
1

Supplemental Instructions for Penalized Likelihood Binary Regression

This document provides additional information about how to specify interaction and polynomial
terms when using the program for penalized likelihood (Firth) binary regression. You need to
use the formatting I describe here because I make use of the average marginal effects program
in R and it relies on specialized R formatting. It will probably help if you watch the video for the
average marginal effect program. Be sure to read the instructions in the ‘Description Box’ for the
current program. I also assume you are familiar with average marginal effects (AMEs) as
discussed in my book.

Specifying Interaction Terms and Polynomials

Consider a model that predicts an outcome Y from two predictors X (the cause of Y) and Z (the
moderator of the effect of X on Y). Assume I have one covariate that I will call COV. Normally
you would create a product term in your data, that I will call PROD, and then execute the
following equation, specified here in R format:

Y~X+Z+PROD+COV

This format DOES NOT apply to the Firth program and will yield incorrect results if you use it for
the AME analyses within the program. The reason is because the value of PROD is dependent
on the values of X and Z (you can’t change Z without changing PROD and you can’t change X
without changing PROD) and this dependency must be taken into account in the program
calculations of marginal effects.

To put the equation in a format that the program can accommodate, enter the component parts
of the product term and then create a product term within the equation specification per the
following:

Y~X+Z+X*Z+COV

That is, you enter the X*Z term in the equation, ignoring the PROD variable you may have
created in your data set.1

For a three way interaction involving Q, X, and Z, the traditional approach is to create all
possible two way interaction terms in your data set (QX,QZ,XZ) and a three way term (TW)
defined as the product of QX, QZ, and XZ and form the equation:

Y~Q+X+Z+QX+QZ+XZ+TW+COV

For the current program, you instead specify the three way term within the equation:

Y~Q+X+Z+Q*X*Z+COV

1 If you enter X*Z and not the component parts, R will automatically add the component parts to the equation.
However, you need to enter the component parts of the product term for my interface to work given the quirks of my
interface.

2

The specification of Q*X*Z will automatically generate all of the two-way interactions and include
them in the model in addition to the three way interaction term. The analysis will then make the
necessary adjustments given all the dependencies.

For a quadratic polynomial predicting Y from X, you traditionally would create a product term in
your data that squares X (perhaps calling it XX) and then enter both terms in the equation:

Y~X+XX+COV

However, this format DOES NOT apply to the program and will yield incorrect results for the
margins portion of the program because of the dependencies between the terms, i.e., you can’t
change X without changing XX and this dependency must be taken into account. Here is the
format you would use

 Y~X+I(X^2)+COV

where I is the capital letter i. You enter the component part of the square term and then the
notation I(your component variable^2). The symbol ^ is traditional computer programming lingo
for the phrase “raise to the power of.” In this case, we are raising X to the power of 2. In other
words, rather than adding a polynomial term from your data set, you specify the polynomial
within the equation using R notation.

In contrast to the interaction analysis, if you use a higher order function, such as a cubic
polynomial, you must enter all of the lower order terms, such as

 Y~X+I(X^2)+I(X^3)+COV

or for a quartic polynomial

Y~X+I(X^2)+I(X^3)+I(X^4)+COV

See my book and the video for an explanation of why the margins output for this program only
shows results for the component terms despite the fact you specified the full equation with
product or quadratic terms.

The Importance of Specifying Categorical/Nominal Variables as Factors

If your categorical/nominal variable only has two levels, you can treat it as quantitative without
consequence. For categorical/nominal variables with three or more levels, like ethnicity, the
tradition is to represent it in a regression model using k-1 dummy variables, where k is the
number of levels of the variable. For k = 3, I create the dummy variables in the data set, D1, D2,
and D3 and then, using the first group as the reference group, enter two of the dummy variables
into a regression equation to represent the variable, as follows:

Y~D2+D3

This representation does not work in the margins section of the current program because of the
dependency between D2 and D3; one cannot alter D2 without also altering the other dummy
variables. The programs need to take this dependency into account. By formally specifying
ethnicity as a factor, the programs will generate the relevant dummy variables internally (using
the first group as the reference group) and then take the requisite dependencies into account.

3

You can change the reference group by reordering the levels of the variable before executing
the syntax I generate in the ‘Run Syntax’ box. I flag with a comment line (that starts with #) the
command you need to change. The line uses the R command ‘factor’ in conjunction with ‘levels.’
Suppose the factor variable is called m4 with levels scored 1, 2 and 3. Normally, level 1 is used
as the reference group. The command to add to the auto-generated syntax by my program if I
want to use 2 as the reference group is

z1$m4 <- factor(z1$m4,levels=c(2,1,3))

One key term in this expression you need to attend to is the variable name after the $ sign. In
this case it is m4. You will change m4 to the variable name that you want to designate as a
factor, i.e., as being nominal/categorical. The other term are the numbers between c(). This
reorders the levels to be 2,1,3 so that level 2 will now be the reference group because R by
default uses the first group listed as the reference group. Again, in the syntax I generate, there
will always be comment lines that show you exactly where you do the above.

