
1

Supplemental Instructions for Response Plot Program

This document provides additional information about how to specify interaction and polynomial
terms when using the response plot program. You need to use the formatting I describe here
because the program makes use an R package that relies on specialized R formatting when
specifying equations. Watch the video for the program.

Specifying Interaction Terms and Polynomials

Consider a model that predicts an outcome Y from two predictors X (the cause of Y) and Z (the
moderator of the effect of X on Y). Assume I have one covariate that I will call COV. Normally
you would create a product term in your data, that I will call PROD, and then execute the
following equation, specified here in R format:

Y~X+Z+PROD+COV

This format DOES NOT apply to the Firth program and will yield incorrect results if you use it for
the AME analyses within the program. The reason is because the value of PROD is dependent
on the values of X and Z (you can’t change Z without changing PROD and you can’t change X
without changing PROD) and this dependency must be taken into account in the program
calculations of marginal effects.

To put the equation in a format that the program can accommodate, enter the component parts
of the product term and then create a product term within the equation specification per the
following:

Y~X+Z+X*Z+COV

That is, you enter the X*Z term in the equation, ignoring the PROD variable you may have
created in your data set.1

For a three way interaction involving Q, X, and Z, the traditional approach is to create all
possible two way interaction terms in your data set (QX,QZ,XZ) and a three way term (TW)
defined as the product of QX, QZ, and XZ and form the equation:

Y~Q+X+Z+QX+QZ+XZ+TW+COV

For the current program, you instead specify the three way term within the equation:

Y~Q+X+Z+Q*X*Z+COV

The specification of Q*X*Z will automatically generate all of the two-way interactions and include
them in the model in addition to the three way interaction term. The analysis will then make the
necessary adjustments given all the dependencies.

1 If you enter X*Z and not the component parts, R will automatically add the component parts to the equation.
However, you need to enter the component parts of the product term for my interface to work given the quirks of my
interface.

2

For a quadratic polynomial predicting Y from X, you traditionally would create a product term in
your data that squares X (perhaps calling it XX) and then enter both terms in the equation:

Y~X+XX+COV

However, this format DOES NOT apply to the program and will yield incorrect results for the
margins portion of the program because of the dependencies between the terms, i.e., you can’t
change X without changing XX and this dependency must be taken into account. Here is the
format you would use

 Y~X+I(X^2)+COV

where I is the capital letter i. You enter the component part of the square term and then the
notation I(your component variable^2). The symbol ^ is traditional computer programming lingo
for the phrase “raise to the power of.” In this case, we are raising X to the power of 2. In other
words, rather than adding a polynomial term from your data set, you specify the polynomial
within the equation using R notation.

In contrast to the interaction analysis, if you use a higher order function, such as a cubic
polynomial, you must enter all of the lower order terms, such as

 Y~X+I(X^2)+I(X^3)+COV

or for a quartic polynomial

The Importance of Specifying Categorical/Nominal Variables as Factors

If your categorical/nominal variable only has two levels, you can treat it as quantitative without
consequence. For categorical/nominal variables with three or more levels, like ethnicity, the
tradition is to represent it in a regression model using k-1 dummy variables, where k is the
number of levels of the variable. For k = 3, I create the dummy variables in the data set, D1, D2,
and D3 and then, using the first group as the reference group, enter two of the dummy variables
into a regression equation to represent the variable, as follows:

Y~D2+D3

This representation does not work in the margins section of the current program because of the
dependency between D2 and D3; one cannot alter D2 without also altering the other dummy
variables. The programs need to take this dependency into account. By formally specifying
ethnicity as a factor, the programs will generate the relevant dummy variables internally (using
the first group as the reference group) and then take the requisite dependencies into account.

R declares a variable a factor variable via the factor command. If a variable called ‘ethnic’ has
the levels “black”, “asian” and “white”, I formally define it as a factor variable as follows:

ethnic<-factor(ethnic)

the levels are internally ordered by R from first to last, alphabetically. So the levels, in order, are

“asian”, “black”, and “white”

3

If the names of the levels of a factor called ‘ethnic’ are 1, 2, and 3, the levels are reordered
internally by the factor command to be ascending.

R by default uses the first category as the reference category when creating internal dummy
variables. You can override this by adding a command line that specifies the group you want to
be the reference group after a variable has been declared a factor. Here is the command for the
above examples:

ethnic<-factor(ethnic)
ethnic<-relevel(ethnic,ref='black')

makes the first level be “black”

ethnic<-factor(ethnic)
ethnic<-relevel(ethnic,ref=2)

makes the first level be 2

Again, R will use the first level as the reference group.

In most of my auto-generated programs where I convert a variable to a factor, I precede the
name of the variable with the name of the data base from which it comes with a $ after the data
base name. For example, the variable m4 is referenced as

z1$m4

Suppose m4 has 3 levels, 1, 2 and 3. I can set the reference group to 2 as follows:

z1$m4<-factor(z1$m4)
z1$m4<-relevel(z1$m4,ref=2)

When you might want to change the reference level of a factor in one of my programs, I flag the
relevant command with a comment line and a reminder of the above.

