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In this document, I describe ways of using the interactive simulation programs. I consider 
each program separately, but a general approach for using the programs is described for 
the analysis of treatment effects on a mediator/outcome by testing group differences on 
means. Be sure to read it first. I show how to use the simulation to gain an appreciation for 
sampling error dynamics for the various links in RETs. I also show how to use the programs 
to conduct and gain perspectives on power analysis.  

INTERACTIVE SIMULATION FOR TREATMENT EFFECTS: MEANS 

The Basics of Evaluating Treatment Effects on Means 

Consider the case of anorexic women who undergo a cognitive-behavioral therapy (CBT) 
program to help them gain weight. In an RET, I conceptualize a population of patients who 
have received treatment and a comparable population of patients who have not. Suppose 
the former population has a mean weight of 100 pounds (45.4kg) and the latter population 
has a mean weight of 90 pounds (40.8kg), so the treatment has a true effect of increasing 
weight by 10 pounds (4.5kg). Suppose also that the standard deviation for weight within 
each population is 15 pounds (6.8kg).  
 I conduct a study in which I randomly sample a total of 70 individuals, 35 from each 
population. The 35 individuals in the treatment group have been given CBT and the 35 
individuals in the control group are a wait-list control. Suppose I find that that for this 
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sample of 70 individuals, the difference in mean weight was 8.4 pounds. This does not 
equal the true population difference of 10.0 and the disparity from 10.0 can be 
conceptualized as being due to sampling error, assuming all other aspects of the study were 
well implemented and controlled. To gain perspectives on the dynamics of such sampling 
error, I use the simulation program. I enter the population treatment mean as 100, the 
population control mean as 90, the within group standard deviation as 15, and the sample 
size as 70 in the Input box. 
 Upon execution of the generated R syntax, the program creates 10,000 “replications” 
of my study but each time selecting a different random sample of 70 cases. The program 
first reports a sub-group of 25 of the 10,000 studies. Here are the results: 
 
            Treat mean    Ctrl mean    Difference    p Value 
Study 01       98.7739      88.3323       10.4416     0.0038 
Study 02      103.2865      89.7057       13.5807     0.0007 
Study 03      100.5284      87.2374       13.2910     0.0008 
Study 04       95.6223      87.2366        8.3857     0.0623 
Study 05      101.6162      86.0007       15.6154     0.0002 
Study 06      103.3272      89.7894       13.5377     0.0002 
Study 07      100.9563      89.8447       11.1116     0.0015 
Study 08       97.8659      87.5534       10.3125     0.0100 
Study 09      102.0607      90.6470       11.4137     0.0031 
Study 10       96.9584      92.1386        4.8198     0.1587 
Study 11      102.0976      87.7208       14.3768     0.0003 
Study 12      100.1510      90.8145        9.3365     0.0095 
Study 13       99.1189      85.3180       13.8009     0.0008 
Study 14      100.9913      90.5335       10.4578     0.0072 
Study 15      101.0823      92.8728        8.2095     0.0427 
Study 16       97.8462      88.8534        8.9929     0.0247 
Study 17       99.1568      88.0959       11.0610     0.0059 
Study 18       97.4825      88.6902        8.7923     0.0111 
Study 19       99.4318      90.9628        8.4690     0.0192 
Study 20       99.6610      93.0426        6.6184     0.0742 
Study 21       99.8934      88.3110       11.5824     0.0032 
Study 22       99.6057      91.1681        8.4376     0.0184 
Study 23       98.7352      91.8702        6.8650     0.0814 
Study 24       94.9329      85.5413        9.3916     0.0035 
Study 25      101.3849      91.1361       10.2488     0.0130 
 
 My particular study could be any one of these 25 studies (perhaps Study 22). As I 
scan the results of the 25 studies, I see that each one produced a different result. Sometimes 
the mean difference in the sample/study was statistically significant and sometimes not. 
For one sample/study, the mean difference was as much as almost 16 pounds (Study 05) 
and for another, it was as little as 4.8 pounds (Study 10). These study-to-study (or sample-
to-sample) fluctuations are bothersome and knowledge that they exist lead me to interpret 
the results for my single study with humility. In my study, I found a mean difference of 8.4 
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pounds (p < 0.05), but this is but one instantiation of the many possible results I could have 
obtained given the nature of sampling error. Note also that the difference of 8.4 pounds 
that I found in my study was statistically significant (Study 22) but the same difference 
was not statistically significant in another study (Study 04). This is because the estimated 
within group standard deviations differed in the two studies due to sampling error in them. 
Inspection of the 25 study results is sobering. 
 The true population Cohen’s d was (100-90)/15 = 0.67 and the true proportion of 
explained variance due to the treatment condition was 0.10. The program also reports these 
statistics in each of the 25 studies. Here are the results: 
            Cohen d    Eta sqr 
Study 01     0.7214     0.1166 
Study 02     0.8586     0.1575 
Study 03     0.8486     0.1544 
Study 04     0.4564     0.0502 
Study 05     0.9493     0.1860 
Study 06     0.9484     0.1858 
Study 07     0.7942     0.1379 
Study 08     0.6379     0.0935 
Study 09     0.7395     0.1218 
Study 10     0.3432     0.0290 
Study 11     0.9094     0.1734 
Study 12     0.6432     0.0950 
Study 13     0.8481     0.1543 
Study 14     0.6667     0.1013 
Study 15     0.4974     0.0591 
Study 16     0.5533     0.0720 
Study 17     0.6839     0.1061 
Study 18     0.6286     0.0911 
Study 19     0.5774     0.0780 
Study 20     0.4366     0.0461 
Study 21     0.7362     0.1208 
Study 22     0.5817     0.0790 
Study 23     0.4259     0.0440 
Study 24     0.7282     0.1185 
Study 25     0.6146     0.0874 
 
There also are sample-to-sample fluctuations in these statistics. For example, Cohen’s d 
was 0.34 in one random sample (Study 10) but 0.95 in another sample (Study 05). The 
percent of explained variance was 2.9% in Study 10 but 18.6% in Study 5.  
 I address below ways of reducing such sample-to-sample fluctuations when designing 
studies, but let’s first examine summary statistics for the results across all 10,000 studies. 
Here is the table the program reports: 
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Summary Statistics Across the 10000 Studies 
              Average      SD      Min      Max      q10      q90 
Mean diff     10.0653  3.5912  -3.6027  23.9101   5.4558  14.6175 
Cohen d        0.6842  0.2515  -0.2405   1.8100   0.3669   1.0045 
Eta sqr        0.1133  0.0670   0.0000   0.4538   0.0330   0.2038 
SEmeandiff     3.5672  0.3080   2.4238   4.9276   3.1783   3.9652 
 
Across all studies, the average mean difference between the treatment and control 
conditions was 10.07, which is quite close to the true population difference of 10.0. It turns 
out that had I conducted the simulation using many more random samples than 10,000, the 
average across the studies would have been 10.0. This is the essence of what we call an 
unbiased estimator; across all possible random samples of a given size from a population 
(e.g., N=70), the average of the estimates equals the value of the true population parameter. 
In this case, the sample mean difference between the treatment and control conditions is an 
unbiased estimator of the true population mean difference. Note that when I state that an 
estimator is unbiased, I am not saying that the result from any one sample accurately 
describes the true population difference. It may or may not, as was evident when we 
examined the results for the 25 studies. When we speak of an unbiased estimator, we speak 
of a highly specialized concept, namely whether its average across all possible random 
samples of a given size equals the population parameter in question. 
 Note from the above table that one study (under MIN) found that people in the CBT 
condition gained, on average, less weight than people in the control condition (mean 
difference = -3.60), while in another study (under MAX) people in the CBT condition gained, 
on average, almost 24 pounds more than those in the control condition. Across the 10,000 
studies, fully 10% of the studies observed mean differences less than 5.46 pounds (see the 
10th quantile column, q10) while 10% of the studies observed mean differences greater 
than 14.6 pounds (see the 90th quantile column, q90). Appreciation of the existence of such 
arbitrary sample-to-sample fluctuations helps us keep the results for any one study in 
perspective. 
 A statistic in the table that is of particular interest is the standard deviation of the 
sample mean differences across the 10,000 studies. It indicates the “typical” disparity 
between a given sample result and the true population difference. In this case, it was 3.59 
pounds. On average, sample mean differences were “off” by 3.59 pounds when estimating 
the true population mean difference of 10 pounds. This standard deviation has a special 
name in statistics. It is called the standard error of the difference between independent 
means. An estimate of it is routinely reported on most computer output. Large standard 
errors suggest large sample-to-sample fluctuations for results and small standard errors 
suggest small sample-to-sample fluctuations. Indeed, a standard error of zero would 
indicate that every random sample yielded the same result, i.e., there is no sampling error. 
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Standard errors (or variants of them, such as margins of error) are our friends and should 
be embraced in reports of statistical analyses.1   
 In statistics, we often refer to the efficiency of an estimator. Informally, efficiency is 
the extent to which the estimator yields low standard errors or less sample-to-sample 
fluctuations than other estimators. We desire estimators that are unbiased and efficient.  
 As noted, when you conduct a study of mean differences, the t test or regression 
analysis will typically report an estimated standard error for the difference based on the 
sample data. However, the reported standard error is merely an estimate and it too will be 
subject to sampling error. In the last row in the above table, for the term labeled 
SEmeandiff, I provide descriptive statistics for the estimated standard error for the 
difference between the two means from each study across the 10,000 studies. The average 
standard error was 3.57. This value should be close to the true standard error, which, as 
noted above, was 3.59 (see the SD value in the row for Mean diff). If the average of the 
estimated standard errors is considerably smaller than the true standard error, this suggests 
the test likely will yield too many Type I errors.  
 Another statistic reported by the simulation program is the proportion of studies out 
of the 10,000 that found a statistically significant result (p < 0.05). In the current example, 
it was 0.79; 79% of the studies observed a statistically significant result whereas 21% of 
the studies failed to reject the null hypothesis of no group mean difference in weight gain. 
Given that the true population mean difference in weight is non-zero, the 0.79 statistic 
reflects the power of the statistical test when we use a sample size of 35 per group for these 
particular populations. Although this level of power approaches standards that many 
researchers seek (power of 0.80 or greater), it does not alter the fact that there are non-
trivial sample-to-sample fluctuations at play, fluctuations that I would prefer to minimize 
in the bigger scheme of things. There is more to study design than having adequate 
statistical power. 
 A final piece of information generated by the simulation program is a density plot of 
the mean differences across the 10,000 studies (see my book for a description of density 
plots; they are like probability plots or histograms that show the fundamental shape of a 
distribution of scores). The generated plot is shown in Figure 1 with a normal distribution 
superimposed on it. The distribution is given a special name in statistics, the sampling 
distribution of the difference between two independent means. Note that the distribution 
is roughly normally distributed. Had I used a very large number of replications instead of 
just 10,000, the approximation would be quite close. Statisticians make use of this fact to 
derive confidence intervals and p values for statistical tests by knowing the properties of 

 
1 Technically, standard errors usually are estimated based on mathematical derivations rather than simulations, but 
the results of the simulation here yields a reasonable proxy.  
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sampling distributions, such as if it is normally distributed, t distributed, or chi square 
distributed.  

 

FIGURE 1. Sampling distribution of the difference between independent means 

 In sum, the program illustrates in concrete ways the important concepts of sampling 
error, standard errors, unbiased estimators, efficient estimators, statistical power and 
sampling distributions.  

Type I Errors for Group Mean Comparisons 

Suppose in the simulation program I specified the two populations as having identical 
population means, say both equal to 100 and both having a within group SD of 15. In this 
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case, the number of null hypothesis rejections across the 10,000 studies reflects Type I 
errors, i.e., the proportion of times the null hypothesis was incorrectly rejected. When I 
modeled this scenario in the program, the result was 0.049, which maps well onto an alpha 
level of 0.05 (the default alpha level in the simulation). This result is not surprising because 
the simulation was set up to satisfy the assumptions of the statistical procedure used to 
analyze the data. However, you can alter the input values where the statistical assumption 
of equal within group SDs is violated and examine the impact it has on Type I (and for that 
matter, Type II) errors. For example, I might set the means for the treatment and control 
groups to each be 100, the SD for the treatment group to be 10, the SD for the control group 
to be 15, and the sample sizes to be 35 in each group. The analysis would then provide 
perspectives on the effects of variance heterogeneity on the Type I error rate. When I did 
so, the proportion of rejections of the null hypothesis was 0.052. Violation of the 
assumption did not make much difference in this case. In my book, I advocate for the use 
of robust estimators that do not make homogeneity of variance assumptions.  

Reducing Sampling Error (Sample-to-Sample Fluctuations) 

One way to reduce sampling error and the resultant sample-to sample fluctuations that 
occur is to increase one’s sample size. Suppose instead of a sample size of 35 per group, I 
quadruple it and use a sample size of 140 per group, or a total N of 280. I re-ran the 
simulation using this sample size and the effects of increasing the N were notable. Here are 
the side-by-side values of the 25 randomly selected studies in the two simulations: 
 
            n=35 per grp     n=140 per grp  
             Difference    Difference   
 
Study 01      12.3632         12.5144 
Study 02      13.8309          9.8685 
Study 03      15.8767          9.6031 
Study 04       8.7051         12.6547 
Study 05      13.0683          9.0801 
Study 06       8.5263         12.3443 
Study 07      12.6382          9.0227 
Study 08       9.3578         10.8584 
Study 09       3.0968          8.8043 
Study 10       8.6984         10.0666 
Study 11      12.7581          6.9597 
Study 12       8.6774         10.0840 
Study 13       4.1755         13.3679 
Study 14      15.1318         11.7767 
Study 15       5.1337          9.7332 
Study 16      10.1320          9.0430 
Study 17       9.9999          6.6325 
Study 18       8.1195         12.6563 
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Study 19      14.6196          9.9760 
Study 20       9.9632         12.7057 
Study 21       4.9350         13.1071 
Study 22       9.5551          10.1379 
Study 23      10.2517          8.5934 
Study 24       8.3547          6.8240 
Study 25       6.5791        10.9827 
 
If you scan the two columns of numbers, you see that the numbers in the second column 
tend to be closer to one another than the numbers in the first column; there is less sample-
to-sample variability in them. For the n=35 per group simulation, the minimum and 
maximum mean differences for the 10,000 studies were -3.60 and 23.91, respectively; for 
the n=140 per group simulation, they were 3.58 and 16.55. For the n=35 per group 
simulation, the 10th and 90th quantiles were 5.46 and 14.62; for the n=140 per group 
simulation, they were 7.70 and 12.31. The standard error for the mean difference for the 
n=35 per group simulation was 3.59; for the n=140 per group simulation, it was 1.79, a 
reduction of about 50%. Clearly, we are better served by the larger sample size.  
 There is another way of reducing sampling error other than increasing sample size 
that some researchers overlook in RETs. The strategy is particularly useful for research in 
which it is difficult to increase N due to cost or practical constraints. I can illustrate the 
general principle using a simplistic example. Consider the case of two populations each 
with 5 observations. Here are the scores in each of them: 
 
Population A Population B 
 
      2   4 
 3   4 
 4   4 
 5   4 
 6   4  
 
The mean in each population is 4, but the two populations obviously differ in the variability 
of scores. Suppose I do not know the value of the population means and I am told I can 
randomly sample two cases from each population to estimate the mean. In Population A, I 
might end up sampling the scores 4 and 6 when I select the two observations randomly, 
and the average of them is 5. Absent any other information, 5 is my best guess about the 
population mean and, as it turns out, I am “off” by 1 unit because of sampling error. For 
Population B, I randomly select the scores of, say, the third and fifth persons, which are 4 
and 4 and the mean is 4. There is no sampling error. Note that because there is no variability 
in the scores in Population B, it does not matter which two cases I happen to sample because 



                                                                                                                Conceptual Fundamentals  10 

 
 

they all equal 4 and, when averaged, will yield the value of the Population mean. In 
Population A, where the scores are quite variable, there are many combinations of two that 
I could sample, some of which will yield means that are quite discrepant from the 
population mean. The more variability there is in scores in the population, the more 
sampling error there will be in sample means, everything else being equal. This is a core 
principle in sampling theory.  
 Using a more realistic example, suppose my RET is focused on reducing depression. 
There are well documented differences in depression as a function of biological sex; 
females tend to have higher levels of depression than males. In an RET, the within group 
standard deviation of depression at posttest reflects, in part, these gender differences. The 
treatment group has both males and females in it and this fact creates variability in 
depression scores within that group, i.e., it increases the withing-group SD. Similarly, the 
control group has both males and females in it and this also creates variability of depression 
scores within that group. If I measure biological sex and statistically control for it in my 
statistical analysis, the result will be less within cell variability in depression and, in turn, 
less sampling error. In short, I can reduce sampling error not only by increasing sample 
size but also by including strategically chosen covariates in the analysis. See my book for 
elaboration of this strategy. 
 For the anorexia RET, the within group standard deviation for weight was 15 pounds. 
One viable candidate for use as a covariate is the baseline outcome measure, namely 
baseline weight. The baseline measure of weight will be uncorrelated with the treatment 
condition (given random assignment) yet it likely is strongly related to the posttest weight. 
Indeed, it is not uncommon for baseline and posttest measures of a construct to be 
correlated between 0.50 and 0.70. Suppose I re-run the simulation with the original N = 70 
(n = 35 per group), but now I use the baseline as a covariate. I might find that the posttest 
within cell variability of weight is cut in half, from 15 to 7.5. Here is the summary table 
for the results across the 10,000 “studies”:   
 
Summary Statistics Across the 10000 Studies 
              Average      SD      Min      Max      q10      q90 
Mean diff     10.0327  1.7956   3.1987  16.9550   7.7279  12.3087 
Cohen d        1.3643  0.2709   0.4271   2.6331   1.0249   1.7135 
Eta sqr        0.3185  0.0837   0.0442   0.6375   0.2104   0.4268 
SEmeandiff     1.7836  0.1540   1.2119   2.4638   1.5891   1.9826 
 
The results are about the same as the case where I quadrupled the sample size to an n of 
140 per group, but the “cost” of measuring and covarying out the baseline outcome is likely 
much less compared to that of quadrupling the sample size. The estimated power of the 
baseline adjusted analysis in the new simulation was greater than 0.99 as compared with 
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0.79 in the original simulation. There obviously is something to be said for identifying 
baseline variables that cause variability in the outcome and then statistically controlling for 
them to increase power and reduce sampling error. You can use the simulation program to 
explore the consequences of varying sample size and covariate inclusion to reduce within 
cell SD, a topic I discuss in more depth in my book. 
 A third way of reducing sampling error is by experimental design, such as by 
restricting the study to a homogeneous population (e.g., only females) and by ensuring 
uniform implementation of study and treatment protocols. The more heterogeneous the 
population and the more subtle variability there is in the implementation of study protocols, 
the more unintended variability in mediators and outcomes there can be.  

Power Analysis for Group Mean Comparisons 

You can use the interactive simulation program to conduct power analyses when planning 
studies and to explore the consequences of different sample size decisions. To conduct a 
power analysis, you must specify the minimum effect size (MIES) that you want to be sure 
to detect because it is deemed as being clinically or substantively important. In studies of 
mean differences, this is often expressed in terms of Cohen’s d and a common MIES is a 
population d of 0.50. In the simulation program, you can mimic this case by setting the 
population treatment mean to 0.50, the control group mean to 0.00, and the within group 
SD to 1.0. This produces a population d of (0.50–0.00)/1 = 0.50, the results of which will 
generalize to any combination of numbers that produce a d of 0.50, such as (100-90)/20. I 
can evaluate approximate statistical power for any given sample size by specifying the 
sample size of interest under this scenario. As an example, I ran the simulation for a d=0.50 
using n = 65 per group. The power estimate from the simulation program was 0.81.  
 Some researchers allocate a smaller number of cases to the control group to allow for 
a larger sample size in the treatment condition for additional within-group analyses on that 
group. I repeated the above power analysis but with 100 individuals in the treatment group 
and 30 individuals in the control group (note that the overall N remains the same at 130). 
The statistical power to detect a population d of 0.50 was reduced from 0.81 to 0.68. It 
turns out that the group with the smaller sample size lowers power because of the increased 
sampling error associated with it’s mean; this decrease is not offset by the increased 
precision for the group with the larger N. There are trade-offs of non-1:1 allocations.  

INTERACTIVE SIMULATION FOR TREATMENT EFFECTS: PERCENTS 

The Basics of Evaluating Treatment Effects on Percents 

Consider the case of a program that encourages people to obtain a new vaccination against 
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a deadly virus. In an RET, I conceptualize a population of individuals who have been 
exposed to the program and a comparable population of individuals who have not. Suppose 
the former population has a vaccination rate of 50% and the latter population has 
vaccination rate of 40%, so the treatment has a true effect of increasing the percent of 
people obtaining the vaccination by 10%.  
 I conduct a study in which I randomly sample a total of 250 individuals, 125 from 
each population. The 125 individuals in the treatment group have been given the program 
and the 125 individuals in the control group have not. Suppose I find that that for this 
sample of 250 individuals, the percent difference was 12.8%. This does not equal the true 
population difference of 10.0% and the disparity from it can be conceptualized as being 
due to sampling error, assuming all aspects of the study were well implemented and 
controlled. To use the simulation program, I enter the population treatment percent as 50% 
and the population control percent as 40%. I enter samples sizes of 125 per group.  
 After executing the generated R syntax, the program conducts 10,000 “replications” 
of my study but each time it selects a different random sample of 125 cases from each 
population. As with the prior simulation, the program first reports a sub-group of 25 of the 
10,000 studies. Here are the results: 
 
            Treat pct    Ctrl pct    Difference    p Value 
Study 01         44.0        32.8          11.2     0.0680 
Study 02         46.4        32.0          14.4     0.0192 
Study 03         51.2        44.8           6.4     0.3112 
Study 04         51.2        46.4           4.8     0.4480 
Study 05         46.4        38.4           8.0     0.2003 
Study 06         40.0        34.4           5.6     0.3598 
Study 07         55.2        40.0          15.2     0.0156 
Study 08         44.8        45.6          -0.8     0.8990 
Study 09         53.6        36.8          16.8     0.0073 
Study 10         51.2        40.8          10.4     0.0984 
Study 11         50.4        43.2           7.2     0.2538 
Study 12         51.2        34.4          16.8     0.0069 
Study 13         61.6        40.0          21.6     0.0006 
Study 14         54.4        33.6          20.8     0.0008 
Study 15         52.8        36.0          16.8     0.0072 
Study 16         46.4        44.8           1.6     0.7997 
Study 17         51.2        40.8          10.4     0.0984 
Study 18         45.6        34.4          11.2     0.0701 
Study 19         49.6        36.8          12.8     0.0404 
Study 20         52.8        41.6          11.2     0.0755 
Study 21         51.2        37.6          13.6     0.0299 
Study 22         56.8        42.4          14.4     0.0222 
Study 23         52.0        40.0          12.0     0.0563 
Study 24         60.8        32.8          28.0     0.0000 
Study 25         47.2        36.0          11.2     0.0718 
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My particular study could be any one of these 25 studies (perhaps Study 19). Scanning the 
results of the 25 studies, you can see each one produced a different result. Sometimes the 
percent difference for the sample/study was statistically significant and sometimes not. For 
one sample/study, the percent difference was 28% (Study 24) and for another study, it was 
negative, favoring the control condition over the treatment condition (Study 8). These 
study-to-study (or sample-to-sample) fluctuations are disconcerting and lead me to 
interpret the results for my one study cautiously. In my study, I found a percent difference 
of 12.8% (p < 0.05), but this is but one instantiation of the many possible results I could 
have obtained given the nature of sampling error.  
 Here is the table of summary statistics for the percent differences across all 10,000 
studies: 
 
Summary Statistics Across the 10000 Studies 
                Average      SD      Min      Max      q10      q90 
Percent diff     9.9942  6.2672 -14.4000  32.0000   1.6000  18.4000 
SEdiff           6.2359  0.0612   5.8709   6.3244   6.1512   6.3041 
 
Across all studies, the average percent difference was 9.99%, which is quite close to the 
true population difference of 10.0%. This is because the sample percent difference is an 
unbiased estimator of the population percent difference. Across the 10,000 studies, one 
study found that people exposed to the program were less likely to obtain a vaccination by 
14.4% relative to individuals who did not receive the program (see MIN), while in another 
study (under MAX) 32.0% more people exposed to the program obtained the vaccination 
than people who were not exposed to the program. 10% of the studies observed percent 
differences less than 1.6% (see the 10th quantile column, q10) while 10% of the studies 
observed percent differences greater than 18.4% (see the 90th quantile column, q90). The 
standard error of the percent difference was 6.26, suggesting that the “typical” disparity 
between a sample result and the true population difference was 6.26%. The mean of the 
standard errors reported in each study (6.24) was close to the true standard error of 6.27.  
 When I examined on the output the proportion of studies out of the 10,000 that found 
a statistically significant result (p < 0.05), it was 0.35. This is an estimate of the statistical 
power of the test, and it was bleak. Despite a 10% true population percent difference, only 
35% of the samples yielded a statistically significant result. The same level of statistical 
power (more or less) would be evident in logit or probit regression.  
 Finally, the plot of the sampling distribution showed a pattern that was roughly 
normal (see Figure 2).  
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FIGURE 2. Sampling distribution of the difference between independent percents 

Some Properties of Power for Percent Differences 

There are interesting properties of analyzing percent differences relative to sampling error 
and statistical power. The outcome variable is essentially a set of 0s and 1s. If the percent 
of 1s is 50%, there is much more variability in the scores than if the percent of 1s is 90%, 
in which case most of the scores are 1s. Similarly, if the percent of 1s is 10%, most of the 
scores are 0 and there again is little variability. With larger variability in scores, there will 
be more sampling error per my discussion of the role of population variability for mean 
differences. It follows that sampling error will be less as percentages move away from 50% 
and towards the extremes. To illustrate this, I used the simulation program and specified a 
10% difference between the treatment and control conditions but instead of using 50% and 
40% to define the population percents, I used 20% and 10%. The statistical power went 
from 0.35 in the original simulation to 0.62. The standard error of the percent difference 
went from 6.27% to 4.51%. The further the percents are from 50%, the less sampling error 
you have and the greater will be the statistical power, everything else being equal. When 
designing an RET that will analyze percent differences, your guesses about the level of the 
percents involved can be crucial for making sample size decisions.  
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Type I Errors for Group Percent Differences 

You also can use the simulation program to explore Type I errors by setting the two 
population percents to equal values. For example, when I set the percents to 50% in the 
treatment and control populations and used a sample size of 125 per group, the proportion 
of null hypothesis rejections was 0.05. This equals the theoretical 0.05 alpha level. 
Parenthetically, for logit, probit, and MLPM frameworks, there can be slight to moderate 
inflations of Type I errors with smaller sample sizes. For example, when I used a sample 
size of 40 per group and set both groups percent levels at 50%, the proportion of null 
hypothesis rejections was 0.059. See my book for elaboration.  

Reducing Sampling Error (Sample-to-Sample Fluctuations) 

As with the analysis of means, the primary methods for reducing sampling error for the 
analysis of percents are (1) increase sample size, (2) incorporate strategically selected 
covariates that impact the binary outcome but that are unrelated to treatment condition, and 
(3) restrict the study to a homogeneous population and ensure uniform implementation of 
study and treatment protocols. The use of covariates is straightforward for the MLPM 
approach but not so for logit and probit modeling. See my book for details. A third way of 
reducing sampling error is by experimental design and implementation uniformity.  

Sample Size Demands When Analyzing Percents 

As you work with the percent difference simulation program, you will discover that 
comparing percentages between groups is much more sample size demanding than 
comparing means. For example, to achieve power of 0.80 to detect a population difference 
of 10% for a two tailed alpha level of 0.05 where the population percents are 30% and 20%, 
I need a sample size of about 300 per group. By contrast, to detect a mean difference 
corresponding to a Cohen’s d of 0.50 with power of 0.80, the required sample size is about 
65 per group. In some disciplines, researchers are quick to dichotomize continuous 
outcome variables because they find it easier to interpret percents or because it is a way of 
dealing with non-linearity. As I discuss in Chapter 3 of my book, unless there is strong 
theoretical or substantive justification for such dichotomization, it usually is not a good 
practice to pursue. Dramatic loss in statistical power is but one reason not to do so. 

INTERACTIVE SIMULATION FOR MEDIATOR EFFECTS ON OUTCOMES 

The Basics of Evaluating Mediator Effects on Outcomes 

Consider an RET where I have three continuous mediators that are presumed to 
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independently impact a continuous outcome. For example, the outcome might be the 
strength of a person’s intention to support policies favorable to reducing climate change 
(Y) and the mediators are (a) beliefs in the long term negative consequences of climate 
change (M1), (b) beliefs in the short term negative consequences of climate change (M2), 
and (c) beliefs that it is economically feasible to enact the policies (M3). The classic 
analysis of the effects of the mediators on policy support regress Y onto M1, M2, and M3 
and then evaluate the statistical significance and magnitude of the regression coefficients 
associated with each mediator. This might take the form of traditional OLS regression, a 
form of maximum likelihood regression in an SEM context, or robust regression, such as 
MM regression or quantile regression.  
 In the mediation effect simulation program, I apply OLS multiple regression with the 
idea that the sampling error dynamics observed in that context likely generalize to other 
analytic contexts. When setting up the structure of the program, I decided to have you input 
the population correlations between Y, M1, M2, and M3 to give you control over predictor 
redundancy via the magnitude of the correlations between mediators, as well as how 
strongly each mediator is related to the outcome. From this information, I create a 
population covariance matrix in which I assume the variances of Y, M1, M2, and M3 are 
each 1.0. As such, the regression coefficients that derive from the input correlations can be 
interpreted much like standardized regression coefficients although, technically, they are 
not standardized. This is because I ultimately treat the input matrix as a covariance matrix. 
Setting up the program in this way puts each of the mediators on a common metric, making 
comparisons between their regression coefficients more straightforward. The mean 
structure of the four variables does not impact the values of the regression coefficients, 
which are of primary interest. I also create the population variables so that they are 
multivariately normally distributed. 
   Standards for interpreting standardized-like coefficients vary and, as discussed in my 
book, can be fraught with difficulties. However, I structured input into the simulation 
program so that you know the magnitude of the population correlation for each mediator 
with the outcome. This can help put results in context, as I illustrate with the worked 
example below. Some researchers argue that standardized-like coefficients near or greater 
than 0.20 are generally meaningful, but this standard is subject to controversy. Given the 
input variables all have a population standard deviation of 1, you can use this standard as 
a rough guide. A coefficient of 0.20 means if M increases by 1 unit in the population (i.e., 
1 SD), the mean of Y increases by a fifth of a standard deviation (i.e., 0.20).  
 Literature reviews have found that a typical correlation between a wide range of 
social psychological variables is about 0.35. For the worked example, I set the population 
correlations among all of the variables (Y, M1, M2 and M3) to 0.35. In this sense, all of 



                                                                                                                Conceptual Fundamentals  17 

 
 

the mediators are equally important in predicting the outcome because each is correlated 
0.35 with it. As well, each mediator shares some common variance with the others.  
 After executing the generated R syntax, the program begins by providing the 
population equation that results from the input correlations. Here is the equation:  
 
y = 0 + 0.2059 m1 + 0.2059 m2 + 0.2059 m3    ; R square = 0.2162  

 
Each mediator has the same regression coefficient, namely 0.2059. For every one unit that 
a given mediator increases, the mean Y is predicted to increase by 0.2059 units, holding 
constant the other mediators. The population squared multiple correlation is 0.2162. It is 
against these values that the program examine sampling error dynamics. 
 Suppose I conduct an RET with reference to the above population with a sample size 
of 150 and I obtain the following regression results: b for M1 = is 0.23, b for M2 = 0.15, b 
for M3 = 0.24, with the squared R being 0.23. The p values for the coefficients for M1 and 
M3 turned out to be statistically significant (p < 0.05) but not for M2. My results are 
different than the true population coefficients, a fact that is attributable to sampling error, 
assuming the study is well designed and implemented. The simulation program reports 
10,000 “replications” of my study but for each study, it selects a different random sample 
of 150 cases. As with the prior simulations, the program first reports a sub-group of 25 of 
the 10,000 studies. Here are the results for the three regression coefficients: 
 
               b1        b2        b3  pval b1  pval b2  pval b3 
Study 01   0.2520    0.1922    0.2606   0.0011   0.0062   0.0003 
Study 02   0.2500    0.0999    0.2899   0.0052   0.2737   0.0020 
Study 03   0.2528    0.1502    0.1389   0.0031   0.0468   0.1115 
Study 04   0.3539    0.2545    0.0210   0.0000   0.0002   0.7754 
Study 05   0.2228    0.1540    0.2275   0.0230   0.0619   0.0050 
Study 06   0.1537    0.1039    0.3510   0.0617   0.2365   0.0000 
Study 07   0.1976    0.2468    0.2294   0.0153   0.0018   0.0078 
Study 08   0.3092    0.0594    0.2120   0.0000   0.4235   0.0068 
Study 09   0.1962    0.1409    0.2818   0.0117   0.0909   0.0019 
Study 10   0.2882    0.1781    0.1673   0.0011   0.0280   0.0281 
Study 11   0.2079    0.3245    0.1397   0.0118   0.0000   0.0703 
Study 12   0.1180    0.0186    0.3008   0.1045   0.8161   0.0001 
Study 13   0.2136    0.1272    0.3607   0.0028   0.0938   0.0000 
Study 14   0.2157    0.1441    0.1663   0.0090   0.0868   0.0454 
Study 15   0.1478    0.2812    0.1229   0.0379   0.0000   0.1225 
Study 16   0.2334    0.1499    0.2426   0.0022   0.0644   0.0031 
Study 17   0.2018    0.1782    0.1873   0.0099   0.0127   0.0218 
Study 18   0.1402    0.2816    0.2789   0.0972   0.0005   0.0013 
Study 19   0.0872    0.2189    0.4198   0.2534   0.0027   0.0000 
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Study 20   0.0706    0.2229    0.3429   0.3510   0.0042   0.0000 
Study 21   0.1827    0.0985    0.3100   0.0317   0.2890   0.0010 
Study 22   0.1209    0.3512    0.2377   0.1499   0.0001   0.0033 
Study 23   0.0440    0.2874    0.1705   0.5894   0.0001   0.0310 
Study 24   0.2227    0.2800    0.1990   0.0048   0.0001   0.0106 
Study 25   0.2713    0.0244    0.2374   0.0010   0.7688   0.0045 

  
My particular study could have been be any one of these 25 studies. Scanning the results 
of the 25 studies, you can see that each one produced a different result. Examining column 
1 for b1, one study found the coefficient to be as low as 0.04 and statistically non-
significant (Study 23) and another study found it to be as high as 0.35 (Study 04). Such 
sample-to-sample fluctuations also are evident for the two other regression coefficients. 
These study-to-study (or sample-to-sample) fluctuations are disconcerting and, as before, 
lead me to interpret the results for my one study cautiously. Note also that some of the 
studies found that all three coefficients were significant but other studies found that only 
two of them were statistically significant. Still others found that only one of the coefficients 
was significant. This is despite the fact that all three of the mediators in the population are 
relevant and each is equally important. Such are the evils of sampling error. 
 Here are the results for the 25 studies for the squared multiple correlations and the 
adjusted squared multiple correlations. The latter applies an adjustment to the squared 
multiple correlation because the squared multiple correlation is a positively biased 
estimator of the true population squared multiple correlation: 
 
            R sqr    Adj R sqr 
Study 01   0.3146       0.3005 
Study 02   0.1762       0.1593 
Study 03   0.1603       0.1431 
Study 04   0.3167       0.3026 
Study 05   0.1876       0.1709 
Study 06   0.2197       0.2037 
Study 07   0.2234       0.2074 
Study 08   0.2637       0.2486 
Study 09   0.2638       0.2487 
Study 10   0.2763       0.2614 
Study 11   0.2454       0.2299 
Study 12   0.1690       0.1519 
Study 13   0.3367       0.3230 
Study 14   0.1607       0.1434 
Study 15   0.2420       0.2264 
Study 16   0.2309       0.2151 
Study 17   0.1950       0.1784 
Study 18   0.2717       0.2568 
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Study 19   0.3670       0.3540 
Study 20   0.2822       0.2674 
Study 21   0.1965       0.1800 
Study 22   0.2552       0.2399 
Study 23   0.1910       0.1743 
Study 24   0.3111       0.2969 
Study 25   0.1879       0.1712 
 
These statistics also show considerable sample-to-sample fluctuations. In one study, R2 was 
0.16 (Study 03), representing 16% explained variance, whereas in another study it was 0.37 
(Study 19), representing 39% explained variance.  
 Here is the table of summary statistics for each parameter across all 10,000 studies: 
 
               Average      SD      Min      Max        q10      q90 
b1              0.2061  0.0811  -0.1304   0.5404 0.10190000   0.3087 
b2              0.2045  0.0811  -0.1364   0.5356 0.10050000   0.3091 
b3              0.2060  0.0817  -0.1414   0.5415 0.10187526   0.3105 
R square        0.2297  0.0593   0.0528   0.4789 0.15370000   0.3069 
Radj square     0.2138  0.0605   0.0334   0.4682 0.13630000   0.2927 
SEb1            0.0809  0.0067   0.0597   0.1108 0.07250000   0.0896 
SEb2            0.0809  0.0067   0.0572   0.1102 0.07260000   0.0897 
SEb3            0.0809  0.0068   0.0585   0.1103 0.07252812   0.0898 

 
Note that for all of the statistics except the R square, the average of the estimates across 
the 10,000 replication studies are quite close to values of their true population counterparts. 
This is because they are unbiased estimators in the technical sense of the term. Examination 
of the minimum and maximum values across the 10,000 studies as well as the 10th and 90th 
quantiles gives a sense of the fluctuations in sample results. The standard errors for each 
of the regression coefficients (the first three rows in the SD column) indicate that the 
“typical” disparity between the sample estimate of the coefficient and the true population 
coefficient value was about 0.081. The means of the standard errors for each coefficient 
(see the last three rows of the table) are close in value to the standard errors.  
 When I examined on the output the proportion of studies out of the 10,000 that found 
a statistically significant result (p < 0.05) for each coefficient, here is what I found: 
 
Analysis of Null Hypothesis Rejections Across the 2000 Studies 
   Proportion of nulls rejected 
b1                       0.7183 
b2                       0.7089 
b3                       0.7227 
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These represent power estimates and all were about 0.71.  
 Finally, the plot of the sampling distribution for each of the regression coefficients 
across the 10,000 studies showed a pattern that was roughly normal (see Figure 3).  

 

 

FIGURE 3. Sampling distribution of the three regression coefficients 

Multivariate Patterns of Statistical Significance 

Although the statistical power for a given coefficient was near 0.71, a result that I am 
particularly interested in is how often all three mediators were statistically significant given 
that they all have the exact same non-zero population coefficient. How often does a given 
study conclude that this is the case in terms of statistical significance? The simulation 
program performs a pattern analysis that provides perspectives on this question. Here is the 
relevant table of results: 
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               Proportion 
1-1-1              0.3069 
1-1-0              0.1769 
1-0-1              0.1859 
1-0-0              0.0486 
0-1-1              0.1793 
0-1-0              0.0458 
0-0-1              0.0506 
0-0-0              0.0060 
all three sig      0.3069 
only two sig       0.5421 
only one sig       0.1450 
 

The first column of the table lists the different significance patterns, with a 0 indicating a 
statically nonsignificant result and a 1 indicating a statistically significant result. The first 
digit is for b1, the second digit is for b2, and the third digit is for b3. For example, the 1-1-
1 pattern refers to the case where all three coefficients were statistically significant. The 
pattern 1-1-0 refers to the case where b1 and b2 were statistically significant but not b3. 
The entry in the second column is the proportion of times across the 10,000 studies that the 
pattern occurred. The last three rows combine some of the patterns and shows (a) the 
proportion of times all three coefficients were statistically significant, (b) the proportion of 
times two and only two of the coefficients were statistically significant, and (c) the 
proportion of times one and only one of the coefficients was statistically significant.  
 In the worked example, despite the fact that each coefficient had statistical power of 
0.71, in only 31% of the replication studies were all three coefficients statistically 
significant. The statistical power for the multivariate pattern of 1-1-1 was only 0.31. What 
sample size would I need to bring this power for the 1-1-1 pattern up to 0.80? With some 
trial and error using the simulation program, I found it to be approximately 275. 
 The required sample size for multivariate patterns of coefficient magnitudes will 
differ depending on the intercorrelations among the predictors and the uniformity and 
magnitude of the correlations between the mediators and the outcome. You can explore 
these dynamics using the simulation program.  

Type I Errors for the Regression Coefficients 

To explore Type I errors with the simulation program, you can set the correlation between 
a target mediator and the outcome to zero. This will translate into a zero regression 
coefficient for the mediator in the population, unless a suppressor dynamic is induced. 
Suppression occurs when a predictor has a zero or near zero correlation with the outcome 
but a moderate to large correlation with one or more of the other predictors (see Conger & 
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Jackson, 1972). In such cases, the coefficient for the suppressor variable can be large 
despite its zero correlation with the outcome. You will be able to identify if suppression 
occurs by examining the population coefficients for the population model that are shown 
on the program output. If the mediator whose zero order correlation coefficient with the 
outcome you set to zero has a non-zero coefficient, then suppression likely occurred.  

Reducing Sampling Error (Sample-to-Sample Fluctuations) 

The same three methods for reducing sampling error described earlier apply to the analysis 
of mediator effects on outcomes. These include (1) increasing sample size, (2) 
incorporating strategically selected covariates that increase the squared multiple 
correlation of the outcome, and (3) restricting the study to homogenous populations and 
ensuring uniformity of study protocol implementation. You can easily explore the impact 
of increasing sample size on sampling error in the simulation program. You can explore 
the role of covariates in the simulation program by conceptualizing the study as having 
only two mediators (M1 and M2) and then treating M3 as if it were a covariate that has 
specified correlations with the outcomes and the two mediators (i.e., mentalize the M3 label 
in the program as having the label COV). The coefficients and statistical power for the two 
mediators will be impacted by their correlation with COV as well as the correlation of COV 
with the outcome. For example, if you set the correlation between the two mediators and 
the “covariate” to 0 and you set the correlation between the covariate and the outcome to 
0.35, you will see the power of the regression coefficients increase and their sample-to-
sample fluctuations decrease.  

The Use of Adjusted versus Unadjusted R Squares 

As noted, the sample R2 is a positively biased estimator of the true population R2 in that, 
on average, it tends to overestimate the population R2. As a result, statisticians have 
suggested a correction factor or adjustment to the sample R2 to yield an unbiased estimator. 
In the worked example, the population R2 was .2162. Across the 10,000 replication studies, 
the average sample R2 was 0.23 and the average adjusted R2 was 0.21. These values reflect 
the relative bias in the squared R and the unbiasedness in the adjusted R squared. Despite 
this, the use of the adjusted R squared is controversial.  
 First, the amount of bias in R2 tends to be less with larger sample sizes, larger 
population R squares, and smaller numbers of predictors. When I repeated the simulation 
using a sample size of 500, the average sample R2 across the 10,000 replications was 0.2196 
as compared to the average adjusted R2 of 0.2149. The difference between these values is 
trivial. More importantly, when sample sizes are smaller, the correction suggested by 
statisticians sometimes results in negative squared multiple correlations, a result that is 
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nonsensical. For example, when I re-ran the worked example but with a sample size of 50, 
the minimum adjusted R2 reported on the output was -0.05. If I adopt the practice of setting 
negative adjusted R2s to zero, then the adjusted R2 is no longer unbiased; it becomes a 
positively biased estimator. Finally, cases occur where the standard error for R2 is lower 
than the standard error for the adjusted R2. This means that although the adjusted R square 
provides an estimator that is less biased, there is a trade-off because it also is less efficient, 
i.e., it can exhibit larger sample-to-sample fluctuations than the unadjusted R2. The 
simulation program can be used to explore such dynamics.  

Additional Explorations 

The mediator effect simulation program can be used to explore a wide range of issues, only 
some of which I have illustrated here. These include the effects of predictor collinearity, 
differential correlation structures of mediators with outcomes, multivariate power analysis, 
the role of covariates, and the use of statistical corrections for bias.  

INTERACTIVE SIMULATION FOR OMNIBUS MEDIATION 

The Basics of Evaluating Omnibus Mediation 

This simulation evaluates the sampling error for the product of coefficients in a two-link 
mediational chain in an RET, from treatment to mediator (p1) and from the mediator to the 
outcome (p2). It also evaluates the Sobel test of this coefficient product (see my book for 
elaboration of the test). There are many versions of the Sobel test. The current program 
uses the normal theory version, which also is used in the Hayes (2018) PROCESS 
framework for mediation analysis. I focus on the case of a continuous mediator (M) and a 
continuous outcome (Y). Note that I do not recommend the general use of the normal theory 
Sobel test; it works well in some cases (bootstrapped based approaches usually work 
better). The analytic strategy I use in the program is to conduct two separate OLS 
regressions, one to isolate p1 and the other to isolate p2 and then I invoke the Sobel test 
using the standard errors for p1 and p2. I assume equal n in the two groups defining T. 
Independent of the test, the simulation program documents and provides you with an 
appreciation of sampling error when evaluating p1*p2 products and this is my primary 
focus; to help you grasp sampling error dynamics.  
 In addition to the Sobel test, I apply the joint significance test in the simulation. This 
test declares mediation if both p1 and p2 are jointly significant. If either p1 or p2 is not 
significant, the mediation chain is “broken” and mediation is called into question.  
 Finally, I provide information on p3, the direct effect of T on Y independent of the 
mediator. I create the scenario where the population value of p3 is zero.      
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 The program requires you to provide population values of the two path coefficients. 
To make interpretation easier, I scale M and Y to have overall means of zero and standard 
deviations of 1.0. You first enter the population effect (p1) of the dummy variable for the 
treatment versus control conditions, T, on the mediator. The value of p1 is the population 
mean M for the treatment condition minus the population mean M for the control condition. 
If p1 equals 0.50, this indicates that the mean on M for the treatment group minus the mean 
on M for the control group is 0.50, or about half a standard deviation of M. You can think 
of p1 as roughly analogous to a Cohen's d but where the standardizer is the SD of M rather 
than the pooled within group SD of M. You will not want to exceed a value of 1.75 for p1, 
which represents an extremely strong effect (the mean difference is one and 3/4 SDs of M). 
.  Next, you enter the population effect of M on Y, p2. Because I set the mean and 
variance of both M and Y to 0 and 1.0, p2 is simply the correlation between the mediator 
and the outcome. The square of this correlation is the proportion of variation in Y that M 
accounts for in Y. If you enter p2=0.50, this implies that M accounts for 25% of the 
variance in Y. Technically, p2 is interpreted as a regression coefficient as it is not formally 
standardized - it just so happens that both M and Y have population standard deviations of 
1.0. If p2 equals 0.20, this indicates that for every one unit M increases (which represents 
one standard deviation on M), the mean of Y is predicted to increase by 0.20 Y units (which 
is a fifth of a standard deviation of Y).  
  Finally, you enter the total sample size in the study. I assume half the N is in the 
treatment group and half in the control group. As an example, for the simulation program, 
I set the p1 = 0.30, p2 = 0.40 and I use a total sample size of 130 (65 per group). The overall 
population omnibus effect in the population is p1*p2 = (0.30)(0.40) = 0.12. This coefficient 
reflects the Y mean difference between the treatment and control groups through this 
particular mediational chain.  
 After executing the generated R syntax, the program conducts 10,000 “replications” 
of the study but each time it selects a different random sample of 130 cases from the 
population. As with the prior simulation, the program first reports a sub-group of 25 of the 
10,000 studies. Here are the results: 
 
25 Example Studies from the Same Population 
                 p1         p2         p1*p2    p1*p2 p Value 
Study 01     0.5556     0.5158        0.2866           0.0076 
Study 02     0.1761     0.4953        0.0872           0.3003 
Study 03     0.0093     0.3317        0.0031           0.9557 
Study 04     0.1875     0.4827        0.0905           0.2377 
Study 05     0.4790     0.4519        0.2164           0.0123 
Study 06     0.1627     0.4636        0.0754           0.3491 
Study 07     0.4286     0.4586        0.1966           0.0419 
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Study 08     0.3524     0.4797        0.1691           0.0454 
Study 09     0.2498     0.4574        0.1143           0.1792 
Study 10     0.3661     0.2980        0.1091           0.0784 
Study 11     0.3778     0.4255        0.1608           0.0434 
Study 12     0.3076     0.3917        0.1205           0.0933 
Study 13     0.5917     0.3451        0.2042           0.0078 
Study 14     0.4009     0.4078        0.1635           0.0388 
Study 15     0.1095     0.3644        0.0399           0.5504 
Study 16     0.2259     0.3932        0.0888           0.2412 
Study 17     0.4179     0.3900        0.1630           0.0360 
Study 18     0.0348     0.4234        0.0147           0.8399 
Study 19     0.4052     0.5119        0.2075           0.0169 
Study 20     0.2909     0.3877        0.1128           0.1276 
Study 21     0.3268     0.3664        0.1197           0.0657 
Study 22     0.2251     0.3872        0.0872           0.2145 
Study 23     0.4854     0.4117        0.1999           0.0161 
Study 24     0.3170     0.4893        0.1551           0.0939 
Study 25     0.2527     0.4594        0.1161           0.1660 
 

 Scanning the results of the 25 studies, each one produced a different result. 
Sometimes the omnibus mediation effect was statistically significant and sometimes not. 
For one sample/study, the omnibus mediation effect (mean difference on Y between the 
treatment and control conditions through the mediator M) was a meager 0.015 (Study 18) 
and for another study, it was 0.29, about a third of a standard deviation of the outcome. 
The true Y mean difference as a function of M is (0.40)(0.30) = 0.12, which is just over a 
tenth of a standard deviation of M. These sample-to-sample fluctuations are disconcerting 
and lead me to interpret the results for my one study cautiously.  
 Here is the table of summary statistics across all 10,000 studies: 
 
Summary Statistics Across the 10000 Studies 
           Average      SD      Min      Max      q10      q90 
p1          0.3010  0.1740  -0.3920   0.9505   0.0765   0.5221 
p2          0.3997  0.0823   0.1177   0.7413   0.2946   0.5049 
p1*p2       0.1203  0.0752  -0.1815   0.4265   0.0284   0.2183 
SEp1*p2     0.0763  0.0142   0.0285   0.1319   0.0581   0.0948 

 
Across the studies, the average omnibus effect was 0.12, which maps well onto the true 
population effect. This is because the sample coefficient product is an unbiased estimator 
of the population coefficient product. One study in the group of 10,000 studies found that 
the control group scored better on the outcome through the M mediational chain, yielding 
a negative p1 of -0.392 (see MIN), while in another study (under MAX) the omnibus 
mediation effect was 0.95, almost a full standard deviation of Y. Across the 10,000 studies, 
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10% of the studies observed a mean difference through the mediator less than 0.076 (see 
the 10th quantile column, q10) while 10% of the studies observed differences greater than 
0.522 (see the 90th quantile column, q90). The latter is much stronger than the true effect 
of 0.12. The standard error of the coefficient product was 0.0752, suggesting that the 
“typical” disparity between a sample result and the true population omnibus effect was 
0.0752. The mean of the standard errors reported in each study (0.0763) was reasonably 
close to the true standard error of 0.0752.  
 Here is the output for the proportion of studies out of the 10,000 that found a 
statistically significant result (p < 0.05), for different parameters: 
 
Analysis of Null Hypothesis Rejections Across the 10000 Studies 
                     Power 
p1*p2               0.3165 
Joint signif test   0.4112 
                         Proportion of null rejections 
p1                                              0.4119 
p2                                              0.9977 
p3 (direct effect T to Y                        0.0491 

 
The statistical power for the Sobel test of the omnibus mediation effect was only 0.32, 
which is bleak. Despite a 0.12 true population effect, only 32% of the samples yielded a 
statistically significant result. The power for the joint significance test was higher, at 0.41. 
The statistical power for p1 and p2 individually (0.41 and 0.99) was better, with the joint 
significance test having power roughly equal to the product of the power estimates for the 
individual paths. The direct effect from T to Y (p3) was zero in the population, so the result 
for p3 should be near the alpha level of 0.05. It was 0.049.  
 Finally, the plot of the sampling distribution showed a pattern that is slightly non-
normal (see Figure 4).  

Type I Errors for Omnibus Mediation Effects 

You can use the simulation program to explore Type I errors by setting one or both of the 
population path coefficients equal to 0. For example, when I set the population p1 to 0, 
thereby producing a product coefficient of 0, and I re-ran the analysis, the proportion of 
null hypothesis rejections for the Sobel test was 0.016 and for the joint significance test it 
was 0.048. The Sobel test is known for being conservative for Type I errors when the true 
p1*p2 = 0 and this is reflected in the simulation.  
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FIGURE 4. Sampling distribution of the product of coefficients 

Reducing Sampling Error (Sample-to-Sample Fluctuations) 

As with the prior simulations, the primary methods for reducing sampling error for the 
analysis of omnibus mediation are (1) increase sample size, (2) incorporate strategically 
selected covariates that impact the mediator or outcome, and (3) restrict the study to a 
homogeneous population and ensure uniform implementation of study and treatment 
protocols.  

Sample Size Demands When Analyzing Omnibus Mediation Effects 

As you work with the omnibus mediation simulation program, you will discover that the 
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tests can be sample size demanding. In my book, I argue that omnibus tests often are not 
central to the program evaluations using RETs; that analysis of the individual links in a 
mediational chain is more informative. Having said that, statements about mediation often 
require taking into account multivariate patterns of statistical significance across multiple 
paths in a mediational chain (vis-à-vis the joint significance test) and there are occasions 
where one will want to make statements about omnibus mediation coefficients. As noted, 
roughly speaking, the statistical power of the omnibus effect via a joint significance test 
will be a multiplicative function of the statistical power for each individual path comprising 
the mediational chain, so you can use this as a rough guide to inform sample size needs; if 
you power your study so that p1 and p2 both power of 0.90, then the power for the 
multivariate pattern of statistical significance for both paths via the joint significance test 
will roughly be (0.90)(090) = 0.81, with qualifications introduced based on the dependency 
structure between p1 and p2.  

INTERACTIVE SIMULATION FOR CORRELATIONS 

The Basics of Evaluating Pearson Correlations 

The final simulation is for a single Pearson correlation. You specify the population 
correlation and the sample size. The program generates a very large population with 
normally distributed X and Y scores with a correlation of the magnitude you specify and 
then performs 10,000 replication studies that randomly sample cases of size N. The 
simulation program allows you to appreciate the dynamics of the operative sampling error 
across the samples.  
 Suppose the population correlation is 0.25 and the sample size is 100. After executing 
the generated R syntax, the program conducts 10,000 “replications,” each time selecting a 
different random sample of 100 cases from the population. As with the other simulation 
programs, the program first reports a sub-group of 25 of the 10,000 studies. Here are the 
results: 
 
25 Example Studies from the Same Population 
            Correlation    p Value 
Study 01         0.3478     0.0004 
Study 02         0.4167     0.0000 
Study 03         0.2972     0.0027 
Study 04         0.1835     0.0676 
Study 05         0.1662     0.0985 
Study 06         0.2888     0.0036 
Study 07         0.2211     0.0271 
Study 08         0.1995     0.0466 
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Study 09         0.3312     0.0008 
Study 10         0.0720     0.4766 
Study 11         0.3308     0.0008 
Study 12         0.2307     0.0209 
Study 13         0.2579     0.0096 
Study 14         0.1999     0.0462 
Study 15         0.3754     0.0001 
Study 16         0.3634     0.0002 
Study 17         0.4286     0.0000 
Study 18         0.2357     0.0182 
Study 19         0.2245     0.0247 
Study 20         0.1312     0.1931 
Study 21         0.2799     0.0048 
Study 22         0.2443     0.0143 
Study 23         0.2012     0.0448 
Study 24         0.2993     0.0025 
Study 25         0.3205     0.0011 

 
 Scanning the results of the 25 studies, each one produced a different result. 
Sometimes the sample correlation was statistically significant and sometimes not. For one 
sample, the correlation was 0.07 (Study 10) and for another study, it was 0.43 (Study 17). 
If you were to conduct a study using this population, your study could have produced any 
of these 25 results, or indeed, any of the 10,000 results in the broader simulation. The 
sample-to-sample fluctuations lead me to interpret the results for my one study with 
humility.  
 Here is the table of summary statistics across all 10,000 studies: 
 
Summary Statistics Across the 10000 Studies 
               Average      SD      Min      Max      q10      q90 
Correlation     0.2483  0.0948  -0.1191   0.5878   0.1242   0.3676 
 
Across studies, the average correlation was 0.248, which maps well onto the true 
population effect. Despite this, the sample correlation tends to be a biased estimator of the 
true population correlation, but the bias tends to be trivial for sample sizes larger than 20 
and it can virtually be ignored.2 One study in the group of 10,000 studies found a 
correlation of -0.11 (see MIN), while another study (under MAX), the correlation was 0.59. 
Across the 10,000 studies, 10% of the studies observed a correlation less than 0.12 (see the 
10th quantile column, q10) while 10% of the studies observed a correlation greater than 

 
2 This is not to say that the Pearson correlation is always  a good index of association. It suffers from shortcomings, 
as outlined in Wilcox (2017). 
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0.37 (see the 90th quantile column, q90). The standard error of the correlation was 0.10 
(see the SD column), suggesting that the “typical” disparity between a sample result and 
the true population correlation was 0.10. I do not provide the mean of the standard errors 
from each study because there is no formula for estimating the standard error of a 
correlation (it usually is accomplished through bootstrapping).  
 When I examined the proportion of studies out of the 10,000 that found a statistically 
significant result (p < 0.05), the proportion was 0.72. This is the statistical power of the test 
of significance with sample sizes of 100 where the population correlation is 0.25. 
 Finally, the plot of the sampling distribution yielded a distribution that was relatively 
normal (see Figure 5). This will not always be the case, as the distribution is affected by 
the magnitude of the correlation. I leave it as an exercise for you to explore this.  

 

FIGURE 5. Sampling distribution of a correlation 



                                                                                                                Conceptual Fundamentals  31 

 
 

CONCLUDING COMMENTS  

I designed the five simulation programs to help give you a sense of sampling error 
dynamics for population parameters that often are of interest in RETs. My intent is for you 
to use the programs to explore how variations in study design and analysis (e.g., sample 
size, covariate control) can affect sampling error. Too often, researchers focus primarily 
on matters of Type I and Type II errors (statistical power), but such foci does not do justice 
to fully appreciating the implications of the nemesis of sampling error. My own orientation 
is to try to reduce sampling error as much as possible in the RETs I conduct, usually by 
seeking large sample sizes, by the strategic use of covariates, and by careful attention to 
the implementation of study protocols. I obsess about keeping my standard errors low and 
my margins of error narrow (since MOEs are directly related to standard errors), just as 
much as I worry about Type I and Type II errors. Hopefully you will find the simulation 
programs useful in deepening your understanding of sampling error. 
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