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This primer discusses strategies for adjusting for measurement error in SEM when you have 
only a single indicator of a construct. I discuss two strategies, one based on fixed error variances 
and the other based on item parceling. The former method is described in depth in Savalei 
(2018); the latter method is described in Little, Rhemtulla, Gibson & Schoemann (2013).  

THE FIXED ERROR VARIANCE APPROACH 

The fixed error variance approach can be used when you have all single indicators in your 
model or a mixture of constructs with multiple and single indicators. The example I use to 
describe the method appears in Figure 1 and is an all-single indicator model. It is a semi-
replication of the weight loss study reported on my website but it used a different population 
of overweight individuals, slightly different measures of the mediators, and a different time 
period over which weight loss was recorded (two weeks instead of one month). The treatment 
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condition was represented by a variable called TREAT (0 = control group, 1 = treatment group). 
Weight loss was measured in pounds in the variable called wloss. It is the number of pounds 
lost over a two-week period. Positive numbers equal pounds lost and negative numbers equal 
pounds gained. There were two targeted program mediators, self-regulation (higher tendencies 
to self-regulate oneself leads to more weight loss) and self-efficacy for weight loss (higher 
confidence in one's ability to lose weight leads to more weight loss). Both self-regulation and 
self-efficacy were measured by the average response to multi-item inventories where each item 
was responded to on a 7 point disagree-agree scale (-3 = strongly disagree, -2 = moderately 
disagree, -1 = slightly disagree, 0 = neither, 1 = slightly agree, 2 = moderately agree, 3 = strongly 
agree). Total scores could thus range from -3 to +3 with higher scores indicating better self-
regulation and higher self-efficacy, respectively. To keep the example simple, I omit covariates. 
I also assume you are reasonably familiar with Mplus and SEM.  

Treatment vs. 
Control

d1Self Regulation

Efficacy

Weight Loss d3

d2
 

FIGURE 1. Single indicator weight loss example 

The model in Figure 1 assumes all variables are measured without error. This is reasonable for 
participation in the treatment versus control conditions of an RET but not for the other 
variables. It is well known that measurement error can bias parameter estimates in linear 
regression, although the conditions under which it does so vary. A strength of multiple indicator 
SEM with interchangeable indicators for a construct is that it yields parameter estimates that 
take into account the measurement error theory of the investigator. However, we often 
encounter scenarios where, for practical reasons, we only have single indicators of constructs.  
 It is possible to recast the model in Figure 1 in latent variable terms. I have done so in 
Figure 2. Each observed measure that is thought to contain measurement error has a latent 
variable underlying it. The latent variable ostensibly represents the “true” construct underlying 
the measure of it. The observed measure serves as a reference indicator to define the metric of 
the latent variable, hence the path coefficient from the latent variable to the observed measure 
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is fixed at 1.0. As noted, the model in Figure 1 assumes no measurement error in the continuous 
constructs and this is formalized in Figure 2 by setting the error variance of each indicator to 
zero. I do so by showing zeros next to the double headed arrows associated with the error 
variances of the indicators.  With multiple indicators, we are able to estimate the error variance 
of the indicators, but we are unable to do so with single indicators because of under-
identification; we have more unknowns than knowns in the model. Given this, researchers 
typically fix the error variances to zero rather than estimating them using Figure 1 and 
traditional Mplus syntax. I show the case where I assume there is no measurement error but 
make this explicit using latent variables via Figure 1. The models in the two figures will yield 
the same results: 

Treatment vs. 
Control

d1

Measured 
SR

Measured 
Eff

Measured 
WL

d3

d2

Latent 
SR

Latent 
Eff

Latent 
WL

e1

e3

e2

1.0

1.0

1.0

0.0

0.0

0.0

 

FIGURE 2. Single indicator weight loss example in latent variable terms 

 Table 1 presents the Mplus syntax for Figure 2. I number the lines for reference, but 
Mplus syntax excludes the numbers and the periods after them at the beginning of each line. 
The syntax could be more efficient but I sacrifice efficiency in the interest of pedagogy. I 
assume you have reviewed the basics of Mplus syntax on my website. Mplus is case insensitive. 
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Table 1: Mplus Syntax for Latent Variable with Single Indicator 

1. TITLE: ANALYSIS OF SINGLE INDICATOR MODEL WITH LATENTS ; 
2. DATA: FILE IS wloss.dat ; 
3. VARIABLE: 
4. NAMES ARE id wloss sr eff treat ; 
5. USEVARIABLES ARE wloss sr eff treat ; 
6. MISSING ARE ALL (-9999) ; 
7. ANALYSIS:   
8. ESTIMATOR=MLR ;  
9. MODEL:  
10. LSR BY sr@1 ;       !I use capital letter to denote latent variables  
11. LEFF BY eff@1 ;     !when referring to latent variables in the syntax  
12. LWLOSS BY wloss@1 ; !but this is optional; 
13. sr@0 ;    !this refers to the error variance of the observed indicator sr 
14. eff@0 ;   !this refers to the error variance of the observed indicator eff 
15. wloss@0 ; !this refers to the error variance of the observed indicator wloss 
16. [wloss@0]; [sr@0]; [eff@0] ; these are measurement intercepts fixed to zero  
17.  [LSR] ; [LEFF] ; [LWLOSS] ; these are estimated latent intercepts  
18. LSR ON treat ;  !This regresses LSR onto treat  
19. LEFF ON treat ; !This regresses LSR onto treat 
20. LWLOSS ON LSR LEFF treat; !This regresses LSW onto LSR, LEFF and treat 
21. MODEL INDIRECT: 
22. LWLOSS IND treat; 
23. OUTPUT: SAMP STDYX MOD(All 4) RESIDUAL CINTERVAL TECH4 ;  

  
Line 1 is the title line. Line 2 tells Mplus where to find the data file. Each line in the data file 
contains 5 values, space delimited, providing the scores for a given individual on the 5 input 
variables. Line 3 tells Mplus I am going to provide information about the variables that are in 
the data set. Line 4 provides the names I want to assign to the variables in the order they are 
encountered in the data file. There are 5 names because there are 5 variables. Line 5 specifies 
the subset of variables I want to use in the model. Line 6 tells Mplus that if it encounters the 
value -9999 for any of the variables, it should treat it as missing data. By default, Mplus uses 
full information maximum likelihood (FIML) for missing data for the endogenous variables. 
Line 7 tells Mplus I am going to provide information about the type of analysis I want. Line 8 
specifies the estimator for the analysis to be robust maximum likelihood, to help deal with non-
normality. Lines 9 tells Mplus I am going to provide information about the model per se. Line 
10 tells Mplus that the latent variable I call LSR will be indicated by the observed variable called 
sr. I can name the latent variable anything, but I cannot have a name that exceeds 8 characters. 
The BY command is read as “is indicated by.” The single indicator is listed after the BY and is 
followed by the @ sign. The @ sign is read as “fix the referenced parameter to a value of….”, 
followed by the value you want to fix the parameter to. In this case, I fix the path from the LSR 
to sr to 1.0. I repeat the process in Lines 11 and 12 for eff and wloss. In Mplus, listing a 
variable by name refers to the variance of the variable or the error variance if the variable is 
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endogenous. Line 13 fixes the error variance for sr to 0. Line 14 fixes the error variance of 
eff to 0. Line 15 fixes the error variance of wloss to 0. Line 16 contains each of the 
continuous indicators in brackets and refers to their measurement intercept when the indicator 
is regressed onto its latent variable. I constrain each of these to equal zero so that the mean of 
the indictor then becomes the mean of the latent variable, thereby furthering the equivalence 
between the observed measure and its latent variable. In Line 17, I estimate the intercepts of 
the three latent variables to further show the correspondence between the model in Figure 1 
with the model in Figure 2. Line 18 tells Mplus to regress the latent variable LSR onto treat; 
line 19 tells Mplus to regress the latent variable LEFF onto treat; Line 20 tells Mplus to regress 
the latent variable LWLOSS onto LSR, LEFF and treat. Note that the core structural model 
focuses on the latent variables, not the observed indicators. Line 21 tells Mplus to conduct an 
analysis of mediation and Line 22 specifies the focus of the mediation analysis to be from the 
variable treat to the outcome LWLOSS. Finally, line 23 is the output line. I discuss the different 
options for the output line on the syntax tab of my webpage. 
 When I execute this syntax, I obtain the same results as for the model in Figure 1 with 
no latent variables. For reference, the traditional syntax for the Figure 1 model is shown in 
Table 2.1 I now review the output for Table 1 and Figure 2. 

Table 2: Mplus Syntax for Single Indicator Model 

1. TITLE: ANALYSIS OF SINGLE INDICATOR MODEL ; 
2. DATA: FILE IS wloss.dat ; 
3. VARIABLE: 
4. NAMES ARE id wloss sr eff treat ; 
5. USEVARIABLES ARE wloss sr eff treat ; 
6. MISSING ARE ALL (-9999) ; 
7. ANALYSIS:   
8. ESTIMATOR=MLR ;  
9. MODEL:  
10. sr ON treat ; 
11. eff ON treat ; 
12. wloss ON sr eff treat ; 
13. MODEL INDIRECT: 
14. wloss IND treat; 
15. OUTPUT: SAMP STDYX MOD(All 4) RESIDUAL CINTERVAL TECH4 ;  

 
 The fit for the model was good. The chi square index of fit was 0.09 with 1 degree of 
freedom (p < 0.77), the CFI was 1.00, the RMSEA was <0.001 with a 90% confidence interval 

 
1 Technically, I do not need Lines 16 and 17  in Table 1 but if I want the output for the syntax in Table 1 to map onto 
the mean and intercept output for Table 2, I need to include them. In many applications, researchers are uninterested 
in the mean and intercept parameters in which case Lines 16 and 17 can be excluded.   
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of 0.000 to 0.089, the p value for close fit was 0.86 and the standardized RMR was 0.005. There 
were no meaningful modification indices larger than 4.  
 The output formatting for the model results for Figure 2 appears a bit differently than 
the standard output for Figure 1 because of the use of latent variables but, as noted, the 
numerical results are identical for model estimation of the corresponding parameters in the two 
models. Here is the portion of the output that focuses on the measurement model using the 
Table 1 output associated with Figure 2: 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E.  P-Value 
 
 LSR      BY 
    SR                 1.000      0.000    999.000    999.000 
 
 LEFF     BY 
    EFF                1.000      0.000    999.000    999.000 
 
 LWLOSS   BY 
    WLOSS              1.000      0.000    999.000    999.000 

 
Note that, as planned, each of the factor loadings is fixed at 1.000 in the Estimate column. 
The standard errors in the second column are all zero, because the parameters were fixed not 
estimated. Mplus prints the value 999 when a statistic can’t be computed, which is the case for 
the critical ratios and p values, again, because the parameter values they reference were fixed.  

Here are the Residual Variances for the observed indicators of the latent variables: 
 

Residual Variances 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E.   P-Value 
 
    WLOSS              0.000      0.000    999.000    999.000 
    SR                 0.000      0.000    999.000    999.000 
    EFF                0.000      0.000    999.000    999.000 
 

Each of the (measurement) error variances were a priori fixed at zero, as planned, so this output 
is as expected.  
 The path coefficients of interest in the model focus on the latent variables because it is 
at this level that the substantive causal relationships are specified. Here is the relevant output: 
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MODEL RESULTS 
 
                                                     Two-Tailed 
                    Estimate       S.E. Est./S.E.    P-Value 
 
 LSR      ON 
    TREAT              0.986      0.199      4.968      0.000 
 
 LEFF     ON 
    TREAT              1.187      0.202      5.867      0.000 
 
LWLOSS   ON 
    LSR                0.874      0.141      6.183      0.000 
    LEFF               1.056      0.151      6.990      0.000 
    TREAT              0.468      0.678      0.691      0.490 

 
The mean difference between the treatment and control conditions on the self-regulation 
mediator was 0.99 (critical ratio (CR) = 4.97, p < 0.001, margin of error (MOE) = ±0.40).2  
The mean difference between the treatment and control conditions on the self-efficacy 
mediator was 1.19 (CR = 5.87, p < 0.001, MOE = ±0.40). For the self-regulation mediator, for 
every one unit it increases, the mean weight loss is predicted to increase by 0.87 pounds, holding 
constant the other variables in the equation (CR = 6.18, p < 0.001, MOE = ±0.28). For the 
self-efficacy mediator, for every one unit it increases, the mean weight loss is predicted to 
increase by 1.056 pounds, holding constant the other variables in the equation (CR = 6.99, p < 
0.001, MOE = ±0.30). Finally, the direct effect of the treatment condition on weight loss was 
statistically non-significant (CR = 0.69, ns). To summarize, the program significantly changed 
each mediator and each mediator was statistically significantly predictive of weight loss. Note 
that the results in this output are identical to the results I would obtain for the Table 2 syntax 
for Figure 1, driving home the fact that Figure 1 assumes no measurement error. 
 From, the mediation analysis output for the Table 1 syntax, I obtain the total effect of 
the treatment condition on weight loss. Here is the output: 
 
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E. P-Value 
 
Effects from TREAT to LWLOSS 
 
  Total                2.584      0.659      3.920      0.000 
  Total indirect       2.116      0.342      6.190      0.000 

 

 
2 For the margin of error, I use the informal calculation method of doubling the standard error.  
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 The mean difference in weight loss over the two-week period between the treatment and 
control groups was 2.58 pounds (CR = 3.92, p < 0.001, MOE = ±1.32). This analysis also 
assumes no measurement error and the result will be the identical to what I would obtain from 
the syntax in Table 2.  
 The key to adjusting for measurement error for single indicators is to alter the Table 1 
syntax so that instead of fixing the measurement error variances to zero, I fix them to values 
that reflect the presumed levels of unreliability of each measure. It turns out that in a single 
indicator latent variable model per Figure 2, the observed score variance of a measure will equal 
the latent variable (“true” score) variance plus the error variance: 

var(X) = var(True) + var(Error)  

It follows that the unreliability of a measure, in proportion terms, equals 

Unreliability of X = var(Error)/var(X) 

and through simple algebraic manipulation, 

var(Error) = (Unreliability of X)*(var(X)                [1] 

Using Equation 1, I can create a table to calculate the amount of error variance in a measure 
that is associated with what I believe is the reliability of that measure. Table 3 presents such a 
table. I list in the first column the variance of each of the single indicator measures, taken from 
the Mplus output section labeled UNIVARIATE SAMPLE STATISTICS (or I can use the 
diagonal elements of the covariance matrix; or I can square the standard deviation from another 
software package). In the third column, I list what I think is the likely reliability of the measure, 
based on past research or pilot data. In column 4, I subtract from 1 the reliability index to 
obtain the unreliability index for the measure. Finally, in the last column, I multiply the Variance 
column by the Unreliability column to obtain the error variance associated with the measure.  

Table 3: Error Variance Associated with Reliability 

Measure Variance Reliability Unreliability Error Variance 
     

sr 4.184 0.80 0.20 4.184*0.20 = 0.8368 
eff 4.444 0.80 0.20 4.444*0.20 = 0.8888 

wloss 45.123 0.90 0.10 45.123*.10 = 4.5123 
 
 Next, I change the syntax in Table 1 to fix the error variances for the measures not to 
zero but instead to the values in the last column of Table 3. The new syntax is shown in Table 
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4. It is identical to Table 1 except for the changes on Lines 13 to 15.  

Table 4: Mplus Syntax for Latent Variable with Single Indicator 

1. TITLE: ANALYSIS OF SINGLE INDICATOR MODEL WITH LATENTS ; 
2. DATA: FILE IS wloss.dat ; 
3. VARIABLE: 
4. NAMES ARE id wloss sr eff treat ; 
5. USEVARIABLES ARE wloss sr eff treat ; 
6. MISSING ARE ALL (-9999) ; 
7. ANALYSIS:   
8. ESTIMATOR=MLR ;  
9. MODEL:  
10. LSR BY sr@1 ; 
11. LEFF BY eff@1 ; 
12. LWLOSS BY wloss@1 ; 
13. sr@0.8368 ; 
14. eff@0.8888 ; 
15. wloss@4.5123 ; 
16. [wloss@0]; [sr@0]; [eff@0] ; 
17.  [LSR] ; [LEFF] ; [LWLOSS] ; 
18. LSR ON treat ; 
19. LEFF ON treat ; 
20. LWLOSS ON LSR LEFF treat; 
21. MODEL INDIRECT: 
22. LWLOSS IND treat; 
23. OUTPUT: SAMP STDYX MOD(All 4) RESIDUAL CINTERVAL TECH4 ;  

 
When I execute the new syntax, I obtain new parameter estimates and significance tests that 
have been adjusted for the built-in levels of measurement error that I specified. I now highlight 
selected sections of the output to illustrate this. 
 The first section I examine is the standardized residuals for the targeted measures which 
shows the values of the unreliabilities for each one. I do this to ensure I did not make a mistake 
when calculating the error variance values. Here is the output: 
 
STDYX Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E. P-Value 
 
 Residual Variances 
    WLOSS              0.100      0.007     14.011      0.000 
    SR                 0.200      0.015     13.773      0.000 
    EFF                0.200      0.014     14.610      0.000 
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If I calculated and entered values correctly, the Estimates should correspond to the 
unreliabilities in Table 3. This was indeed the case. 
 The global model fit indices were unchanged. This will often be the case, but not always, 
depending on the model and the type of constraints you impose. 
   Here are the key parameter estimates of interest: 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E. P-Value 
 
 LSR      ON 
    TREAT              0.986      0.199      4.968      0.000 
 
 LEFF     ON 
    TREAT              1.187      0.202      5.867      0.000 
 
 LWLOSS   ON 
    LSR                1.109      0.185      6.012      0.000 
    LEFF               1.349      0.196      6.898      0.000 
    TREAT             -0.112      0.714     -0.157      0.876 

 
The treatment versus control mean difference on self-regulation and self-efficacy are the same 
as in the analysis that assumed perfect reliability, but the estimated standard errors and critical 
ratios differ. The estimates for the effects of the mediators on weight loss are different. In the 
original analysis, the coefficient for self-regulation was 0.874 whereas here it is 1.109; for every 
one unit that self-regulation increases, the mean weight loss is predicted to increase by 1.109 
pounds. In the original analysis, the coefficient for self-efficacy was 1.056. In the current 
analysis, it is 1.349; for every one unit that self-efficacy increases, the mean weight loss is 
predicted to increase by 1.349 pounds. The direct effect of the treatment condition on weight 
loss remains statistically non-significant. The standard errors and critical ratios for both 
mediators also differ when predicting weight loss.  
 From the mediation analysis, I obtain the estimated total effect of the treatment condition 
on weight loss. Here is the output: 
 
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                                                      Two-Tailed 
                    Estimate       S.E.    Est./S.E.   P-Value 
 
Effects from TREAT to LWLOSS 
 
  Total                2.584      0.659      3.920      0.000 
  Total indirect       2.696      0.439      6.139      0.000 
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The Total indirect effect in the prior analysis was 2.116; in the current analysis, it is 2.696.  
 In sum, the results from a model that adjusts for measurement error can differ from those 
of a model that assumes no measurement error. In this example, although some of the 
parameter estimates changed, the fundamental conclusions did not. The initial results were 
robust to the biasing effects of measurement error in terms of the conclusions I draw. In the 
next section, I delve into some of the intricacies of applying this fixed error variance approach.  

ISSUES IN APPLYING THE FIXED ERROR VARIANCE APPROACH 

Choosing Reliability Levels 

An important issue when using the fixed error variance method is how to choose a reliability 
level to impose on a measure. One strategy is to base the reliability on the psychometric history 
of the measure with comparable populations and contexts. However, sometimes we use 
measures that lack such history. If one is working with a unidimensional multi-item composite, 
another strategy is to use a reliability value based on the composite reliability from item analyses 
in the data. Such estimates, however, are just that – estimates; they are subject to error and can 
vary from sample to sample, an issue I discuss in more depth see below. Savalei (2018) suggests 
an approach where one simply uses an a priori specified reliability for all measures, such as 0.80. 
The chosen reliability is based on an educated guess of the upper bound reliability for all 
targeted measures in the model. Although Savalei provides simulation evidence in support of 
the approach, it seems crude in its failure to recognize that measures vary in their reliability, 
sometimes considerably so.  
  Westfall and Yarkoni (2016) suggest a sensitivity approach in which the results of the 
SEM model are compared across a range of plausible reliability values. Although I embrace this 
suggestion in principle, my own experience is that implementing it can be challenging. For 
example, if my model has 4 error-prone single indicators and if I consider three levels of 
reliability for each (e.g., low = 0.70, medium =0.80, high = 0.90), there are 34 = 81 different 
reliability combinations. Nor is it clear the bases upon which one would choose to make 
conclusions across the 81 scenarios. A compromise is to select a prototypical “low reliability” 
profile, a “medium” reliability profile, and a “high reliability profile” based on one’s prior 
knowledge of the measures and then test if the substantive conclusions are robust across the 
profiles. If the conclusions are robust, one moves forward with the conclusions with greater 
confidence. If not, one characterizes the necessary qualifications and moves forward with 
tentativeness. 
 I find that when I select reliability profiles that are low in reliability across all measures, I 
often encounter estimation problems, either in the form of non-convergence or wildly large 
standard errors. This can occur if one overcorrects for unreliability. For example, if the 
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correlation between two variables is 0.75 and I assume both variables have a reliability of 0.70, 
the error corrected correlation between the variables turns out to be greater than 1.00, which 
is impossible, causing Mplus to give an error message. Sometimes the violations of plausible 
reliability are more subtle than this. For example, if the correlation between X and Z is 0.50 
and the correlation between X and Y also is 0.50, then the correlation between Z and Y must 
be between -0.06 and 0.57. The use of erroneously low reliabilities might produce a Z-Y 
correlation outside this range, causing estimation difficulties in the SEM program. It usually is 
better to start with upper bound estimates of measure reliability as suggested by Savalei (2018) 
and then to explore robustness of conclusions as one introduces graduated reliability 
degradation. This approach can be used to identify the boundary conditions of conclusions 
relative to measure reliability.  
 In sum, there is no simple, straightforward rule for choosing reliability levels in the fixed 
error variance single indicator approach. However, using traditional SEM is tantamount to 
assuming there is no measurement error in any of the measures, which seems to bold a 
proposition. My own approach is to start with a traditional analysis. However, I then test the 
robustness of my conclusions as I progressively degrade measure reliability across plausible 
reliability scenarios, being careful to avoid over-correction.      

Incorporating Uncertainty  

Sometimes when we fix error variances to a given value, we are reasonably certain of the true 
population value of the error variance. If I calculate the error variance value based on a 
reliability estimate derived from sample data that has a very large N, then there likely is little 
sampling error associated with that estimate; I am reasonably certain of the error variance value 
I decide to specify even though it is from sample data. By contrast, if the estimate is based on 
a smaller N, the reliability estimate is subject to non-trivial sampling error. Now there is 
uncertainty about the correct value at which to fix the error variance. Oberski and Satorra 
(2013) argue that the standard errors for a parameter estimate corrected by uncertain reliability 
estimates should reflect the extent to which the reliability estimates are subject to sampling 
error. They suggest an inflation factor that can be incorporated into the estimation of parameter 
standard errors to reflect this dynamic. Importantly, the inflation factor can range from trivial 
to sizeable depending upon (a) the model structure and (b) the degree of sampling error in the 
reliability estimate. Oberski and Satorra’s approach requires formal quantification of the 
sampling error associated with error variances which can be difficult in practice. However, their 
work is important because it underscores the need to appreciate the possibility that standard 
errors derived using the fixed error variance approach can be affected when relying on data-
dependent methods to estimate values at which to fix the error variances. Their analysis also 
underscores the utility of sensitivity analyses using different reliability scenarios.     
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Bayesian Corrections 

If you are using Bayes estimation, then the strategy of fixing measurement error variance for a 
single indicator to a non-zero value works but you cannot fix it to zero; this wreaks havoc with 
Bayesian estimation. If for whatever reason you want to fix it at zero (for example to use the 
Mplus XWITH command for a single indicator), you must instead fix the measurement error 
variance to a very small value close to zero. Asparouhov & Muthén (2020) recommend using a 
value that is between 1% and 3% of the total variance of the observed variable. Dor further 
discussion of this issue, see Asparouhov & Muthén (2020).    

Addressing Systematic Measurement Error 

The above discussion focuses on the case of random measurement error. For the case of 
systematic measurement error, once can use analogs of the fixed error variance approach. 
Suppose for example, that I wanted to test for effect sensitivity to the presence of correlated  
measurement errors in Figure 2. For example, I might hypothesize that social desirability 
tendencies impact both the self-regulation and self-efficacy measures of the mediators, which 
would create a correlation between e1 and e2 (assuming the variances of e1 and e2 have been 
fixed to non-zero values). It is possible to fix the covariance between fixed error variances to 
explore robustness of conclusions across correlated errors. The covariance between two errors 
equals 

cov(e1,e2) = re1e2  sde1 sde2 

where cov(e1,e2) is the covariance between e1 and e2, re1e2 is the correlation between e1 and 
e2, sde1 is the presumed standard deviation of e1, and sde2 is the presumed standard deviation 
of e2. If the error variance of self-regulation is fixed at 0.8368 and the error variance of self-
efficacy is fixed at 0.8888, then their respective standard deviations are the square roots of these 
values, 0.9147 and 0.9428. To fix the correlation between the errors at 0.20, this translates into 
a covariance of (0.20)(0.9147)(0.9428) = 0.172. I would then add a WITH statement to the model 
commands of Mplus that fixes the relevant covariance to 0.172, namely 

sr WITH eff@0.172 ; 

This will then adjust for the presumed level of correlated error. The same challenges described 
earlier apply to this strategy, but in more complex ways. The approach should be used with 
caution but it is, in principle, possible.  

ITEM PARCELS 

Another approach to adjust for measurement error when using a multi-item single indicator is 



                                                                                                             Measurement Error    14 

 
 

to create item parcels. If I have a 30-item scale, I might divide it into three sets of 10 items and 
then form a composite score for each of these 10 item “parcels” of items. I then use the 
composite scores of the three parcels as separate indicators of the target latent construct and 
apply multiple-indicator SEM to address measurement error when estimating parameters. 
Although each parcel composite will be less reliable than the full 30-item composite, SEM takes 
this into account when calculating parameter estimates.  
 The literature surrounding the use of parceling is complex and filled with conflicting 
advice. In back-to-back articles in the same issue of Psychological Methods, Marsh et al. (2013) 
published an article titled “Why item parcels are (almost) never appropriate: Two wrongs do 
not make a right; camouflaging misspecification with item parcels in CFA models” followed 
immediately by an article by Little et al. (2013) titled “Why the items versus parcels controversy 
needn’t be one.” Interestingly, neither article mentioned the other. I found it instructive to read 
both articles, but I tend to resonate to the Little et al. summary of their viewpoint (p. 285):  
 

“Parcels, per se, are not inaccurate, incorrect, or faulty. When thoughtfully composed, parcels 
provide efficient, reliable, and valid indicators of latent constructs. By considering the sources of 
variance of the items that go into parcels, including construct variance, specific variance, and 
measurement error, researchers can construct parcels with good measurement properties that can 
clarify the relations among latent variables. Parcels are not always appropriate and they are not 
always implemented correctly (Bandalos & Finney, 2007); we argue that these situations are 
no reason to remove this measurement tool from a researcher’s arsenal of techniques.” 

 
 As noted in Chapter 3 of my book, composites can be either unidimensional or 
multidimensional in character. I focus first on the case where the scale to be split into parcels 
is functionally unidimensional, an area where Little et al. and Marsh et al. tend to agree. Relevant 
to my discussion are psychometric distinctions between parallel indicators/items, tau equivalent 
indicators/items, and congeneric indicators/items. Parallel indicators have equal amounts of 
true-score variance and equal amounts of error variance. A factor analysis of them will reveal 
equal loadings and equal error variances. Tau-equivalent indicators have equal amounts of 
true score variance but can have different amounts of error variance. This also can be revealed 
in a factor analysis of the items. Congeneric indicators share true-score variance but the 
amount of such variance varies across indicators. Congeneric indicators also can have different 
error variances. The best strategy to form parcels differs depending on whether items of the 
broader test are parallel, tau-equivalent, or congeneric, as I elaborate shortly.  
 One issue when creating parcels is how many parcels to create. Little at al., (2013) argue 
for using a just-identified measurement space, which implies the use of three parcels. Marsh et 
al. (2013) prefer more indicators, hence more than three parcels. Both groups agree that 
creating two indicator/parcel models runs the risk of empirical under-identification and 
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convergence difficulties, especially with smaller sample sizes. If the number of items is large, 
forming a larger number of parcels than three is viable. However, I often find that I am in 
situations were this is not possible because my multi-item scales have too few items.  
 Marsh et al. lean towards avoiding composites/parcels altogether and using all the single 
items as indicators of a single latent construct when modeling relationships between latent 
variables. Unfortunately, this is unrealistic in practice given sample sizes typical of RETs. If I 
have five latent constructs measured by composites of 10 items each and I measure them each 
at baseline, posttest, and follow-up, I must contend with a 150X150 covariance matrix. This is 
too large for most RETs.   
 Sometimes single items have relatively small amounts of true score variance and large 
amounts of random error. When aggregated into a composite, the true score variance 
accumulates and the positive and negative random errors cancel. As such, when there are more 
items in a parcel, the parcel tends to have higher factor loadings and less random measurement 
error, especially if the items approximate parallel indicator properties. Studies have shown that 
factor analytic and multiple-indicator SEM models often fare better when items/indicators 
have large loadings and small error variances (e.g., MacCallum et al, 1999). This favors not 
making the parcels too sparse in terms of the number of items they contain and questions 
Marsh’s preference for using each item as a single indicator in its own right.  
 Different strategies have been suggested for segregating items into parcels. One popular 
but imperfect approach is that of random assignment of items to parcels with the constraint 
that parcels have roughly an equal number of items (Bandalos & Finney, 2001; Williams & 
O’Boyle, 2008). This strategy works best when there are many items that are parallel indicators 
with high loadings and do not have correlated errors, i.e., one can assume items are 
approximately interchangeable. Sterba and MacCallum (2010) have shown that structural model 
parameter estimates from one parcel allocation to the next can vary depending on how the 
random draw comes out. They recommend replicating results across different random draws 
to assure results are stable. 
 Instead of random assignment of items, a different approach involves balancing (Little 
et al., 2013). Balancing pairs the item with the highest loading with the item with the lowest 
loading into the first parcel; the next highest loading item and next lowest loading item are 
paired into the second parcel; the third highest and third lowest loading items are paired to 
form the third parcel. If there are three parcels and nine items, the process would be repeated 
for the next three item pairs but this time reversing the order of the parcel number in which 
the pairs are assigned. The general logic is that an item with a high loading reflects strong 
support for the construct so we match that with a weaker item. Across parcels, parallel or tau 
equivalence should then be approximated. This method has been found to work reasonably 
well for unidimensional scales (Rogers & Schmitt, 2004; Yang, Nay, & Hoyle, 2010).  
 Another issue to keep in mind for unidimensional scales is the need to assure that the 
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content universe of items is evenly distributed within parcels. One wants to avoid one parcel 
having all items of one type while another parcel has all items of a different type. Landis et al. 
(2000) found that having researchers place items into parcels based on theory tended to result 
in more bias than using an empirical approach. Ideally, both empirical and theoretical 
information are used jointly to inform parceling (Little et al., 2013). Both Marsh et al. (2013) 
and Little et al. (2013) agree that parceling should not be done on a strictly a priori basis. Rather, 
researchers should engage in thorough item analyses and ensure they fully understand the 
psychometric properties of the items to decide an appropriate parceling strategy.  
 Strategies for parceling multi-dimensional scales are more controversial (Graham, 
Tatterson, & Widaman, 2000; Graham, 2004; Hall et al., 1999). One strategy that does not 
assume unidimensionality is correlational parceling in which items that correlate most 
strongly with one another are assigned to a parcel (Landis et al., 2000; Rogers & Schmitt, 2004). 
Another strategy is known as facet-representative parceling in which items that share facet-
relevant content are assigned to the same parcel (Little et al., 2002; Kim & Hagtvet, 2003). 
Marsh et al. (2013) are skeptical about parceling strategies for multi-component constructs.  
 Several researchers have argued that parcels with SEM are almost always a better choice 
than using fully aggregated scales that ignore the presence of measurement error (Coffman & 
MacCallum, 2005), but the evidence for this argument is somewhat mixed if sample sizes are 
small (Ledgerwood & Shrout, 2011). I recommend you read the Marsh et al. (2013) and Little 
et al. (2013) articles for further elaboration of core issues in parceling. A nice summary of 
relevant issues for parceling and a careful analysis of the advantages and disadvantages of 
parceling is presented in Little, Rioux, Odejimi and Stickley (2022). 

CONCLUDING COMMENTS 

Measurement error can produce non-trivial bias when evaluating causal models (Cole & 
Preacher, 2014). This primer reviewed two methods for addressing it in the context of single 
indicator models, a fixed error variance approach and item parceling. Both have strengths and 
weaknesses.  
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