groups: 0 1 
 
 Loadings 
 Loadings for CR3 
 Group     Group      Value      Value     Difference  SE       P-value 
     1         0      0.926      0.993     -0.067      0.062      0.281 
 Approximate Measurement Invariance Holds For Groups: 0 1 
  
 Loadings for SPAI3 
 Group     Group      Value      Value     Difference  SE       P-value 
     1         0      0.986      0.918      0.068      0.067      0.312 
 Approximate Measurement Invariance Holds For Groups: 0 1 
 
 Loadings for SPIN3 
 Group     Group      Value      Value     Difference  SE       P-value 
     1         0      0.993      0.994     -0.001      0.032      0.984 
 Approximate Measurement Invariance Holds For Groups: 0 1 

The results support both measurement intercept and loading invariance across the treatment 
and control groups (see the primer on measurement invariance for Chapter 3 for details of 
interpretation). I can apply the logic of Oberski (2014) as well but given that none of the 
results were statistically significant, I leave that as an exercise for you to do based on my 
discussion of such methods in the Chapter 3 primer.  
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