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Mathematical Modeling

Even if there is only one possible unified theory, it is just a set of rules and 
equations.

—Stephen W. Hawking (1988)

This chapter describes an approach to theory construction called mathematical mod-
eling. Like causal modeling, the approach involves describing relationships between 
variables, but the emphasis is on describing those relationships using mathematical 
concepts. Mathematical models can be used in conjunction with causal thinking, as we 
demonstrate in a later section of this chapter, but social scientists who use mathemati-
cal modeling tend not to think in terms of indirect causes, mediated relationships, and 
moderated relationships in the way that we outlined in Chapter 7. Instead, they focus on 
thinking about functions and describing relationships mathematically based on func-
tions. They more often than not use nonlinear relationships. Our focus here is not on 
integrating causal and mathematical modeling as approaches to theory construction. 
Rather, we merely wish to provide you with an additional tool for your theory construc-
tion toolbox, mathematical modeling, as you strive to gain insights into the phenomena 
you want to study.

Constructing mathematical models can involve complex mathematics that go well 
beyond the background of many readers of this book. Entire books have been written 
on mathematical modeling that assume years of study of calculus and formal mathemat-
ics. Our treatment must, accordingly, be limited, and we provide only a general sense 
of building mathematical models and thinking as a math modeler would. However, the 
chapter should be a good starting point for delving into this approach in more depth 
vis-à-vis the suggested readings at the end of the chapter.

Mathematical modeling is common in the physical sciences, but it is used less 
often in the social sciences. Our goal is to provide you with a sense of mathematical 
modeling as it is pursued in the social sciences. In this chapter we first expose you to 
basic concepts and terms you will encounter as you read about math models or pursue 
mathematical modeling. More specifically, we distinguish between categorical, discrete, 
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and continuous variables; differentiate axioms and theorems; introduce the notion of 
a function; use linear functions to identify key features of functions; and describe the 
difference between deterministic and stochastic models. We also provide an intuitive 
overview of derivatives, differentiation, integrals, and integration in calculus, as well 
key notions of model identification and metrics. We next describe five commonly used 
functions in math models: logarithmic functions, exponential functions, power func-
tions, polynomial functions, and trigonomic functions, as well as functions for categori-
cal variables. We conclude our background section by considering ways of transforming 
and combining functions and building functions for multiple variable scenarios.

Following the presentation of these key concepts, we describe the phases of build-
ing a mathematical model and then provide four examples of such models in the social 
sciences. We then briefly characterize chaos theory and catastrophe theory as influential 
mathematical models in the social sciences. Our initial discussion may seem a bit frac-
tured as we develop one mathematical concept after another. Be patient. Later sections 
will pull it all together.

TYPES OF VARIABLES: CATEGORICAL, DISCRETE, AND CONTINUOUS

In Chapter 6 we distinguished between categorical and quantitative variables. A cat-
egorical variable has different “levels,” “values,” or “categories,” and there is no special 
ordering to the categories along an underlying dimension. The categories are merely 
labels that differentiate one group from another (e.g., “male” or “female” for the variable 
of gender). In contrast, a quantitative variable is one in which individuals (in the social 
sciences) are assigned numerical values to place them into different categories, and the 
numerical values have meaning in that they imply more or less of an underlying dimen-
sion that is of theoretical interest.

Mathematical modelers make distinctions between discrete quantitative variables 
and continuous quantitative variables. A discrete variable is one in which there are a 
finite number of values between two values. For example, for the number of children in 
a family, there is a finite number of values, say, between 1 child and 4 children, namely 
the values of 2 children and 3 children. We do not think of there being 1.5 children or 
1.7 children in a family. For a continuous variable, however, there is an infinite number of 
values between any two values. Reaction time to a stimulus is an example of a continu-
ous variable. Even between the values of 1 and 2 seconds, an infinite number of values 
could occur (e.g., 1.001 seconds, 1.873 seconds, 1.874 seconds).

Whether a variable is classified as discrete or continuous depends on the nature of 
the underlying theoretical dimension and not on the scale used to measure that dimen-
sion. Tests that measure intelligence, for example, yield scores that are whole numbers 
(e.g., 101, 102); hence the scores are discrete. Nevertheless, intelligence is continuous 
in nature because it involves a dimension that permits an infinite number of values to 
occur, even though existing measuring devices are not sensitive enough to make such 



�		  Mathematical Modeling	 179

fine distinctions. In the reaction time example, the measurement of time can be very 
precise with modern equipment, but there even is a limit to the precision possible with 
measures of time. Such limits in the precision of measurement do not make the underly-
ing dimension discrete. Reaction time is continuous in character.

Even though social scientists often must rely on discrete measures of continuous 
constructs, they build models with those measures as if they were continuous. As long 
as the measures are comprised of many values, this practice usually is not problematic. 
It is only when the number of values in the measure of a continuous variable is few 
that problems can arise and special considerations in the modeling effort need to be 
made.

The distinction between discrete and continuous variables is important because 
the strategies used to construct a mathematical model differ depending on whether the 
quantitative variables are discrete or continuous. We devote most of our attention to the 
case in which the theorist is working with continuous variables, but we occasionally 
consider qualitative and discrete variables as well.

AXIOMS AND THEOREMS

The term axiom is used in many ways in the social sciences, but in mathematics, an 
axiom is a mathematical statement that serves as a starting point from which other 
mathematical statements are logically derived. Axioms are “given.” They are not derived 
through deduction, nor are they the subject of mathematical proofs. They are starting 
points. By contrast, a theorem is a statement that can be logically derived from, or is 
proven by, one or more axioms or previous statements. The use of these terms and many 
variants of them (e.g., a proposition, a lemma, a corollary, a claim, an identity, a rule, a 
law, a postulate, a principle) vary somewhat depending on the branch of mathematics, 
but the above characterization captures the essence of axioms and theorems as used in 
mathematical models in the social sciences.

FUNCTIONS

Functions are central to mathematical modeling. A simple analogy for thinking about 
functions is to think of a machine that you put something into and get something back, 
based on what you input. For example, you might press a key that inputs the number 3 
into a machine and out comes the number 9. You might press another key that inputs 
the number 5 into the machine and out comes the number 15. The machine in this case 
represents the function “take the input value and triple it.” Functions in math typically 
involve numbers as inputs and outputs.

Suppose we decide to name our machine Jack. We can write the function that the 
machine performs as follows:
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	 Jack(X) = 3X

This equation states that whatever the value of X, the value of “Jack of X” will be triple 
it. The traditional notation is to name the machine f (for “function”) and write it as fol-
lows:

	 f(X) = 3X

All functions have what are called a domain and a range. The domain is the set of 
possible input values, and the range is the set of possible output values. The domain 
and range often are stated mathematically rather than listed as individual numbers. For 
example, for the function

	 f(X) = 3X −

the domain or possible input values is any number greater than or equal to 3 (because 
you can not calculate the square root of a negative number), and the range or possible 
output values is any value greater than or equal to 0.1 The domain is any number that 
produces a “meaningful output” and that will not cause the machine to malfunction 
(e.g., the number 2, which would require us to calculate the square root of –1). A short-
hand way that mathematical modelers use to express the domain is “the domain is {X|X 
≥ 3},” where the symbol “|” is read as “given that.” This expression states that the domain 
is equal to X, given that X is greater than or equal to 3. This may seem a bit cryptic, but 
it is an efficient way of stating a domain or a range. For example, I might have a function 
where the domain is {X|X > 0} and the range is {Y|Y > 0}.

Functions can apply to more than a single input. For example, the function f(X,Z) 
= X – Z has two inputs, X and Z, and an output that is the difference between them. For 
example, if X = 5 and Z = 2, the function f(X,Z) yields the output 3.

Functions are the foundation of mathematical models. When one “maps” a func-
tion between Y and X, one attempts to specify what function applied to values on X will 
produce the values of Y. A central task in mathematical modeling is that of mapping 
functions.

LINEAR FUNCTIONS

One of the most commonly used functions in the social sciences is the linear function. 
In this section we describe the nature of linear functions and then use them to illustrate 

1For pedagogical reasons, we restrict all examples in this chapter to real numbers.
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basic issues in building mathematical models. In later sections we consider other func-
tions.

The Slope and Intercept

The Slope

Consider the two-variable example we used in Chapter 6 to develop the general idea 
of a linear relationship, namely, the number of hours an employee worked, X, and the 
amount of money paid to the employee, Y. Assume a scenario where each of four indi-
viduals works at a rate of $1 per hour. Their scores are:

					     X	 Y 
	 Individual		  (hours worked)	 (dollars paid) 
	   1				    1	 1 
	   2				    4	 4 
	   3				    3	 3 
	   4				    2	 2

The relationship between X and Y is illustrated in Figure 8.1, which uses a scatterplot 
with connected dots. As indicated by the straight line on the scatterplot, there is a linear 
relationship between X and Y. This relationship can be stated mathematically as

	 Y = X

FIGURE 8.1.  Linear relationship with slope = 1.
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In other words, the number of dollars paid equals the number of hours worked.
Suppose the individuals were not paid $1 per hour, but instead were paid $2 per 

hour. The scores on X and Y would be as follows:

					     X	 Y 
	 Individual		  (hours worked)	 (dollars paid) 
	   1				    1	 2 
	   2				    4	 8 
	   3				    3	 6 
	   4				    2	 4

In this case, the relationship between X and Y can be stated as

	 Y = 2.00X

In other words, the number of dollars paid equals 2 times the number of hours worked. 
Figure 8.2 presents a scatterplot of these data (line B) as well as the data from Figure 8.1 
(line A). (Line C is explained on p. 184.) Notice that we still have a straight line (and, 
hence, a linear relationship) but, in the case of $2 per hour, the line rises faster than 
with $1 per hour; that is, the slope of the line is now steeper. Technically, the slope of 
a line indicates the number of units that variable Y changes when variable X increases 
by 1 unit. It is the rate of change in Y given a 1-unit increase in X. When the wage is $2 
per hour, a person who works 1 hour is paid $2, a person who works 2 hours is paid $4, 

FIGURE 8.2.  Example of linear relationships with different slopes or intercepts.
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and so on. When X increases by 1 unit (e.g., from 1 to 2 hours), Y increases by 2 units 
(e.g., from $2 to $4). The slope that describes this linear relationship is therefore 2. In 
contrast, the slope that describes the linear relationship Y = X is 1.0, meaning that as X 
increases by 1 unit, so does Y. One way in which linear relationships differ is in terms 
of the slopes that describe them.

The slope that describes a linear relationship can be determined from a simple 
algebraic formula. This formula involves first selecting the X and Y values of any two 
individuals. The slope is computed by dividing the difference between the two Y scores 
by the difference between the two X scores; in other words, the change in Y scores is 
divided by the change in X scores. Algebraically,

	 b = (Y2 – Y1)/(X2 – X1)	 (8.1)

where b represents the slope, X1 and Y1 are the X and Y scores for any one individual, 
and X2 and Y2 are the X and Y scores for any other individual. In our example, inserting 
the scores for individuals 1 (X = 1, Y = 2) and 2 (X = 4, Y = 8) into Equation 8.1, we find 
that the slope for line B is

	 b = (2 – 8)/(1 – 4) = 2.00

This is consistent with what was stated previously.
The value of a slope can be positive, negative, or 0. Consider the following scores:

	 Individual		  	 X	 Y 
	   1				    2	 3 
	   2				    1	 4 
	   3				    4	 1 
	   4				    3	 2

Inserting the scores for individuals 2 and 4 into Equation 8.1, we find that the slope is

	 b = (4 – 2)/(1 – 3) = –1.00

Figure 8.3 presents a scatterplot of the data for this relationship. The relationship is still 
linear, but now the line moves downward as we move from left to right on the X axis. 
This downward direction characterizes a negative slope, whereas an upward direction 
characterizes a positive slope. A slope of 0 is represented by a horizontal line because 
the value of Y is constant for values of X.

In sum, a positive slope indicates a positive or direct linear relationship between X 
and Y, whereas a negative slope indicates a negative or inverse linear relationship between 
X and Y. In the case of a positive relationship, as scores on X increase, scores on Y 
also increase. In the case of a negative relationship, as scores on X increase, scores on Y 
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decrease. For instance, the slope in Figure 8.3 is –1.00, meaning that for every unit X 
increases, Y decreases by one unit.

The Intercept

Let us return to the example where individuals are paid $2 per hour worked. Suppose 
that in addition to this wage, each individual is given a tip of $1.50. Now the relationship 
between X and Y is

	 Y = 1.50 + 2.00X	 (8.2)

Line C of Figure 8.2 plots this relationship for the four individuals. If we compute the 
slope of this line, we find it is 2.00, as before. Notice that lines C and B are parallel but 
that line C is higher up on the Y axis than line B. The amount of separation between 
these two lines can be measured at the Y axis, where X = 0. When X = 0, the Y value is 
1.50 for line C and 0 for line B. Thus, line C is raised 1.50 units above line B.

The point at which a line intersects the Y axis when X = 0 is called the intercept, and 
its value is denoted by the letter a. Another way of thinking about the intercept is that it 
is the value of Y when X is zero.

Linear relationships can differ in the values of their intercepts as well as the values 
of their slopes. The general form of a linear equation is

	 Y = a + bX	 (8.3)

FIGURE 8.3.  Example of a negative slope.
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Stated more formally, the linear function is

	 f(X) = a + bX

where a and b are constants representing an intercept and slope and X is a variable. A 
variable, Y, is described by this function if Y = f(X), that is, Y = a + bX. Equation 8.3 is 
called a linear equation.

DETERMINISTIC VERSUS STOCHASTIC MODELS

Any linear relationship can be represented by Equation 8.3. A slope and intercept always 
describe the linear relationship between two variables. Given values of the slope and 
intercept, we can substitute scores on X into the linear equation to determine the cor-
responding scores on Y. For example, the linear equation Y = 1.50 + 2.00X tells us that 
an individual who works for 2 hours is paid $5.50 because the Y score associated with 
an X score of 2 is

	 Y = 1.50 + 2.00X = 1.50 + (2.00)(2) = $5.50

An individual who works for 3 hours is paid Y = 1.50 + (2.00)(3) = $7.50, and an indi-
vidual who works for 4 hours is paid Y = 1.50 + (2.00)(4) = $9.50.

When one variable is a linear function of another, all the data points on a scatterplot 
will fall on a straight line. However, rarely in the social sciences will we encounter such 
situations. When two variables only approximate a linear relationship, we need to add a 
term to the linear equation to accommodate random disparities from linearity. The term 
is called a disturbance or error term, yielding the equation

	 Y = a + bX + e

where e is the difference between the observed Y score and the predicted score based 
on the linear function. The errors are assumed to be random rather than systematic 
because if the errors were systematic, then some meaningful form of nonlinearity would 
be suggested and would need to be modeled. It is important to keep in mind that e is an 
unmeasured variable that reflects the disparity between scores predicted by the model 
and observed scores.

Formal mathematical models do not include an error term when specified at the 
theoretical level. In this sense, they are deterministic rather than probabilistic. However, 
when testing mathematical models empirically, it is common for researchers to include 
an error term because there usually is some random “noise” that creates disparities from 
model predictions. A common practice is to identify the function that seems appropri-
ate for predicting and understanding a phenomenon and then, in data-based tests of the 
model, to add an error term to accommodate the hopefully small but random discrep-
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ancies that seem inevitable. A model is better if the discrepancies from predictions are 
trivial and have no practical consequence.

In the world of mathematical models, you will encounter distinctions between 
deterministic and probabilistic models. A deterministic model is one in which there is no 
random error operating. The model performs the same way for any given set of condi-
tions. In contrast, a probabilistic model is one in which some degree of randomness is 
present. Probabilistic models are also sometimes referred to as stochastic models.

MODEL PARAMETERS

Adjustable Parameters and Parameter Estimation

Mathematical models typically include variables that are measured as well as constants 
whose values can be derived logically or estimated from data. For example, in the linear 
function

	 f(X) = a + bX

there is a variable, X, and two model constants that need to be specified, the intercept, 
a, and the slope, b. Constants such as the intercept and the slope are called adjustable 
parameters or adjustable constants, because their values can be set by the theorist to dif-
ferent values so as to affect the output of the function. For example, we might state that 
annual income is a function of the number of years of education, where the function is 
defined as f(X) = 1,000 + 5,000X. If the number of years of education is 2, then output of 
the function is 1,000 + (5,000)(2) = 11,000. By contrast, we might state that the function 
is f(X) = 2,000 + 4,000X. If the number of years of education is 2, then the output of the 
function is 2,000 + (4,000)(2) = 10,000. The slope and intercept are adjustable constants 
that affect the output value of the function as different values of X are substituted into 
the function.

When one is unsure what the value of the adjustable constants should be, then 
strategies can be used to estimate their values empirically based on data. For example, 
in a linear model where the relationship between Y and X is linear, except for the pres-
ence of random noise (i.e., Y = a + bX + e), a researcher might obtain data for the values 
of Y and the values of X for a group of individuals and then use traditional least-squares 
regression methods to estimate the values of the intercept and slope.

Mathematical models differ in the number of adjustable constants they include and 
in the number of constants that must be estimated from data. Models with many param-
eter values that must be estimated are less parsimonious and often present greater chal-
lenges for testing than models with fewer estimated parameters. When the value of an 
adjustable parameter is specified a priori by the theorist and not estimated, it is said to 
be fixed. When the value of the adjustable parameter is estimated from data, it is said to 
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be estimated. Thus, you will hear reference to fixed parameters and estimated parameters 
in math models.

RATES AND CHANGE: DERIVATIVES AND DIFFERENTIATION

Parameters in a mathematical model often are subject to meaningful interpretation. In 
the linear model, Y = a + bX, the slope reflects the predicted change in Y given a 1-unit 
change in X. It is calculated using Equation 8.1, which we repeat here:

	 b = (Y2 – Y1)/(X2 – X1)

The slope is meaningful because it provides a sense of how much change in Y we can 
expect, given a change in X. Note that in the linear model, it does not matter where the 
change occurs on the X continuum. A 1-unit change on X, at the low end of the X con-
tinuum, will produce the same amount of change in Y as a 1-unit change in X at the high 
end of the X continuum. The value of the slope tells us how much change this is.

The slope is, in essence, a rate of change in Y, given a unit change in X. More gener-
ally, if we describe the change in Y between any two points as

	 ∆Y = Y2 – Y1

and the change in X between those same two points as

	 ∆X = X2 – X1

then the rate of change in Y relative to the change in X is the ratio of these

	 Rate of change = 2 1

2 1

Y Y Y

X X X

∆ −=
∆ −

which, in this case, is the value of the slope. If ∆Y = 4 and ∆X = 2, then the rate of change 
of Y relative to a unit change in X is 4/2 = 2.

The property of equal amounts of change at all points on the X continuum does not 
apply to nonlinear relationships. Consider the nonlinear relationship between Y and X 
shown in Figure 8.4. At low values of X, small changes in X result in no change in Y, 
whereas at high values of X, small changes in X result in large changes in Y. The impact 
of a 1-unit change in X differs depending on the part of the X continuum at which the 
change occurs.

When analyzing change, two fundamental concepts from calculus are helpful: 
derivatives and differentiation. Derivatives refer to the concept of instantaneous change, 
and differentiation refers to algebraic methods for calculating the amount of instanta-
neous change that occurs. Let us explore these concepts in more depth.
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Instantaneous Change

Suppose we want to measure the speed of a car driving between two towns, Town A and 
Town B, that are 120 miles apart. Let Y be the distance traveled by the car. When the car 
is in Town A and just about to begin its journey, the car has traveled 0 miles, so we set 
Y1 = 0. When the car reaches Town B, it has traveled 120 miles, so we set Y2 = 120. Now 
let X be the amount of time the car spends traveling. Before the car leaves Town A, X1 = 
0 hours. Suppose when the car finally reaches Town B, the car has been on the road for 
2 hours. This means that X2 = 2 hours. Using the logic from above, the rate of change in 
Y as a function of X is

	 Rate of change = 2 1

2 1

( ) (120 0)
60

( ) (2 0)

Y Y Y

X X X

− ∆ −= = =
− ∆ −

	 (8.4)

or 60 miles per hour. A 1-unit change in time (X, as measured in hours) is associated 
with a 60-unit change in distance (Y, as measures in miles).

The value of 60 miles per hour represents the average speed of the car during the 
entire trip. But it is probably the case that the car did not travel at a speed of exactly 60 
miles per hour during the entire trip. At times, it probably was driven faster and at other 
times, slower. Suppose we wanted to know how fast the car was going 15 minutes into 
the trip. One way of determining this number is to define values for X1 and Y1 at 14 min-
utes and 59 seconds into the trip and then to define X2 and Y2 values at 15 minutes and 
1 second into trip. We could then apply Equation 8.4 to this more narrowly defined time 
frame. Although the result would give us a sense of how fast the car was being driven 15 

FIGURE 8.4.  Nonlinear relationship for derivative example.
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minutes into the trip, it would not tell us how fast the car was being driven at exactly 15 
minutes into the trip. We want to know at the very instant of 15 minutes into the trip, 
how fast the car was going, that is, what its rate of change was at that particular instant. 
It is this concept of instantaneous change to which a derivative refers. The velocity that 
the car is traveling at an exact point in time maps onto the notion of a derivative.

For a nonlinear relationship such as that in Figure 8.4, it is possible to use differ-
entiation to calculate the instantaneous rate of change in Y at any given value of X. The 
derivative is the (instantaneous) slope of Y on X at that given point of X. It is analogous 
to specifying the speed at which a car is being driven at a specific point in time. For 
some modeling problems, calculating a derivative by the process of differentiation is 
straightforward. For other problems, it can be quite complex. Methods of differentiation 
are taught in calculus and need not concern us here. The main point we want to convey 
is that in many forms of mathematical modeling, rates of change in Y as a function of 
changes in X are described using the language of derivatives, and it is important that you 
have a sense of that language.

For linear models, the instantaneous rate of change in Y at some point on the X con-
tinuum is the same as the instantaneous rate of change in Y at any other point on the X 
continuum. By contrast, for the nonlinear relationship in Figure 8.4, the instantaneous 
rate of change depends on where on the X continuum the change is occurring. In Figure 
8.4 the derivative (i.e., instantaneous rate of change) when X = 1 is 0.04, whereas when 
X = 4, the derivative is 1.98. We calculated these values using calculus. A common nota-
tion for signifying a derivative is dY/dX. A common phrase for describing derivatives is 
to state “the value of the derivative at X = 4 is 1.98.” If the derivative has the same value 
at all points on X (as is the case for a linear relationship), then one refers simply to “the 
derivative” without specifying the value of X at which the derivative is calculated.

You also may encounter a derivative expressed as a rate of change (∆Y and ∆X), but 
invoking what is called a limit, perhaps as follows:

	

The left-hand part of this expression contains the abbreviation lim (for the word limit), 
and the entire expression describes symbolically the idea of instantaneous change. Spe-
cifically, this expression is read as “the change in Y relative to the change in X as the 
change in X approaches its lower limit of zero” (analogous to the case where we calcu-
lated speed at exactly 15 minutes into the trip). The expression is just a way of referring 
to a derivative in a more formal way.

Second and Third Derivatives

In calculus some functions have higher-order derivatives, such as a second derivative or a 
third derivative. We will not use second or third derivatives in the mathematical models 
considered in this chapter, but it will help to have some appreciation for these concepts. 
As noted above, a derivative refers to a rate of change of one variable (∆Y) relative to the 
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rate of change of another variable (∆X) in the context of instantaneous change. In our 
driving example, the first derivative refers to the speed or velocity with which a car is 
driven at any given point in time. Suppose the car is driving along and the driver decides 
to speed up. The result of pressing harder on the accelerator is that the car’s velocity (i.e., 
the first derivative) increases. A second derivative in this case refers to the change in the 
first derivative that occurred at any given instant. It is analogous to what we commonly 
call acceleration. When you press the accelerator pedal, you “change” your speed. How 
much your speed changes at a given instant is the idea of a second derivative. If, in turn, 
your rate of acceleration changes (e.g., you “let off” the pedal and decelerate), then this 
maps onto the idea of a third derivative.

In a linear function the value of the second derivative is zero, because there is never 
a change in the value of the first derivative at different points of X. For nonlinear rela-
tionships, the value of the second derivative is nonzero at different points on X. When 
reading about mathematical models, in addition to the concept of first derivatives, you 
may encounter the concepts of second or third derivatives.

In sum, derivatives are useful concepts for describing rates of change in Y as a func-
tion of X. For nonlinear functions, the rate of change in Y will differ depending on where 
on the X continuum the change is occurring. A derivative is an index of instantaneous 
change at a given X value. It is a slope, but a special one, namely an “instantaneous” 
slope. First derivatives are fairly straightforward. Second and third derivatives are a bit 
more abstract. For those readers familiar with interaction effects in statistics, a second-
order derivative is roughly analogous to a two-way interaction and a third order deriva-
tive is roughly analogous to a three-way interaction.

DESCRIBING ACCUMULATION: INTEGRALS AND INTEGRATION

When describing mathematical models, many theorists emphasize derivatives, that is, 
rates of change. There is another concept in calculus that is sometimes emphasized in 
mathematical models: the integral. This concept reflects the amount of something. The 
process of calculating an integral is called integration. To gain a sense of what an integral 
is, consider the well-known function in statistics of the probability density function for 
a standard normal distribution. This function, often presented in statistics texts, is the 
basis for calculating the “area under the curve” in a normal distribution. Figure 8.5 pres-
ents a graphical representation of this function, as it often appears in statistics books. 
The various X values on the horizontal axis are standard scores, with a mean of zero 
and a standard deviation of 1. One can specify any two points in this distribution, say, 
a value of 0 and a value of 1, and then calculate the area under the curve between these 
two points. If one scales the total area under the curve to equal a value of 1.00, then the 
area under the curve between two X scores is the proportion of the total area that falls 
between the two points. For example, the area under the curve between the X values 
of 0 and 1 is 0.3413 (see Figure 8.5). Between the X values of 1 and 2, the area under 
the curve is 0.1359. Between X values of –1 and 1, the area under the curve is 0.6826. 
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Graphically, an integral is the area under the curve between two points. The integral for 
the values 0 and 1 in Figure 8.5 is 0.3413. The integral for the values 1 and 2 is 0.1359. 
Because it focuses on the area under the curve, one can see that, roughly speaking, an 
integral refers to “the amount of something.”

A common use of integrals in mathematical models is to characterize accumula-
tions, that is, how much of something has accumulated. Many phenomena accumulate. 
We accumulate money in savings accounts. Frustration accumulates with each stress-
ful event experienced within a short time span. Although the mathematical details 
of integration are well beyond the scope of this book, when one uses the concept of 
integrals, one often does so in the context of building models of phenomena that accu-
mulate.

JUST-IDENTIFIED, OVERIDENTIFIED, AND UNDERIDENTIFIED MODELS

Mathematical models vary in their identification status. Model identification refers to 
cases where the values of model parameters must be estimated from data. A just-identified 
model is one for which there is a unique solution (i.e., one and only one solution) for 
the value of each estimated parameter in the model. Consider an analogy from algebra, 
where we might be given two equations with two unknowns of the following form:

		  23 = 2X + 3Z 
		  9 = X + Z

FIGURE 8.5.  Area under the curve for a standardized normal distribution.
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For these two equations, there is a unique solution for X and Z: X = 4 and Z = 5.
An underidentified model is one for which there is an infinite number of solutions 

for one or more of the model parameters. In the equation

	 10 = X + Z

there is an infinite number of solutions for X and Z (e.g., X = 10 and Z = 0 is one solution; 
X = 9 and Z = 1 is another solution). Models that have one or more parameters that are 
underidentified are often problematic.

An overidentified model is one for which there is a unique solution for the model 
parameters, and there is more than one feature of the model that can be used to inde-
pendently estimate the parameter values. Using the algebraic analogy, consider the fol-
lowing three equations:

			   10 = X + Z 
			   18 = 2X + Z 
			   12 = X + 2Z

There are three equations with a total of two unknowns, and any given pair of equa-
tions, no matter which pair, can be used independently to solve for the unknowns. In 
models for which parameter values must be estimated and the function fit is not perfect 
(i.e., there is an error term such that the model is stochastic), model parameters that 
have overidentified status are desirable because one can obtain independent estimates 
of those parameter values.

In sum, when reading math models, you may encounter references to a model as 
being just-identified, underidentified, or overidentified. Models that are underidentified 
are unsatisfactory.

METRICS

When developing mathematical models, theorists give careful consideration to the met-
ric on which the variables in the model are measured, especially when nonlinear mod-
eling is involved. This is because the accuracy of a mathematical model and the infer-
ences one makes can be (but are not always) influenced by the metric of the variables. 
Depending on the variable metric, a theorist might resort to different functions in the 
mathematical model to describe the relationships between variables. For example, for 
the variable time, the model form and parameters introduced into the model might vary 
depending on whether time is measured in milliseconds, seconds, days, weeks, or years. 
The nature of metrics poses difficulty for some constructs in the social sciences because 
the metric used to measure them is arbitrary. For example, when a researcher uses a 
10-item agree–disagree scale to measure peoples’ attitudes toward religion, the metric 
might be scored from –5 to +5, or from 0 to 9, or from 1 to 10. In some mathematical 
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models, the choice of scoring matters a great deal, so an arbitrary metric can create 
modeling difficulties.

TYPES OF NONLINEARITY

Thus far we have considered a simple mathematical model—the linear model—to intro-
duce several concepts in mathematical modeling. The linear model has two adjustable 
parameters, a slope and an intercept, that typically are estimated rather than fixed by 
the theorist. In this section we introduce other functions that are nonlinear in form and 
that can be used in mathematical models. There are many classes of functions, and we 
cannot begin to describe them all. Here we focus on describing five major classes of 
functions (the linear function makes six classes). The idea is to give you a sense of some 
of the nonlinear functions that can be used to build a math model. After presenting the 
functions, we describe strategies for modifying and combining them to build even more 
intricate mathematical representations. As we describe the different functions and the 
modifications to them that can be made, you will see the wide range of tools available to 
a math modeler when characterizing relationships between variables.2

To describe functions, we often use three concepts: (1) concavity, (2) proportional-
ity, and (3) scaling constants. Concavity refers to whether the rate of change on a curve 
(the first derivative) is increasing or decreasing. A curve that is concave upward has an 
increasing first derivative, and a curve that is concave downward has a decreasing first 
derivative. In terms of proportionality, two variables are proportional to one another 
when one variable is a multiple of the other. More formally, Y is proportional to X if 
Y = cX, where c is a constant. The value c is called the constant of proportionality. For 
proportionality, doubling X doubles Y, tripling X triples Y, and halving X halves Y. Two 
variables are said to be inversely proportional when there is some constant c for which 
Y = c/X. In this case, doubling X halves Y, tripling X cuts Y by one-third, and halving 
X doubles Y. Scaling constants refer to adjustable parameters in a model that have no 
substantive meaning but are included to shift a variable from one metric to another. 
For example, to change meters to centimeters, we multiply the meters by the constant 
100, which shifts the metric of length to centimeters. As we describe different functions 
below, we occasionally do so in terms of the concepts of concavity, proportionality, or 
scaling constants.

Logarithmic Functions

The logarithmic function (often referred to as the log function) has the general form 
f(X) = loga(X), where a is a constant indicating the base of the logarithm. Logs can be 
calculated for different bases, such as the base 10, the base 2, or the base 8.

2Our discussion of functions and the graphic representations of them draws on concepts described by 
W. Mueller (see www.wmueller.com/precalculus/index.html).
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The log base 10 of the number 100 is written as log10(100), where the subscript is 
the base and the number in parentheses is the number for which you are calculating the 
log. If n stands for the number for which you are calculating the log, and a is the base 
of the log, then the log is the solution for b in the equation n = ab. For log10(100), we 
solve for b in the equation 100 = 10b, so the log base 10 of the number 100 is 2 (because 
102 = 100). The value of log5(25) is 2 because 52 = 25. Sometimes you will encounter a 
log expression with no base, such as log(1,000). When this happens, the log is assumed 
to have a base of 10. So log(1,000) = 3 (because 103 = 1,000).

There is a special logarithm, called the natural log, that uses a constant called e 
as its base. The number e appears in many mathematical theories. Its value is approxi-
mately 2.71828. The number e was studied in depth by Leonhard Euler in the 1720s, 
although it was first studied by John Napier, the inventor of logarithms, in 1614. It has 
some remarkable mathematical properties (which we will not elaborate on here) and is 
referred to as Napier’s constant. The natural log of a number is signified by the expres-
sion ln(n). For example, the natural log of 10 is signified by ln(10). It equals approxi-
mately log2.71828(10) = 2.302585.

Figure 8.6 presents sample graphs of log functions. When expressing the relation-
ship between two variables, rather than using a linear function, one might use a log func-
tion. Log functions are sometimes used to model growth or change when the change is 
rapid at first and then slows down to a gradual and eventually almost nonexistent pace 
(see Figure 8.6a).

Log functions share many common features: (1) The logarithm is undefined for 
negative values of X (where X is the number for which you are calculating the log); (2) 
the value of the log can be positive or negative; (3) as the value of X approaches zero, 
the value of the log approaches negative infinity; (4) when X = 1, the value of the log is 
0; and (5) as X approaches infinity, the log of X also approaches infinity. For the func-
tion loga(X), the function output increases with increasing X if a > 1 and decreases with 
increasing X if a is between 0 and 1.

Exponential Functions

The exponential function has the general form f(X) = aX. The function yields output that 
increases in value with increasing X if a > 1 and decreases in value with increasing X 
if a is between 0 and 1. Figure 8.7 presents examples of common exponential curves. 
These curves are often used to refer to growth, such as when people say a population is 
“growing exponentially.” With exponential growth or change, the larger a population 
gets, the faster it grows. For decreasing exponential growth or change, the smaller the 
population gets, the more slowly it decreases in size. As it turns out, exponential func-
tions are simply the inverse of log functions, so the two functions mirror image each 
other’s properties. For exponential functions, if a is between –1 and 0, then the output 
value is a damped oscillation as X increases, and if a is < –1, it is an undamped oscilla-
tion as X increases (see the later section on trigonometric functions for a discussion of 
oscillation).
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Social scientists often modify the exponential function to create functions that 
reflect growth or change with certain properties. For example, using the fact that any 
number raised to the power of 0 is equal to 1, the following equation can be used to 
describe exponential growth over time

FIGURE 8.6.  Graphs of log functions for loga(X) with X ranging from 1 to 100. (a) a > 1; 
(b) 0 < a < 1.

a

 
 
 
 
 
 
 
 
 
 
 
 

b
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	 Y = s0ekX

where Y is the population size at a given point in time, X is the duration in time since a 
predetermined start time, and s0, e, and k are constants. In this case, e is Napier’s con-

FIGURE 8.7.  Graphs of exponential functions for aX with X ranging from 1 to 5. (a) a > 1; 
(b) 0 < a < 1.
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stant. The value of s0 is fixed at a value equal to the population size at the predetermined 
start time. Note that when X = 0, the population size will equal the population size at 
the start time (because any number raised to the power of zero is 1.0). For this function, 
Y increases geometrically with a doubling time equal to 0.6932/k. A graph illustrating 
this function appears in Figure 8.8, where the starting size of a population is s0 = 5,000, 
where k = 0.333 (yielding a doubling time of just over 2 years), and where X ranges from 
0 to 5 years. When expressing the relationship between two variables, rather than using 
a linear or log function, one might use an exponential function, such as that illustrated 
in Figure 8.8.

Power Functions

Power functions have the general form f(X) = Xa where a is an adjustable constant. For 
positive values of X greater than 1, when a > 1, the curve will be concave upward, and 
when a is between 0 and 1, the curve will be concave downward.

Power functions often have a similar shape to exponential and logarithmic func-
tions, with the differences between the functions sometimes being subtle. When the 
difference is small, it does not matter which function is used to create the model. But 
differences can exist. Exponential functions increase by multiples over constant input 
intervals. Logarithms increase by constant intervals over input multiples. Power func-
tions do not follow either of these patterns. Power curves eventually outgrow a loga-
rithm and undergrow an exponential as X increases. A practical example of the function 
differences is the modeling of the spread of HIV, the virus that causes AIDS. During the 

FIGURE 8.8.  Exponential growth for Y = s0 e
kX.
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early stages of the epidemic, it was thought that the number of HIV cases was growing 
exponentially, but in later analyses, the function was found to be better mapped by a 
power function. An exponential model yielded overestimates of the number of cases 
forecast in future years, which in turn led to overestimates of the required resources to 
deal with the epidemic (e.g., hospital space, medications; see Mueller, 2006).

Figure 8.9 presents some examples of power functions, and Figure 8.10 plots a 
power function and an exponential function on the same graph to illustrate some of 
these properties. When expressing the relationship between two variables, rather than 
using a linear, log, or exponential function, one might use a power function instead.

Polynomial Functions

Polynomial functions are simply the sum of power functions. The general form of a 
polynomial function is

	 f(X) = a + bX1 + cX2 + dX3 + . . .

where X continues to be raised to the next highest integer value, and each term has a 
potentially unique adjustable constant. Polynomials can model data with many “wiggles 
and turns,” but the more wiggles and turns there are, the greater the number of power 
terms that are required to model it. Notice that when only a single term for X is used 
with a power of 1, the polynomial model reduces to a linear model. The adjustable con-
stant a is typically viewed as a scaling constant. Adding one term to the linear model 
(i.e., adding the term cX2) allows the model to accommodate a curve with one bend. A 
polynomial model with three terms (a + bX1 + cX2 + dX3) will accommodate a curve with 
two bends. A polynomial model with four terms will accommodate a curve with three 
bends. In general, to accommodate k bends, you need k + 1 terms.

The most popular polynomial functions in the social sciences are the quadratic and 
cubic functions. They are defined as

	 Quadratic: f(X) = a + bX + cX2 
	 Cubic:       f(X) = a + bX + cX2 + dX3

Figures 8.11 and 8.12 provide an example of each type of curve, and Figure 8.13 
provides an example of a polynomial function with eight terms. The quadratic model 
is effective for modeling U-shaped and inverted-U-shaped relationships as well as 
J-shaped and inverted-J-shaped relationships. The cubic function is effective for model-
ing S-shaped curves. In Figure 8.12b we manipulated the scaling constant, a, to create 
separation between curves so that you can better see the trends. Figure 8.13 illustrates 
how diverse a “curve” that large polynomials can create. When expressing the relation-
ship between two variables, rather than using a linear, log, exponential, or power func-
tion, one might use a polynomial function instead.
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FIGURE 8.9.  Graphs of power functions for Xa with X ranging from 1 to 5. (a) a > 1; 
(b) 0 < a < 1; (c) a < 0.
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Trigonomic Functions

Trigonometric functions are typically used to model cyclical phenomena. The two most 
common functions are the sine function and the cosine function, which have the form 
f(X) = sin(aX) and f(X) = cos(aX), where a is a constant, sin is the sine, and cos is the 
cosine. The sine and the cosine functions repeat the values of their outputs at regular 
intervals as X increases. Simple transformations of the sine and cosine functions can 
reproduce many forms of periodic behavior. For example, some people have suggested 
that rhythmic cycles, called biorhythms, reflect active and passive phases in the physi-
cal aspects of everyday life. The phases of biorhythms are modeled using a sine function 
of the form f(X) = sin(.224*X), where X is the number of days since a baseline index is 
taken. Output values range from 1 to –1, with positive values indicating increasingly 
high energy and negative values indicating increasingly low energy. Figure 8.14 plots the 
output values for 120 days, starting at day 0. As noted earlier, certain types of cyclical 
phenomena also can be modeled using exponential functions with negative values of a 
in the expression f(X) = aX.

Choosing a Function

In sum, there are a wide range of functions available to the math modeler for describ-
ing the relationship between variables, including linear functions, logarithmic func-
tions, exponential functions, power functions, polynomial functions, and trigonometric 
functions, to name a few. We have only scratched the surface of the many strategies a 

FIGURE 8.10.  Example of power and exponential functions.
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mathematical modeler can use. As you become familiar with functions and the curves 
they imply, you should be able to make informed choices about modeling relationships 
between variables. Mathematical modelers sometimes select functions for their models 
a priori, based on logic, and other times they make decisions about appropriate model 

FIGURE 8.11.  Quadratic functions. (a) Function a + bX + cX2, with a = 0, b = .5; (b) function 
a + bX + cX2, with a = 0, b = –1.
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b
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functions after collecting data and scrutinizing scatterplots. In the latter case, the model 
chosen and the values of the adjustable parameters are still subjected to future empiri-
cal tests, even though preliminary data are used to gain perspectives on appropriate 
functional forms. You can gain perspectives on the curves implied by different functions 

FIGURE 8.12.  Cubic functions. (a) Function for a + bX + cX2 + dX3; (b) additional functions 
for a + bX + cX2 + dX3.
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by creating hypothetical data and applying the different functions to them. We provide 
information on how to do this using the statistical package SPSS in Appendix 8A to this 
chapter, and also provide information about other graphics software.

FUNCTIONS FOR CATEGORICAL VARIABLES

Thus far we have considered only functions involving quantitative variables, but func-
tions also can be specified for categorical variables. Consider as a simple example the 
relationship between whether or not someone uses an umbrella as a function of whether 
or not it is raining. The relationship between these two categorical variables is expressed 
as follows

	
( )f x


= 



umbrella,            if x = raining 
	               no umbrella,       if x = not raining

where one uses an umbrella if it is raining and one does not use an umbrella if it is not 
raining.

Sometimes mathematical modelers create quantitative representations of categorical 
variables and then analyze the quantitative translations using the quantitative functions 
described earlier. For example, one could specify a mathematical function relating the 
probability of carrying an umbrella to the probability of it raining, with both variables 

FIGURE 8.13.  Polynomial function with seven terms.
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differing on a probability continuum of 0 to 1.0. The function might then be expressed 
as an exponential function, as in Figure 8.7a.

In some cases, functions involving categorical and quantitative variables are stated 
in terms of a table of values rather than symbolically. For example, suppose we specify 
whether someone is a Democrat or Republican as a function of scores on a 7-point index 
(e.g., response to a rating scale) of how conservative or liberal he or she is. The scale 
consists of integers ranging from –3 to +3, with increasingly negative scores signifying 
more conservativeness, increasingly positive scores signifying more liberalness, and the 
score of zero representing a neutral point. The function Y = f(X) might be stated as

X Y

–3 Republican

–2 Republican

–1 Republican

0 Democrat

1 Democrat

2 Democrat

3 Democrat

In this representation, the person is said to be a Republican if he or she has a value of –1, 
–2, or –3. Otherwise, the person is a Democrat.

FIGURE 8.14.  Sine function.
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Another approach to representing a function with a categorical variable is to use a 
graph. For example, the liberal–conservative and party identification function might be 
expressed as in Figure 8.15.

ADVANCED TOPICS: MANIPULATING AND COMBINING FUNCTIONS

One creative aspect of mathematical modeling is deriving new functions from old func-
tions so as to create models that are better suited to describing the relationship between 
variables. We saw hints of this for polynomial functions (which combine power func-
tions). Another class of functions, which we did not discuss, divides one polynomial 
function by a second polynomial function rather than summing polynomials. These are 
called rational functions. We provide illustrations of manipulating and combining func-
tions here to show the flexibility available to the math modeler.

Function Transformations

One way of modifying functions is to add adjustable parameters to them. Given a func-
tion f(x), one can add or subtract an adjustable parameter, a, after the rule described by 
f(X) is applied: that is, f(X) ± a. This has the effect of shifting the output values upward 
(in the case of addition) or downward (in the case of subtraction). These transforma-
tions are called vertical shifts. The output of a function also can be multiplied by the 
parameter a after the rule described by f(X) is applied, that is, a × f(X). This transforma-
tion vertically stretches (when a > 1) or squeezes (when a < 1) the graph of the function. 
Such transformations are called vertical stretches or vertical crunches. Another possibil-
ity is to add or subtract a from f(X) before the rule described by f(X) is applied: that is, 
f(X + a) or f(X – a). These transformations typically move the graph of the function left 
when adding a positive value of a or right when subtracting a positive value of a. Such 
transformations are called horizontal shifts. Finally, one can multiply X before the rule 
described by f(X) is applied; that is, f(aX). These transformations horizontally stretch 
(when a < 1) or squeeze (when a > 1) the graph of the function. Such transformations are 

FIGURE 8.15.  Graphical representation of a function with a qualitative variable.
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called horizontal stretches or horizontal crunches. Coupled with the possibility of form-
ing inverses for many functions, mathematical modelers have considerable flexibility 
in manipulating traditional functions with the use of vertical shifts, horizontal shifts, 
vertical stretches, vertical crunches, horizontal stretches, and horizontal crunches. If 
you begin your modeling efforts with a traditional function that is approximately cor-
rect in form, then transformations such as the above allow you to fine-tune the form of 
the curve to your problem. An example of this is the classic bounded exponential model, 
which we now consider.

Recall that the exponential function is f(X) = aX. A simple set of modifications to 
this function produces what is called a bounded exponential model. This has the form

	 Y = a + (b – ce–X)

where a, b, and c are adjustable constants and e is Napier’s constant. The term ce–X is 
essentially an exponential function where a = e and the exponent is multiplied by an 
adjustable constant, c. This creates a decaying exponential curve, which is then sub-
tracted from a fixed upper bound or limit reflected by the value of b. As the decaying 
exponential dies out, the difference from b rises up to the bound. The parameter a is 
a scaling constant. This kind of function models growth that is limited by some fixed 
capacity. Figure 8.16 presents an example of this curve, as well as a traditional expo-
nential curve.

Combining Functions

Another strategy that math modelers use is to combine functions. A popular function 
in the social sciences is the logistic function. It has the general form f(X) = c/(1 + ae–bX) 
where a, b, and c are adjustable constants and e is Napier’s constant. A logistic function 
is a combination of the exponential growth and bounded exponential growth func-
tions that were illustrated in Figure 8.16. In the logistic function, exponential growth 
occurs when the function outputs for X are small in value. However, this turns into 
bounded exponential growth as the function outputs approach their upper bound. A 
logistic function is plotted in Figure 8.17. Note the shapes of the curve to the right 
and left of the broken line in Figure 8.17 and compare these with the curve shapes in 
Figure 8.16. The result of combining the exponential growth and the bounded expo-
nential growth functions is an S-shaped curve. The logistic function is a special case 
of a broader function known as the sigmoid function, which generates curves having 
an S shape.

Combining multiple functions using processes such as those described for the 
logistic function is another tool available to math modelers. It is not uncommon for a 
theorist to break the overall relationship into a series of smaller component segments, 
specify a function to reflect each segment, and then assemble the component functions 
into a larger whole in one way or another.
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In sum, functions can be manipulated with adjustable constants in a variety of ways 
and subjected to vertical and horizontal stretching and crunching. Functions also can be 
combined to form even more complex functions (as in the case of the logistic function), 
and both quantitative and qualitative variables can be modeled. Traditional mathemati-
cal modeling opens up a wide range of tools for describing relationships for the theorist 
to consider.

FIGURE 8.16.  Exponential and bounded exponential model. (a) Exponential function; 
(b) bounded exponential function.
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b
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MULTIPLE VARIABLE FUNCTIONS

All of the functions we have described use a single input variable. However, functions 
can involve more than one input variable, and the multiple variables can be combined 
in a wide variety of ways to yield output. For example, the traditional linear function for 
a single variable can be extended to include multiple variables (e.g., X and Z) using the 
following functional form

	 f(X, Z) = a + bX + cZ

where a, b, and c are adjustable constants. As another example, a multiplicative function 
might take the form

	 f(X, Z) = a + bXZ	 (8.5)

where a and b are adjustable constants. Multiplicative models often are used to represent 
moderated relationships between quantitative variables, as discussed in Chapter 6 (see 
Jaccard & Turrisi, 2003).

Another example of a multiple variable function that we will make use of later is an 
averaging function. It takes the general form

	 f(X, Z) = [a/(a + b)]X + [b/(a + b)]Z

FIGURE 8.17.  Logistic function.
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where a and b are adjustable constants. This model represents function output as a 
weighted average of X and Z. To see that the function captures a simple arithmetic aver-
age, set the values of a and b to 1. This produces

	 f(X, Z)	 = [1/(1 + 1)]X + [1/(1 + 1)]Z 
		  = (1/2)X + (1/2)Z 
		  = (X + Z)/2

By allowing a and b to take on nonequal values (e.g., a = 1 and b = 4), one obtains a 
“weighted” average rather than a simple arithmetic average, such that the Z will contrib-
ute more to the average than X. We will take advantage of this property later when we 
apply math modeling to a substantive area.

PHASES IN BUILDING A MATHEMATICAL MODEL

Math modelers typically use four phases to construct a mathematical model. First, the 
modeler identifies the variables that will be included in the model and identifies the 
metrics on which the variables are measured. Textbooks on mathematical modeling 
tend to view the variables and metrics as givens and devote little attention to how the 
variables and metrics are selected. Of course, this is a nontrivial issue, and how one 
chooses the variables to include is the subject of much of this book. Second, the modeler 
thinks carefully about the variables, the metrics, and the relationships between the vari-
ables, and poses a few candidate functions that might capture the underlying dynamics. 
He or she might think about the implications of the functions and what predictions to 
make at both moderate and extreme input values. Eventually, a working function is 
settled upon, typically a function that includes several adjustable constants. Sometimes 
the values of the adjustable constants are logically determined, and the modeler fixes the 
constants at those values. More often than not, the values of the adjustable constants are 
estimated from data. Third, the modeler collects empirical data, estimates values of the 
adjustable constants from the data if necessary, and examines the degree of fit between 
the output values of the function and the values observed in the real world. At this 
point, if performance of the model is unsatisfactory, a new function might be tried or 
the original function might be modified to accommodate the disparities. Fourth, given 
revisions of the function, the model is applied to a new set of data to determine how well 
the revised model performs. If the model does a good job of reproducing observations in 
the real world and if the model makes conceptual sense, it will be selected as the model 
of choice.

This, of course, is an oversimplification of the process that unfolds in building math 
models, and there are many variants of it that depend on the parameters of the task at 
hand. Our main point is that building math models is usually a dynamic process that 
involves much more than simply specifying a function.
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AN EXAMPLE USING PERFORMANCE, ABILITY, AND MOTIVATION

Educational researchers have long argued that performance in school is a function of 
two factors: a student’s motivation to perform well and his or her ability to perform well. 
This relationship is often expressed in the form of a multiplicative model, as follows:

	 Performance = Ability × Motivation	 (8.6)

The basic idea is that if a student lacks the cognitive skills and capacity to learn, then it 
does not matter how motivated he or she is; school performance will be poor. Similarly, 
a student can have very high levels of cognitive skills and the ability to learn, but if the 
motivation to work and attend to the tasks that school demands is low, then perfor-
mance will be poor. The multiplicative relationship reflects this dynamic because, for 
example, if motivation is zero, then it does not matter what a person’s score on ability 
is—his or her performance will always equal zero. Similarly, if ability has a score of 
zero, it does not matter what a person’s motivation score is—his or her performance will 
always equal zero. Although this makes intuitive sense, the dynamics might be different 
from those implied by Equation 8.6, as we will now illustrate.

Our first step is to specify the metrics of the variables involved, since they do not 
have natural metrics. Performance in school might be indexed for individuals using the 
familiar grade-point average metric that ranges from 1.0 (all F’s) to 4.0 (all A’s), with 
decimals rounded to the nearest tenth (e.g., 2.1, 3.5). Ability might be indexed using a 
standard intelligence test that has a mean of 100 and a standard deviation of 15. Motiva-
tion might be indexed using a 10-item scale that asks students to agree or disagree with 
statements such as “I try hard in school” and “Doing my best in school is very important 
to me.” A 5-point agree–disagree rating scale (1 = strongly disagree, 2 = moderately dis-
agree, 3 = neither agree nor disagree, 4 = moderately agree, and 5 = strongly agree) pro-
vides the range of possible responses. The responses to each item are summed to yield an 
overall score from 10 to 50, with higher scores indicating higher levels of motivation.

Note that none of the metrics takes on a value of zero. Hence, the dynamic of hav-
ing “zero” ability or “zero” motivation discussed above cannot occur. Indeed, one might 
question whether there is such a thing as “zero” intelligence (i.e., a complete absence of 
intelligence). Is a psychological zero point on this dimension even possible? Suppose we 
decide that although a complete absence of intelligence is not theoretically plausible, a 
complete absence of motivation to do well in school is plausible. One way of creating a 
motivation metric with a zero point is to subtract a score of 10 from the original motiva-
tion metric. Before this operation, the motivation metric ranged from 10 to 50. By sub-
tracting 10 from the metric, it now ranges from 0 to 40, which includes a zero point.

However, there is a problem with this strategy. Just because we can mathematically 
create a zero score on the motivation scale by subtracting 10 from it, this does not mean 
that the score of zero on the transformed scale reflects a complete absence of motiva-
tion on the underlying dimension of motivation. What evidence do we have that this is 
indeed the case? Perhaps a score of zero on the new metric actually reflects a somewhat 
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low level of motivation but not a complete absence of it. The issue of mapping scores on 
a metric onto their location on the underlying dimension they represent is complex, and 
consideration of how to accomplish this is beyond the scope of this book. We will work 
with the original metric of 10–50 and not make explicit assumptions about where on 
the underlying motivation dimension these scores locate individuals. We suspect that, 
based on the content of the items, students who score near 50 are very highly motivated 
to perform well, and students who score near 10 are very low in (but not completely 
devoid of) motivation to perform well. But a separate research program is required to 
establish such assertions (Blanton & Jaccard, 2006a).

Suppose that a student has a score of 100 on the IQ test and a score of 30 on the 
motivation test. Using Equation 8.6, multiplying the ability score by the motivation 
score, we obtain 100 × 30 = 3,000, and we would predict a GPA of 3,000! Of course, 
this is impossible because a student’s GPA can range only from 1.0 to 4.0. We need to 
introduce one or more adjustable constants to Equation 8.6 to accommodate the metric 
differences and to make it so that a predicted GPA score falls within the 1.0–4.0 range. 
For example, if we let P stand for performance, A for ability, and M for motivation, then 
we can allow for the subtraction of a constant from the product to make an adjustment 
in metric differences, modifying Equation 8.6 as follows

	 P = (A)(M) + a

where a is an adjustable constant whose value is estimated from data. Note, for example, 
if a = –2,997, then this is the same as subtracting 2,997 from the product of A and M. But 
perhaps subtracting a constant is not enough to account for the metric differences. For 
example, a score of 120 on the IQ test coupled with a score of 50 on the motivation test 
would yield a product value of 6,000, and subtracting a value of 2,997 from it would still 
produce a nonsensical GPA. A second scalar adjustment we might use is to multiply the 
product term by a fractional adjustable constant, which yields the general equation

	 P = b(A)(M) + a

where b is a second adjustable constant (in this case, b would be a fraction) designed to 
deal further with the metric differences. Its value also is estimated from data. The terms 
on the right-hand side of this equation can be rearranged to yield

	 P = a + b(A)(M)	 (8.7)

If you compare Equation 8.7 with Equation 8.3, you will note that Equation 8.7 is simply 
a linear function, so performance is assumed to be a linear function of the product of 
(A)(M). Not only do the constants a and b take into account the different metrics, but 
the value of b also provides substantive information as well; namely, it indicates how 
much change in performance (GPA) one expects given a 1-unit increase in the value of 
the product term (A)(M).
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Figure 8.18 plots the relationship between performance and motivation at three 
different levels of ability based on Equation 8.7, where values of a and b have been 
empirically determined from data collected for a sample of 90 students. In this exam-
ple, a = –2.0 and b = .0015. The slope of P on M for any given value of A is bA. There 
are several features of this plot worth noting. First, note that the effect of motivation 
on performance is more pronounced as ability increases. This is evident in the steeper 
slope (bA = .165) for the two variables when the ability score is 110 as compared with 
the slope when the ability score is 100 (bA = .150), and, in turn, as compared to the 
slope when the ability score is 90 (bA = .135). These differences in slope may seem 
small but they are probably substantial. For example, when the ability score is 110, a 
10-unit change in motivation is predicted to yield a (.165)(10) = 1.65-unit change in 
GPA; when the ability score is 100, a 10-unit change in motivation is predicted to yield 
a (.150)(10) = 1.50-unit change in GPA; when the ability score is 90, a 10-unit change 
in motivation is predicted to yield a (.150)(10) = 1.50-unit change in GPA.

Second, note that at each of the different levels of ability (90, 100, and 110), the 
relationship between motivation and performance is assumed to be linear. Is this a rea-
sonable assumption? Perhaps not. Perhaps the relationship between performance and 
motivation at a given ability level is better captured by an exponential function in the 
form of one of the curves in Figure 8.7a. For example, when motivation is on the low 
end of the motivation metric, increasing it somewhat may not have much impact on 
performance—it will still be too low to make a difference on performance. But at higher 
levels of the motivation metric, increasing it will have an impact on performance. This 
dynamic is captured by the exponential functional forms illustrated in Figure 8.7a. Or 

FIGURE 8.18.  Example for Performance = Ability × Motivation.
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perhaps a power function in the form of one of the curves in Figure 8.9a is applicable. 
Power functions have the same dynamic as the exponential function in Figure 8.7a, but 
they “grow” a bit more slowly. Or perhaps an S-shaped function in the form of the curve 
in Figure 8.17 applies, with floor and ceiling effects on performance occurring at the low 
and high ends of motivation, respectively.

The multiplicative model specified by Equation 8.6 assumes what is called a bilin-
ear interaction between the predictor variables; that is, it assumes that the relationship 
between the outcome and one of the predictors (in this case, motivation) is always linear 
no matter what the value is of the other predictor (in this case, ability). To be sure, the 
value of the slope for the linear relationship between P and M differs depending on the 
value of A (as noted earlier), but the function form is assumed to be linear. One can mod-
ify the model to allow for a nonlinear relationship between performance and motivation 
at different levels of ability, say, in accord with a power function, as follows

	 P = a + b(A)(Mc)	 (8.8)

where c is an adjustable constant whose value is estimated from data. This model allows 
for the possibility of a function form like those of Figure 8.9a.

Another notable feature of Figure 8.18 is that at the lowest value of motivation, 
there is a small degree of separation between the three different lines. The amount of 
separation between the lines reflects the differences in the effect of ability (at values of 
90 vs. 100 vs. 110) on performance when motivation is held constant at the same value. 
But perhaps the amount of separation should be a bit more or a bit less than what is mod-
eled in Figure 8.18. Equation 8.9 can be further modified to allow for a different amount 
of separation between the lines than what Equation 8.8 implies, as follows:

	 P = a + b(A)(Mc) + dA	 (8.9)

where d is an adjustable constant whose value is estimated by data. The logic of adding 
this term is developed in Appendix 8B and is not central to our discussion here. The 
main points we want to emphasize are the following:

1.  The rather simple theoretical representation in Equation 8.6 has nontrivial con-
ceptual ramifications by specifying that the relationship between performance 
and the predictor variables is captured by the dynamics of a bilinear interaction 
when, in fact, the interaction may have a different functional form.

2.  When building a mathematical model, the metrics of the variables usually have 
to be addressed (although our next example illustrates a case where this is not 
necessary).

3.  There may be multiple features of the model (e.g., the separation between curves 
at different levels of one of the component terms as well as the shape of these 
curves) that must be specified that are not always apparent in simple representa-
tions such as Equation 8.6.
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The fact is that the often presented model of Performance = Ability × Motivation is 
poorly specified, and applying principles of mathematical modeling helps to produce 
a better-specified theory that makes implicit assumptions explicit and highlights com-
plexities that should be taken into account. Appendix 8B develops modeling strategies 
for this example in more detail and illustrates a substitution principle for building math-
ematical models. For more discussion of the assumptions of bilinear interactions, see 
Jaccard and Turrisi (2003).

AN EXAMPLE USING COGNITIVE ALGEBRA

Another example of using mathematical models to represent social phenomena involves 
models of cognitive algebra. This example illustrates how the implications of a math-
ematical representation can be pursued without recourse to such things as adjustable 
constants and complex modeling of data.

Suppose we describe the personal qualities of a political candidate to a person that 
he or she has not heard of by providing the person with three pieces of information. 
Suppose that the three pieces of information are all quite positive (e.g., the candidate 
is said to be honest, smart, and empathic). For purposes of developing this example, 
suppose we can characterize how positive each piece of information is considered to be 
using a metric that ranges from 0 to 10, with higher numbers reflecting higher degrees 
of positivity. We refer to the positivity of a piece of information as Pk, where k indicates 
the specific piece of information to which we are referring: P1 refers to the perceived 
positivity of the first piece of information, P2 refers to the perceived positivity of the 
second piece of information, and P3 refers to the perceived positivity of the third piece 
of information. Suppose we want to predict how favorable a person will feel toward 
the candidate based on these three pieces of information. If we let F refer to a person’s 
overall feeling of favorability toward the candidate, with higher values indicating higher 
levels of favorability, then one model that describes the impact of the information is the 
following:

	 F = P1 + P2 + P3	 (8.10)

This model is a simple summative function that specifies that the overall feeling of 
favorability toward the candidate is the sum of the judged positivity of each individual 
piece of information (we ignore, for the moment, the metric of F and the issue of adjust-
ing for metric differences). Equation 8.10 can be stated in more general form using sum-
mation notation as follows:

	
1

k

i
i

F P
=

= ∑
where k is the number of pieces of information, in this case 3.

Now suppose that instead of a summative function, an averaging function is operat-
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ing. That is, the overall feeling of favorability is the average of the positivity of the infor-
mation presented rather than the sum of it. In this case, Equation 8.11 becomes

	 F = (P1 + P2 + P3)/3	 (8.11)

and this can be represented more generally in summation notation as

	
1

k

i
i

F P k
=

 
=  

 
∑ 	 (8.12)

What are the implications of specifying the function as being summative versus 
averaging in form? It turns out, they are considerable. Let’s explore the summation 
model first. Suppose a person judges the positivity values of the three pieces of informa-
tion as 8, 8, and 8, respectively. The overall feeling of favorability toward the candidate 
will be 8 + 8 + 8 = 24. Now suppose we describe a second candidate to this person using 
the same three pieces of information but we add a fourth descriptor to them (cunning), 
that is judged to have a positivity value of 4. According to the summation model, the 
overall feeling of favorability toward this new candidate will be 8 + 8 + 8 + 4 = 28, and 
the person will prefer the second candidate to the first candidate. Psychologically, it is 
as if the second candidate brings all the same qualities as the first candidate (i.e., P1, P2, 
and P3) and then “as a bonus,” you get a fourth positive attribute as well (P4). Hence, the 
person prefers the second candidate to the first candidate.

Now consider instead the averaging function. The overall feeling toward the first 
candidate is predicted to be (8 + 8 + 8)/3 = 8.0 and the overall feeling toward the second 
candidate is said to be (8 + 8 + 8 + 4)/4 = 7.0. In the averaging model, exactly the reverse 
prediction is made in terms of candidate preference; namely, the person now will prefer 
the first candidate to the second candidate. Psychologically, the first candidate has noth-
ing but very positive qualities, whereas the second candidate has very positive qualities 
but also some qualities that are only somewhat positive. The person prefers the first 
candidate, who has nothing but very positive qualities, to the second candidate, who has 
very positive qualities but also moderately positive qualities.

Which function better accounts for the impressions people form? It turns out 
that this can be evaluated in a simple experiment in which two candidates would be 
described, one with three very positive qualities (Candidate A) and a second with three 
very positive qualities and a fourth moderately positive quality (Candidate B). Partici-
pants would then be asked to indicate which of the two candidates they prefer. The 
summation model predicts that participants should prefer Candidate B to Candidate A, 
whereas the averaging model predicts that participants should prefer Candidate A to 
Candidate B. One can differentiate the two models empirically by conducting the above 
experiment and determining which candidate tends to be preferred. This is a simple 
experiment without complex modeling. If the results showed that people tend to prefer 
Candidate A to Candidate B, then this would be consistent with (but not proof of) a 
summative process rather than an averaging process. If the results showed that people 
tended to prefer Candidate B to Candidate A, then this would be consistent with (but not 
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proof of) an averaging process rather than a summative process. Which process oper-
ates has implications for the design of political campaigns and advertising strategies to 
sell products. For example, if an advertising campaign adds to a person’s cognitions a 
moderately positive piece of information about a product that is already quite positively 
evaluated, in the case of the averaging model, the advertisement should backfire and 
lower evaluations of the target product, thereby adversely affecting sales.

The literature on impression formation has extended these simple models of “cog-
nitive algebra” to more complex model forms. For example, it is almost certainly the 
case that some information is more important to people in forming impressions than 
other information. As such, it makes sense to weight each piece of information by its 
importance to the individual. Equation 8.10 can be modified to include such weights, 
as follows:

	 F = w1P1 + w2P2 + w3P3	 (8.13)

where wi is the importance of information i to the individual. Note that Equation 8.10 
is a special case of Equation 8.13, namely the case where w1 = w2 = w3 = 1. Expressed in 
summation notation, Equation 8.13 can be represented as

	
1

k

i i
i

F w P
=

= ∑ 	 (8.14)

For the averaging model, introducing importance weights yields the following:

	 F = w1P1 + w2P2 + w3P3/(w1 + w2 + w3)	 (8.15)

Note that Equation 8.10 is a special case of Equation 8.15, namely the case where 
w1 = w2 = w3 = 1. Equation 8.15 can be restated using summation notation as
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(8.16)

By extending the logic of algebraic models to the domain of “cognitive algebra” (which 
uses the premise that mental operations can be modeled by simple algebra), a great many 
insights into human information processing have been gained. Some of this research 
has involved simple experiments that pit competing predictions of different algebraic 
models against one another, whereas other research has taken the path of more complex 
math modeling with adjustable constants, error terms, and the like.

Parenthetically, the research literature finds support for both the summation and 
averaging models. In some contexts, people average the implications of information, 
whereas in other contexts, they sum it. There also are individual differences in these 
tendencies, with some people tending to average information in general whereas others 
tend to sum it in general. There are contexts for which simple summation or averaging 
models do not hold, and more complex combinatorial models are required to capture the 
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integration dynamics. Interested readers are referred to Anderson (1981) and Fishbein 
and Ajzen (1975).

AN EXAMPLE USING ATTITUDE CHANGE

As a third example of a mathematical model, we consider a model of attitude change 
from the communication literature that was developed by Fishbein and Ajzen (1975). 
The model concerns the case where a source is trying to persuade the recipient of a per-
suasive message to change his or her belief in something. A belief is conceptualized as a 
subjective probability that ranges from 0 to 1.00, much like a probability in mathemat-
ics. For example, people might believe with a probability of 0.20 that they will contract 
lung cancer if they smokes cigarettes. Or people might believe with a probability of 0.30 
that a particular brand of toothpaste is the best for fighting tooth decay. In the model 
there are three probabilities that are of interest: (1) the subjective probability that the 
recipient holds prior to receiving the persuasive message, P0, (2) the position that the 
recipient perceives the source takes in his or her persuasive message, also reflected by a 
subjective probability, PS, and (3), the subjective probability of the recipient after hear-
ing the persuasive message, P1. For example, the recipient might have an initial belief 
corresponding to a subjective probability of 0.20, perceive the source as arguing that the 
target belief should have a subjective probability of 0.70, and after hearing the arguments 
of the source, the recipient revises his or her subjective probability to be 0.60. These 
three variables, P0, PS, and P1, are measured variables in the theoretical system.

The amount of belief change that occurs is the difference in subjective probabilities 
before and after the message, or P1 – P0. It is the central outcome variable. Fishbein and 
Ajzen were interested in understanding factors that impact how much belief change 
occurs, so they constructed a mathematical model to reflect the underlying dynamics. 
Let BC represent belief change and be formally defined as P1 – P0. Fishbein and Ajzen 
begin by assuming that the amount of belief change that occurs is a function of the 
discrepancy between the recipient’s initial position and the perceived position of the 
source—that is, PS – P0. If a source argues in favor of the exact same position of the 
recipient, then PS – P0 = 0, and no belief change will occur. It is only when the source 
takes a position that is discrepant from the recipient’s that belief change can occur. 
The more discrepant the position taken by the source relative to the recipient’s initial 
position, the greater the potential for belief change. We thus begin with a simple model 
based on a difference function:

	 BC = (PS – P0)	 (8.17)

Not everyone will accept the arguments in a persuasive message. People differ in the 
likelihood that they will accept a message, with some people having a low probability 
of message acceptance, others having a moderate probability of message acceptance, 
and still others having a high probability of message acceptance. Fishbein and Ajzen 
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introduced a parameter into the model to reflect the probability that a recipient would 
accept the arguments of a message; this parameter is signified by PA. Equation 8.17 thus 
becomes

	 BC = PA(PS – P0)	 (8.18)

with the constraint that PA must range from 0 to 1.0 to reflect a probability metric. If a 
person completely accepts the message, then PA = 1.00 and the amount of belief change 
will equal the discrepancy between the recipient’s initial position and the position the 
recipient perceives the source as taking. If a person completely rejects the message, 
then PA = 0.00 and there is no belief change. If the person is somewhat accepting of the 
source’s message (i.e., PA is somewhere between 0.00 and 1.00) then the amount of belief 
change is proportional to PA.

Next, Fishbein and Ajzen address factors that impact the probability of acceptance 
of a message. One important factor is how discrepant the message is from the recipient’s 
initial position. In general, people are more likely to accept messages that argue in favor 
of their existing beliefs as opposed to messages that argue against their existing beliefs. 
If we let D represent the absolute discrepancy between the recipient’s initial position and 
the perceived position of the source (i.e., D = 0SP P− ), then the probability of accep-
tance can be modeled as

	 PA = (1 – D)	 (8.19)

Note that when D = 0, the source is arguing the same position that the recipient already 
believes and the probability of acceptance is 1.00. As the source’s message becomes 
increasingly discrepant from the recipient’s initial position, the probability of accep-
tance decreases to a minimum of 0.00.

Fishbein and Ajzen recognized that there are factors that can facilitate the accep-
tance of a message independent of message discrepancy. For example, if the source is 
a trustworthy and credible person, the exact same message may be more likely to be 
accepted than if the source is untrustworthy or lacks credibility. Fishbein and Ajzen 
introduced an adjustable constant to reflect these facilitating conditions, which they 
labeled f. Equation 8.19 was modified to appear as

	 1(1 ) f
AP D= − 	 (8.20)

with the constraint that f be greater than 0. Fishbein and Ajzen thus use a power func-
tion to capture the underlying dynamics, where 1/f is an adjustable constant. Figure 8.19 
presents sample curves for the probability of acceptance as a function of D at different 
values of f. Note that when f = 1, the relationship between the probability of acceptance 
and message discrepancy is linear with an intercept of 0 and a slope of 1. As f exceeds 
1, the probability of acceptance increases rapidly at lower levels of discrepancy and 
remains high even as message discrepancy increases. As f decreases in value from 1, the 
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probability of message acceptance decreases rapidly at lower levels of discrepancy and 
remains low as message discrepancy increases.

Equations 8.18 and 8.20 can be combined to yield a single equation. Starting with 
Equation 8.19, we have

	 BC = PA(PS – P0)

Since PA = (1 – D)1/f, we can substitute the right-hand side of Equation 8.20 for PA, which 
yields

	 BC = 1(1 ) f
AP D= − (PS – P0)

and since D = |PS – P0|, further substitution yields

	 P1 = (1 – (|PS – P0|))
1/f (PS – P0)

The belief that a person has after hearing a persuasive message can be further specified 
by recognizing that BC = (P1 – P0), so that if we subtract P0 from both sides of the equa-
tion, we obtain

	 1
0 0 0[(1 ( ) ( )]f

S SBC P P P P P= − − − − 	 (8.21)

Equation 8.21 is a mathematical model that predicts the belief that someone holds 

FIGURE 8.19.  Fishbein and Ajzen model for probability of acceptance.
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after hearing a persuasive message. Although it may appear a bit intimidating to the 
mathematically uninitiated, it is based on reasonable communication principles and is 
reasonably precise in the functional forms it posits. The model makes use of observed 
measures as well as adjustable constants and incorporates a power function. In empirical 
applications, P0, P1, and PS are measured variables and f is an adjustable constant whose 
value is estimated from data. The value of f is expected to vary across contexts where 
factors that facilitate message acceptance vary. For further discussion of this model and 
its implications, see Fishbein and Ajzen (1975).

AN EXAMPLE USING A TRADITIONAL CAUSAL MODEL

Another example of mathematical modeling in the social sciences is captured by an 
approach called structural equation modeling (SEM). Although some scientists do not 
think of structural equation models as mathematical models, they have all the char-
acteristics of mathematical models as described in this chapter. To be sure, they are 
stochastic rather than deterministic, but their essence is mathematical in nature. The 
causal model we represent mathematically is presented in the path diagram in Figure 
8.20. The model includes disturbance terms (because it is stochastic). We use generic 
labels for the variables for ease of notation. For this example, we assume that all of the 
relationships are linear, which is a typical assumption in SEM applications. Each endog-
enous variable is assumed to be a linear function of all variables that have an arrow 

FIGURE 8.20.  Causal model.
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going directly to it. The model can be expressed as a set of linear equations that are as 
follows:

	 Y	 = a1 + b1T + b2R + b3S + e5 
	 T	 = a2 + b4Q + e4 
	 Q	 = a3 + b5X + e3 
	 R	 = a4 + b6X + e2 
	 S	 = a5 + b7X + e1

where a1 through a5 are adjustable constants representing intercepts, b1 through b7 are 
adjustable constants representing slopes, and e1 through e5 are error (or disturbance) 
terms. The equations yield a model that is overidentified, although constraints must be 
introduced for estimating the parameters in the presence of the error terms, and other 
ancillary modeling details must be attended to as well (see Bollen, 1989).

The adjustable constants for the slopes in this model reflect the predicted change in 
the outcome variable given a 1-unit change in the variable associated with the constant. 
The one qualification to this statement is for the equation with multiple variables in the 
linear function. For this equation (where the outcome variable is Y), the slope adjustable 
constant associated with a given variable in the function is the predicted change in the 
outcome variable (Y) given a 1-unit change in the variable holding constant all other vari-
ables in the linear function. In practice, data on each of the variables would be collected 
and the model would be fit to the data to determine if it could account for the observed 
data. The data would be used to estimate the values of the adjustable constants so as to 

FIGURE 8.21.  Chaos theory example.
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maximize model fit. If the fit is reasonable, then values of the adjustable constants are 
subjected to meaningful interpretation.

This example illustrates another strategy in mathematical modeling when dealing 
with multiple variables: the modeler creates a systems of equations rather than a single 
equation to represent the multivariate dynamics.

CHAOS THEORY

An area of mathematical modeling that is receiving increased attention in the social sci-
ences is that of chaos theory. In normal parlance, chaos refers to disarray. In the field of 
chaos theory, this also is true but something systematic is thought to underlie the chaos; 
what appears chaotic actually has a systematic function generating it. The task of the 
theorist is to map this function.

Chaos theory is typically applied to changes in systems over time, with the state of 
a system at time t + 1 being impacted by the state of the system at some previous time, t. 
As an example, consider the simple function

	 2
1 1.9t tX X+ = − 	 (8.22)

where t + 1 refers to the time period following time t. For example, perhaps the time 
interval in question is a week and suppose that the value of X at time t is 1. Then apply-
ing Equation 8.22, the value of X 1 week later (i.e., at time t + 1) should be 1.9 – 12 = 0.9. 
At week 2, this input value is substituted into the right-hand side of Equation 8.22 and 
the result is the predicted value of X at week number 3. It is 1.9 – .92 = 1.09. To predict 
the value at week 4, the previous value is again substituted into the right-hand side of 
Equation 8.22 and the result is 1.9 – 1.092 = 0.712. And so on. The pattern of data is plot-
ted in Figure 8.21, which plots the value of X at each week in a series of weeks. The pat-
tern appears to be unsystematic and chaotic with large swings in values. But note that 
the underlying process is anything but haphazard. The data were the result of a clearly 
specified and simple function (Equation 8.22). There was no random error in the system. 
Rather, the “disarray” was systematically generated. The task of the chaos theorist is to 
identify patterns that appear to be chaotic and to find the function that generates that 
“chaos.”

In math modeling the term difference equation refers to the case where a variable at 
time t is a function of a variable at time t - 1. If the variable at time t is a function of the 
immediately preceding point in time, it is called a first-order difference equation. If it is 
predicted from time t – 2, it is called a second-order difference equation. If it is predicted 
from time t – 3, it is a third-order difference equation. And so on.

Chaotic modeling tends to require precise measurement, and results can be dra-
matically influenced by the slightest “noise” or measurement error in the system. Cur-
rent analytic methods for chaos models tend to require large numbers of observations. 
Although chaos theory is typically applied to the analysis of systems across time, the 
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Box 8.1. Reading Mathematical Models

When reading mathematical models, social scientists with more limited math-
ematical backgrounds sometimes feel intimidated by the presence of equations. 
Because equations make clear and unambiguous statements about the presumed 
relationships between variables, you should embrace equations, not avoid them. 
When confronted with an equation that seems complex, here are some things 
you can do to help work your way through it. First, make a list of the variables 
in the equation and a list of the adjustable constants. Make sure that each of the 
variables in your list is clearly defined and that the metrics of the variables are 
specified. Second, determine if the equation contains any of the major functions 
we discussed. For example, is a power function present? Is an exponential func-
tion present? Is a logistic function present? Once you recognize a familiar func-
tion form and you have a sense of the family of curves associated with it, then the 
substantive implications of the equation should start to become apparent. Remem-
ber, the fundamental form of the function can be altered using transformations, 
so be sensitive to the presence of a function that has a transformation imposed 
on it. Sometimes the function is “disguised” by the adjustable constants attached 
to it. Third, for each adjustable constant, think about what it is accomplishing 
and why it was included in the equation. Is it just a scaling factor, or does it have 
substantive interpretation, like a slope in a linear relationship? Finally, you can 
use your favorite statistical package (e.g., SPSS) or graphics software to apply 
the equation to hypothetical data you generate and then examine the curve 
graphically and see what happens to it as you change values of the adjustable 
constants or change the hypothetical data used to generate it in systematic ways. 
Also, keep in mind the conditional nature that multiplicative functions imply; that 
is, when you see the multiplication of two variables in an equation, then the size 
of the derivative (i.e., the size of the effect) of one of the variables in the product 
term is dependent on the value of the other variable in the product term.

If you encounter mathematical symbols with which you are not familiar, 
then you can usually find their meaning on the Internet. Below are some com-
monly encountered symbols. A useful website for learning about many areas of 
mathematics at many different levels is called “Ask Dr. Math”: mathforum.org/
dr.math.

Common Symbols That Reflect Important Numbers

π = the ratio of the circumference to the diameter of a circle, the number 
3.1415926535 . . .

e = the natural logarithm base, the number 2.718281828459 . . .
γ = the Euler–Mascheroni constant, the number 0.577215664901 . . .
φ = the golden ratio, the number 1.618033988749 . . .
∞ = infinity

cont.
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Symbols for Binary Relations

= means “is the same as”
≠ means “is not equal to”
< means “is less than”
≤ means “is less than or equal to”
> means “is greater than”
≥ means “is greater than or equal to”
± means “plus or minus”
≅ means “is congruent to”
≈ means “is approximately equal to”
 means “is similar to”

 means “is nearly equal to”
∝ means “is proportional to”
≡ means “absolute equality”

Symbols from Mathematical Logic

∴ means “therefore”
 means “because”
∋  means “under the condition that”
⇒  means “logically implies that”
⇔  means “if and only if”
∀  means “for all”
∃  means “there exists”

Symbols Used in Set Theory

⊂ means “this set is a subset of” 
⊃ means “this set has as a subset”
∪ is the union of two sets and means “take the elements that are in either set”
∩ is the intersection of two sets and means “take the elements that are in 

either set”
∅ refers to the empty set or null set and means “the set without any elements 

in it” 
∈  means “is an element of”
∉  means “is not an element of” 

Symbols for Operations

n! means “the factorial of”
∑ means “the sum of”
∏  means “the product of” 
^ means “to the power of”
∫  means “the integral of”

cont.
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properties of space and distance can be used in place of time. Thus, theorists often dis-
tinguish between temporal chaos and spatial chaos. Temporal chaos models that focus 
on discrete time intervals (e.g., every 10 years; at 3-, 6-, and 12-month intervals) are 
called discrete time models, and those that use time continuously are called continuous 
time models.

A wide range of phenomena is potentially chaotic in nature, including epidemics, 
economic changes, the stock market, and the mental state of depression, to name a few. 
However, it is controversial as to whether a truly chaotic system can be isolated in the 
real world, in the sense described in this chapter (i.e., with a stable, generating function 
underlying the chaos).

Variants of chaos theory include, among other things, attempts to identify limits of 
predictable versus unpredictable patterns of data. For example, air flow over the wing of 
an airplane might be smooth and predictable when the wing is placed at low angles fac-
ing the wind. However, the air flow becomes chaotic and unpredictable at larger angles. 
One could attempt to determine the largest angle that permits smooth air flow, thereby 
yielding some understanding of this “chaotic system.”

The technical aspects of chaos theory are well beyond the scope of this book. How-
ever, the theory represents an interesting application of mathematical modeling that 
promises to have impact in the social sciences in the future.

CATASTROPHE THEORY

Catastrophe theory is another area of mathematical modeling that is receiving atten-
tion in the social sciences. A catastrophic event is one where a large and rapid change 
in a system output occurs even though the system inputs are smooth and continuous. 
A simple example that captures the idea of catastrophic events is that of increasing 
the load on a bridge. One can keep adding weight to a bridge and see how the bridge 
deforms in response to that weight. The deforming of the bridge proceeds in a relatively 
uniform manner, showing increasing levels of bending. At some critical point, however, 
additional weight causes the bridge to collapse completely. Phenomena that might be 
analyzed using catastrophe theory include the occurrence of a nervous breakdown, drug 

Additional Notations

Greek letters are used to refer to population parameters, Roman, usually italic, 
letters are used to refer to sample statistics.

A number raised to .5 or to ½ is the same as the square root of the number. A 
number raised to the power of –1 is the same as the inverse of the number.
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relapse, divorce, a revolution occurring in a society, a demonstration turning into mob 
violence, or movement from one developmental stage to another in the context of a stage 
theory of development.

Catastrophe theory, developed by Rene Thom (1975), postulates seven fundamen-
tal mathematical equations to describe discontinuous behavior. Catastrophe theory 
relates outcome variables to what are called control variables, which essentially are 
explanatory variables. The relationships between the variables are expressed math-
ematically using nonlinear, dynamic systems that rely on different forms of polyno-
mial functions. The spirit of catastrophe theory can be captured intuitively in a model 
of aggression in dogs as developed by Zeeman (1976). The behavioral outcome ranges 
from flight to attack, and the response on this dimension is thought to be a function of 
two emotions that represent control variables: fear and anger. When fear and anger are 
at their neutral points, then simple increases in either fear or anger lead to a continu-
ous increase in flight or attack responses, respectively. However, if anger is increased 
in an already fearful dog, then the potential for a sudden jump from flight to attack 
can occur. Similarly, if fear is increased in an already angry dog, a sudden jump from 
attack to flight can occur. The mathematical models developed by Thom and expanded 
by other mathematicians are designed to model such dynamics. Catastrophe theory 
represents another area of mathematical modeling that is starting to receive attention 
from the social sciences.

ADDITIONAL EXAMPLES OF MATHEMATICAL MODELS IN THE 
SOCIAL SCIENCES

Mathematical models exist in all of the major subdisciplines of the social sciences. Most 
of the subdisciplines have journals that are devoted exclusively to mathematical model-
ing (e.g., Journal of Mathematical Psychology, Journal of Mathematical Sociology, Journal of 
Quantitative Anthropology, Marketing Science). Mathematical models also appear in more 
mainstream journals, but with less frequency. It is impossible to describe the many 
areas in which mathematical models have been developed, but in this section, we pro-
vide a brief sampling to highlight the diversity of applications.

One area where mathematical models have been prominent is in the analysis of 
human decision making. This endeavor has involved applications of expected-utility 
theory, linear regression models, Bayesian probability models, and information theory 
models, to name a few. The models use mathematics to document both the strengths and 
limitations of humans as information processors when making decisions. Mathematical 
models also are prominent in theories of memory, learning, language, bargaining, and 
signal detectability. Mathematical models have been used extensively in the analysis 
of social networks involving units such as institutions, communities, elites, friendship 
systems, kinship systems, and trade networks. Mathematical models of political behav-
ior have explored such issues as voting and fairness. Behavior genetics relies heavily on 
mathematical decompositions of the effects of unique environmental influences, shared 
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environmental influences, and genetic influences on human behavior in the context 
of twin studies. Spatial models are used to analyze residential and neighborhood pat-
terning and the effects of this patterning on a wide range of phenomena. Geostatistical 
techniques explore spatial autocorrelation structures and then use mathematical mod-
els to estimate values of variables across regions. Our list could go on, but hopefully, 
this provides you with a sense of the diverse areas to which mathematical models have 
been applied.

EMERGENT THEORY CONSTRUCTION AND MATHEMATICAL MODELS

It may seem heretical to use the terms “grounded/emergent theory” and “mathemati-
cal modeling” in the same sentence, but there is no reason why some of the concepts 
developed in this chapter could not be used within emergent theory frameworks. For 
example, as one thinks about the conceptual relationships that emerge from qualitative 
data, are these relationships linear or nonlinear in form? If nonlinear, might they be 
described by logarithmic functions, exponential functions, power functions, polyno-
mial functions, sine functions, or cosine functions? Could some systematic combination 
of variables underlie what seems to be chaos? Is their anything to be gained by think-
ing about qualitative data in terms of the logic of multiplicative modeling or cognitive 
algebra? And so on.

We noted earlier that mathematical modelers usually give short shrift to how the 
variables they decide to include in their models are chosen. Certainly an emergent 
theoretical framework might help them select their variables in informed and creative 
ways.

We think it would be interesting to have a mathematical modeler and a grounded/
emergent theorist work as a multidisciplinary team on a common problem, with the 
instructions to develop an integrated finished product that they both would “sign off” 
on. Such a collaboration would undoubtedly yield nontraditional perspectives on mat-
ters.

SUMMARY AND CONCLUDING COMMENTS

Mathematical modeling is an elegant framework for constructing theories. The empha-
sis of mathematical modeling is thinking in terms of functions and how to describe 
relationships between variables in mathematical terms. Functions specify how input 
variables should be operated upon mathematically to produce outputs. One of the most 
commonly used functions in the social sciences is the linear function, which has two 
adjustable constants, a slope and an intercept. The intercept is the output value of the 
function when the input X equals zero, and the slope is the change in the output given a 
1-unit increase in X. Rarely do data conform to a perfect linear function. Model dispari-
ties are accommodated through the addition of disturbance or error terms to models. 
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Errors are assumed to be random and inconsequential for the purposes at hand. Models 
without errors are deterministic, and models with errors are stochastic.

Mathematical models vary in their number of adjustable constants and the mean-
ing of those constants/parameters. Some parameters reflect rates of change in function 
output per unit change in function input. These rates are best captured using the con-
cepts of derivatives and differentiation from calculus. Derivatives refer to the concept of 
instantaneous change, and differentiation refers to mathematical methods for calculat-
ing the amount of instantaneous change that occurs. Integrals focus on “areas under 
the curve” or accumulation, and integration refers to the methods used to calculate 
integrals.

Mathematical models also differ in their identification status, with some models 
being underidentified, some being just-identified, and others being overidentified. A 
just-identified model is one for which there is a unique solution for each estimated 
parameter. In an underidentified model there are an infinite number of solutions for 
one or more of the model parameters. In an overidentified model there is a unique solu-
tion for the model parameters and there also is more than one feature that can be used 
to independently estimate a parameter value. Finally, mathematical models vary in the 
metrics upon which they rely upon for the input variables. The metrics of variables can 
affect the type of functions used to describe the relationships between variables and how 
the parameter variables are interpreted.

Although the assumption of linear relationships is ubiquitous in the social sciences, 
nonlinear relationships could very well be more common. Five major classes of nonlin-
ear functions are logarithmic functions, exponential functions, power functions, poly-
nomial functions, and trigonometric functions. Logarithms are used to model growth 
or change, where the change is rapid at first and then slows to a gradual and eventually 
almost nonexistent pace. Logarithmic models reflect rates of increase that are inversely 
proportional to the output value of the function. Exponential functions are the inverse of 
log functions, with the two functions mirroring each other’s properties. Power functions 
have a similar shape to exponential and logarithmic functions, but differ at higher val-
ues of the input X. Power curves eventually outgrow a logarithmic function and under-
grow an exponential function. Polynomial functions are the sum of power functions 
and can accommodate phenomena with “wiggles and turns.” The more bends there are 
in a curve, the greater the number of polynomial terms that are needed to reflect those 
bends. Trigonometric functions are used to model cyclical phenomena, with the most 
common functions being the sine and cosine functions.

Functions can be manipulated through transformations and can be combined to 
form new functions. For example, the often used logistic function is a combination of a 
bounded exponential function and an increasing exponential function. Combining and 
manipulating functions is a key ingredient to building effective mathematical models. 
A typical theory construction process involves breaking up the overall process into a 
series of smaller component processes, specifying a function to reflect each component, 
and then assembling the component functions into a larger whole.

When functions involve more than one input variable, additional levels of flexibility 
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and complexity are introduced, as the input variables are combined additively or multi-
plicatively. With multiple input variables, the theorist often thinks of the function relat-
ing each individual input variable to the output variable and then combines the differ-
ent variables and their functions, while taking into account the synergistic interaction 
between the input variables. When choosing functions to use in a model, it is advisable 
not to overparameterize the model or to add parameters that are not subject to meaning-
ful substantive interpretation.

Mathematical modeling represents a sophisticated way of thinking about relation-
ships between variables. The approach is underutilized in the social sciences, and we 
believe that theory construction efforts can benefit from thinking about phenomena 
from this perspective.
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Exercises 

Exercises to Reinforce Concepts

	 1.	 What is the difference between an axiom and a theorem?

	 2.	 What is a function?

	 3.	 How do you interpret the value of a slope and intercept in a linear relation-
ship?

	 4.	 How do you calculate a slope in a linear relationship? How do you calculate the 
intercept?

	 5.	 Why would you add an error term to a model? How does this relate to the terms 
stochastic and deterministic modeling?

	 6.	 What is the difference between a derivative and differentiation?

	 7.	 What is the difference between a first and second derivative?
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	 8.	 What is integration?

	 9.	 Why are metrics important to consider when constructing a mathematical 
model?

	10.	 Briefly describe the major types of nonlinear functions.

	11.	 What are the major types of transformations to functions, and what effects do 
they have?

	12.	 What criteria are used in choosing a function?

	13.	 Briefly characterize chaos theory.

	14.	 Briefly characterize catastrophe theory.

Exercises to Apply Concepts

	 1.	 Find an example of a mathematical model in the literature and write a sum-
mary of it. Discuss each of the key parameters in the model and what those 
parameters represent. Develop the model’s conceptual and substantive implica-
tions.

	 2.	 Develop a mathematical model for a phenomenon of interest to you. Begin 
by identifying your outcome variable and then variables that you believe are 
related to it. Specify the functions relating the variables and add relevant con-
stants to the equations, as appropriate. Justify conceptually each function and 
each constant. Decide if the model should be deterministic or stochastic. Start 
simple and then build complexity into the model, accordingly.

	 3.	 Pick a phenomenon of interest to you and try to apply either chaos theory or 
catastrophe theory to it. Describe the new theory as completely as you can.
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Appendix 8A

SPSS Code for Exploring Distribution Properties

This appendix presents syntax from SPSS that can be used to examine curves produced by differ-
ent functions.

First, open SPSS with the data field blank. We will use the syntax editor. The first step is to 
create a variable with a large number of cases, say 100,000. This is accomplished with the follow-
ing syntax:

INPUT PROGRAM. 
LOOP #I = 1 TO 100000. 
END CASE. 
END LOOP. 
END FILE. 
END INPUT PROGRAM. 
COMPUTE X = $CASENUM. 
EXECUTE.

The last entry in the LOOP command (100000) specifies the number of cases to generate. Num-
bers are generated in a variable called X, and these numbers range from 1 to the number of cases 
generated. These can be transformed to take on any metric you wish. For example, to have them 
range from 0 to 1, multiply X by .00001. To have them range from –5 to +5, multiply by .00001, 
subtract 0.5, and then multiply the result by 5. And so on.

Next, we compute the function we are interested in graphing. Suppose it is a log to the base 
10. SPSS offers numerous built-in functions, and in this case, we use the syntax

COMPUTE XX=LG10(X). 
GRAPH 
/HISTOGRAM=XX.

The last two lines construct a histogram of the data, and the shape of the function will be evident 
from this. You can add adjustable constants and perform various transformations discussed in the 
chapter, as desired.

The major function commands available in SPSS are arsin, artan, cos, exp, lg10, ln, sin, and 
sqrt. These are defined in the help menu in SPSS. One also can work with a wide range of statisti-
cal functions, including the logistic function. Note that it is possible to calculate a log to any base 
from the natural log. The logarithm base a of any number is the natural logarithm of the number 
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divided by the natural logarithm of the base. For example, to calculate log2(100), evaluate the 
expression ln(100)/ln(2).

There are a host of graphic software programs (for both PC and Mac) designed for scientists 
that allow them to graph a wide range of functions easily and quickly. These include CoPlot, DPlot, 
Sigma Plot, and Grapher. We are fond of DPlot. Other statistical software programs that have good 
graphics packages are S Plus, R, and Statistica.
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Appendix 8B

Additional Modeling Issues for the Performance, 
Motivation, and Ability Example

This appendix describes details for the example modeling the effects of ability and motivation on 
performance, where the relationship between performance and motivation is nonlinear instead 
of linear at a given level of ability. We assume the reader is versed in standard statistical methods 
and psychometric theory. We illustrate the case first where motivation is assumed to impact per-
formance in accord with a power function, with the shape of the power function changing as a 
function of ability. Then we mention the case where the relationship between performance and 
motivation is assumed to be S-shaped, with the form of the S varying as a function of ability.

We build the power function model by first positing that performance is a power function of 
motivation,

	 P = a + bMc	 (A.1)

where a and b are adjustable constants to accommodate metrics and c is an adjustable constant to 
isolate the relevant power curve in light of a and b. According to the broader theory, the effect of 
motivation on performance varies depending on ability (e.g., when ability is low, increases in moti-
vation will have negligible effects on performance, but when ability is moderate to high, increases 
in motivation will have a more substantial impact on performance). Stated another way, the shape 
of the power curve will differ depending on the level of ability of students, such that the value of 
c is some function of A. In addition, it is likely the case that the adjustable constants a and b vary 
as a function of A. To simplify matters and to develop the underlying logic, we will assume that c 
is a linear function of A, that a is a linear function of A, and that b is a linear function of A. This 
yields the equations

			   c = d + fA 
			   a = g + hA 
			   b = i + jA

where c, d, f, g, h, i, and j are adjustable constants that conform to the respective linear models. 
Using substitution principles, we can substitute the right-hand side of these equations into A.1, 
which yields

	 P = (g + hA) + (i + jA)(M)(d + fA)
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Expanding, we obtain

	 P = (g + hA) + iM(d + fA) + jAM(d + fA)

We can rewrite this equation using the more familiar symbols of a and b for adjustable constants 
in regression analysis:

	

This model can be fit to data and the values of the adjustable constants estimated using nonlinear 
regression algorithms in SPSS or some other statistical package. The adjustable constants are ame-
nable to interpretation, but we forgo explication of this here. Additional interpretative complica-
tions present themselves if the metrics involved are arbitrary, but we do not pursue such matters 
here either (see Blanton & Jaccard, 2006a, 2006b).

One intuitive way of seeing the implications of the function once the values of the adjustable 
constants are estimated is to calculate predicted scores that vary M by 1 unit at select values of A. 
These can be graphed and then subjected to interpretation.

An alternative approach to modeling the data that uses methods that are more familiar to 
social scientists is to use polynomial regression. In this approach, performance is assumed to be 
a quadratic function of motivation. Although the full quadratic curve most certainly is not appli-
cable (because it is U-shaped), the part of the curve that forms the right half of the “U” could 
apply. The model includes adjustable constants to isolate this portion. We begin by writing a model 
where performance is a quadratic function of motivation

	 P = a1 + b1M + b2M2	 (A.2)

and the adjustable constants in this equation (the intercept and the regression coefficients) are 
modeled as being a linear function of ability (we could use a nonlinear function, but for the sake 
of pedagogy, we assume a linear function), yielding

			   a1 = a2 + b3A 
			   b1 = a3 + b4A 
			   b2 = a4 + b5A

Using the substitution principle, we substitute the right-hand sides of these equations for their 
respective terms in Equation A.2, which produces

	 P = (a2 + b3A) + (a3 + b4A)M + (a4 + b5A)M2

Expanding this yields

	 P = a2 + b3A + a3M + b4AM + a4M
2 + b5AM2

Rearranging and relabeling the constants to conform to more traditional notation yields the 
model
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	 P = a + b1A + b2M + b3AM + b4M
2 + b5AM2

This model can be fit using standard least squares regression.
To model an S-shaped function, one can stay with polynomial regression but extend the logic 

to a cubic function. The basic idea is to express performance as a cubic function of motivation

	 P = a1 + b1M + b2M2 + b3M
3

and then to model the adjustable constants as a function of A. Finally, use the substitution method 
to derive the more complex generating function.

Alternatively, one can use a logistic function to capture the S shape and then model the adjust-
able constants within it as a function of A. This approach requires the use of nonlinear algorithms 
in estimating the adjustable constants.
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