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INTRODUCTION  

Mediation analysis is key to randomized explanatory trials. For purposes of program 
evaluation, mediation analysis can be divided into three segments. First, one wants to 
determine if the program meaningfully impacts the outcome(s) of interest. If it does not, 
the question becomes why not. If it does, the question becomes how can one make the 
program even more impactful. Second, one wants to determine if the mediators that a 
program targets are indeed relevant to the outcome(s). A secondary goal might be to 
identify new mediators that program designers can target. Finally, one wants to determine 
which mediators a program successfully affects. If the program fails to meaningfully 
affect a mediator, then the program activities need to be strengthened.    

CLASSIC MEDIATION ANALYSIS 

Popular approaches to mediation analysis include (a) the method of Baron and Kenny 
(1987), (b) the product coefficient approach, (c) Hayes’ (2018) PROCESS approach, (d) 
the MacArthur Network approach, (e) causal mediation analysis and (f) SEM. Although 
they can be applied to more complicated scenarios, the methods are often described using 
one distal variable (T), one mediator (M), and one outcome (O) as shown in Figures 9.1 
and 9.2 where T represents the treatment condition a person is assigned to. In Figure 9.1, 
the path for the effect of T on O is referred to as the total effect of the program on the 
outcome and is designated as c. It reflects the effect of the program on the outcome 
ignoring the mediator. In Figure 9.2, the mediator is added to the model and the path for 
the direct effect of T on the outcome is designated as cˈ. It reflects the effect of the 
treatment on the outcome holding constant any effects the program has on the mediator 
and, in turn, that the mediator has on the outcome. For example, T might be a program 
for weight reduction that reduces weight by 10 pounds, on average, over two months 
relative to a control group (path c). One mechanism the program might address to bring 
about weight loss is how much people exercise. This is the mediator in Figure 9.2. Path c' 
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is the effect of the program on weight loss when one renders this mechanism moot by 
statistically holding it constant. The value of path cˈ might now equal 6 pounds, 
indicating the mediator accounts for 4 pounds of the 10 pound weight loss.  

Treatment vs. 
Control (T)

Outcome (O)
c  

FIGURE 9.1. Total effect of treatment on outcome 

Mediator (M)

Treatment vs. 
Control (T)

a

Outcome (O)

b

c'  

FIGURE 9.2. Single mediator, single outcome model 

 In this framework, mediation is conceptualized as the difference between the values 
of c and c'. If the two values are the same or close in value, then the supposed mediator, 
M, does not account for much of the effect of treatment on the outcome. If the two values 
are disparate, then M is said to mediate some of the effect of the program on the outcome. 
Estimates of c and c' can be obtained using standard regression methods, but I do not 
delve into the mathematics of doing so because, as it turns out, the strategy of comparing 
c and c' is limited. It is one way of thinking conceptually about mediation but it does not 
have much utility in practice unless one only has a single mediator in a three-variable 
system, which typically is not the case in RETs. Nevertheless, you will encounter 
mediation conceptualized in this fashion and it does indeed have intuitive appeal.  

THE BARON AND KENNY METHOD 

An early approach to mediation analysis is a three-step strategy developed by Baron and 
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Kenny (1987).1  The steps are as follows: 
 
Step 1: Evaluate if the distal variable is correlated with the outcome. Use O as the 
criterion and T as a predictor in a regression equation and estimate path c in Figure 9.1. 
This step establishes that there is a total effect worth explaining via mediation analysis.  

Step 2: Evaluate if the distal variable is correlated with the mediator. Use M as the 
criterion variable and T as a predictor in a regression equation to estimate and test path a 
in Figure 9.2.  
 
Step 3:  Evaluate if the mediator affects the outcome variable. Use O as the criterion and 
T and M as predictors in a regression equation to estimate and test path b in Figure 9.2.  
 
If affirmative results are obtained at each step (T is related to O, T is related to M, and M 
is related to O holding T constant), then mediation on the part of M is implied.   
 According to Baron and Kenny, it is not sufficient to simply correlate the mediator 
with the outcome at Step 3 to determine mediator relevance. The problem with such a 
strategy is that the mediator and outcome share T as an artificial common cause. T 
therefore must be controlled to assess the true M→O relationship by removing this 
artificial common cause of M and O. Although common cause confounding by T is 
indeed likely for simplistic single mediator models, it is not always the case that path c' 
should be included when evaluating mediation. In most RETs, there are multiple 
mediators that have been carefully mapped onto program structure and it is not 
unreasonable to believe that the mediators, taken as a whole, fully account for the 
program effect on the outcome. In such cases, path c' would be zero or trivial in 
magnitude so it can reasonably be omitted. For example, if a program uses an internet-
based program to raise the discretionary monthly income of low-income families by 
educating people about (a) how to budget better and (b) how to use credit cards more 
effectively, it is not unreasonable to believe that any treatment-control difference in 
average monthly discretionary income is a function of only these two mediators, 
assuming proper random assignment. If one does not believe path c' is viable, then the 
path should not be part of the model (see James & Brett, 1984, for elaboration).  

Another reason to be cautious about including path c' in an RET mediation model is 
when the strength of path a is strong, i.e., the program has a strong effect on the mediator, 
a result we hope to achieve when we design programs. In this case, when I regress O onto 
both M and T, the predictors M and T will be highly correlated because T has a strong 
impact on M. The result will be high multi-collinearity in the regression analysis when I 

 
1 A fourth step is often included to test for complete versus partial mediation, but I do not consider it here. 
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regress O onto both M and T. This multicollinearity can inflate coefficient standard 
errors, reduce statistical power, and inflate margins of error for the regression coefficients 
for M and T. Indeed, if the path c' is zero or near zero, the result can be an artifactual 
suppressor effect for T that disrupts interpretation. The bottom line is that in RETs, you 
should include path c' if you truly believe it is non-zero and meaningful. In my 
experience, in many RETs it is not needed because it is reasonable to assume the 
treatment only affects the outcome through the mediators the treatment targets.  
 Many analysts believe that the essential steps of Baron and Kenny for establishing 
mediation are Steps 2 and 3; that Step 1 is not required. One reason for the non-relevance 
of Step 1 is that mediation dynamics can operate in multi-mediator situations even when 
the estimated total effect of T on O (path c in Figure 9.1) is zero. This can happen if one 
of the mediators has a positive influence on the outcome and the other mediator has a 
negative influence on the outcome such that their opposing effects cancel each other, a 
case known as opposing mediation. An example is shown in Figure 9.3. It focuses on 
women in shelters for abused women and their intentions to leave their abusive partner as 
a function of the amount of physical abuse they have experienced from the partner in the 
past 6 months. One mediator is the belief on the part of the woman that if she stays in the 
relationship, she will be hurt again. Another mediator is the belief that if she tries to leave 
the relationship, her partner will hurt her. Both of these mediators are increased by past 
levels of abuse by the partner (paths d and e; I place positive signs on the paths to 
indicate the direction of influence). However, their respective effects on the outcome is 
an increased intention to leave the relationship via path f coupled with a decreased 
intention to leave the relationship via path g. These opposing dynamics might cancel each 
other out, producing no effect of past partner abuse on the intention to leave the 
relationship. Despite the zero or low correlation between past physical abuse and the 
intention to leave the relationship, we still want to learn about and address these 
important dynamics. Step 1 of the Baron-Kenny framework requires modification. 

Belief of 
Harm if Stay

Partner Abuse

+

Intent to Leave 
Relationship

+

Belief of Harm 
if Try to Leave

+ -

 

FIGURE 9.3. Example of opposing mediators 
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 Another reason that Step 1 might be unnecessary is that sometimes the test of path c 
in Figure 9.1 will be statistically non-significant even though the tests of both path a and 
path b in Figure 9.2 are statistically significant. This represents conflicting signals; there 
appears to be no overall effect of T on O when the data are analyzed one way (the test of 
c in Figure 9.1), but there is an effect when the data are analyzed a different way (by 
testing paths a and b jointly in Figure 9.2; logically, if T impacts M and M impacts O, 
then T must influence O). It turns out that such conflicting results can happen because the 
two tests have different statistical power, with the joint test of paths having more power 
than the test of path c alone (Shrout & Bolger, 2002; Zhao, Lynch & Chen, 2010). 
 My own view is that in an adequately powered RET, even if the overall total effect 
of the program on the outcome is weak or non-significant, I still want to understand why 
this is the case. A careful analysis of the various links in the relevant mediational chains 
will give me insight into the underlying dynamics, as outlined in Chapter 1. I may not 
obtain an overall program effect because the mediators are not relevant to the outcome, 
contrary to program assumptions. Or, I may not obtain an overall program effect because, 
although the mediators are relevant, the program did not bring about sufficient change in 
those mediators. I do not want a failed Step 1 result to stop me from digging deeper into 
the operative causal dynamics that link the program to the presumed mediators and the 
presumed mediators to the outcome.  

In sum, although the Baron and Kenny formulation has done much to advance work 
with mediation and the contribution of their seminal article has been important, I believe 
a stronger approach to the analysis of RETs is to use the SEM frameworks outlined in 
this book, especially since there invariably will be multiple mediators, multiple 
covariates, possible causal relationships among mediators, and possible correlated 
disturbances at work.  

THE COEFFICIENT PRODUCT METHOD 

A second popular strategy for testing mediation evaluates the product of all coefficients 
in a mediational chain, a process I mentioned in Chapter 5. In Figure 9.2, this approach 
tests the null hypotheses that the product of path a times path b is equal to zero in the 
population. If the test yields a statistically significant result, then one concludes that some 
mediation is present.  Note that if any one of the links in the mediational chain is 
“broken,” i.e., equals zero, then the product of the coefficients will equal zero.  
 A feature of the coefficient product approach is that it not only evaluates the null 
hypothesis of no mediation through a given mediational chain, it also produces an 
estimate of the magnitude of the omnibus mediational effect through that chain. For 
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example, the product of paths a and b in Figure 9.2 tells us for every one unit that the 
distal variable, T, changes, how many units the outcome variable is predicted to change 
through the mediational chain in question. In an RET, T is a dummy variable, so the 
coefficient product is the mean outcome difference between the treatment and control 
groups through the mediational chain in question.  
 Suppose a program seeks to reduce the number of packs of cigarettes people smoke 
per week by increasing the number of supportive friends people have to help them reduce 
smoking. Suppose the program increases the number of supportive friends (the mediator), 
on average, by 2 friends relative to the control group. This is path a in Figure 9.2. 
Suppose that for every additional friend that is added, the number of packs smoked per 
week declines by -0.50. This is path b in Figure 9.2. The product of the two paths is    
(2)(-0.50) = -1.0. This product is the mean outcome difference between the treatment and 
control condition due to this particular mediational chain; at posttest, those in the 
treatment condition smoked, on average, one less pack of cigarettes per week than those 
in the control group vis-à-vis the impact of the treatment on the number of supportive 
friends. If the test of this coefficient product is statistically significant, we conclude that 
the number of supportive friends mediates some of the effect of the program on smoking.  

Many methods have been proposed for calculating standard errors, p values, and 
confidence intervals for the product of the coefficients. Three of the more common 
approaches are (1) traditional maximum likelihood (or OLS) in the form of the classic 
Sobel test, (2) a Sobel test but with robust maximum likelihood based on Huber-White 
estimation in place of the maximum likelihood estimator, and (3) bootstrapping (Bollen 
& Stine, 1990). For mathematical details of the three approaches see Muthén, Muthén 
and Asparouhov (2016). The latter two methods are generally superior to the first method 
because they do not rely on assumptions of normality and homoscedasticity. For the 
bootstrapping approach, there are different forms of bootstrapping that can be used. 
Simulation studies have compared percentile bootstrapping with bias corrected 
bootstrapping, with most studies concluding in favor of the use of the percentile method 
(e.g., Shrout & Bolger, 2002; Biesanz, Falk & Savalei, 2010; Falk & Biesanz, 2015). 
However, there are exceptions (e.g., Williams & MacKinnon, 2008). An advantage of the 
bootstrap approach over the robust maximum likelihood method is that the bootstrap 
approach can accommodate asymmetric confidence intervals. This can be important 
because the sampling distribution of the product of coefficients is not always 
symmetrical, in which case, the confidence interval should be asymmetric. In addition to 
these three approaches, other approaches include Bayesian methods (with either 
informative or uninformative priors using the highest posterior density method), bias 
corrected-accelerated bootstrap methods, semi-parametric bootstraps, residual-based 
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bootstrapping, profile-likelihood methods, Monte Carlo confidence interval methods, and 
model-based constrained optimization (Tofighi & Kelley, 2020), among others. The 
choice between these different methods is not straightforward. There have been many 
simulations to develop guidelines for method choice, but the recommendations are quite 
variable (e.g., Hayes & Scharkow, 2013; Huang, 2018; Leth-Steensen & Gallitto, 2016; 
MacKinnon et al., 2002; Mallinckrodt, Abraham, Wei & Russell, 2006;’ Taylor, 
MacKinnon & Tein, 2008; Thoemmes, MacKinnon & Reiser, 2010; Tofighia & Kelley, 
2020; Williams & MacKinnon, 2008; Valente, Gonzalez, Miocevic & MacKinnon, 
2016). My reading of this literature is that authors often are quick to recommend a “best” 
method even when the performance in a simulation between the “best” method and the 
“next best” method is small, sometimes amounting to power differences like 0.82 versus 
0.80 or Type I error rates of 0.044 versus 0.055 for the favored versus unfavored 
approach. Preacher (2015) in his Annual Review chapter concluded that the “methods 
agree more often than they disagree … thus, which method is chosen is often of little 
consequence.” The best way to know if a given method will be appropriate for your 
particular RET is to conduct a localized simulation that maps onto the facets of the RET 
you have conducted or plan to conduct. I show how to conduct such simulations using 
Mplus in Chapter 28. Having said that, probably the most popular method for statistical 
significance testing of the product of coefficients and formulating confidence intervals 
for them is percentile bootstrapping.  

The product coefficient method is reasonably straightforward with continuous 
mediators and continuous outcomes in the context of linear modeling. However, 
complications occur when the mediational chain has links that are mixtures of binary, 
ordinal, and/or nominal variables and when the ultimate outcome is binary, ordinal, or 
nominal. I outline these complications in future chapters and discuss how to address 
them.   

THE JOINT SIGNFICANCE TEST 

The joint significance test (JST) assumes a variable is a mediator of the effect of T on O 
if each link in a given mediational chain from the program to the outcome through the 
mediator is non-zero. By testing the statistical significance of each path in the chain, one 
makes an inference that all paths are non-zero if they are each statistically significant. 
One then concludes for mediation. If one of the paths is statistically non-significant, then 
the link is said to be “broken,” leading to lack of evidence for mediation. The JST 
evaluates a null versus alternative hypothesis of no mediation versus mediation. It 
provides no information about the magnitude of the mediation. By contrast, the product 
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coefficient method provides information about both the null hypothesis test and the 
magnitude of the effect. For this reason, some social scientists prefer it to the JST. 
Counterarguments to this preference are that (a) the JST often does as good or a better job 
of testing the null hypothesis of no mediation than the product coefficient method in 
terms of Type I and Type II errors, (b) the JST is easier to apply when the mediational 
chain has links that are mixtures of binary, ordinal, and/or nominal variables, and (c) 
there are better ways of documenting mediation effect sizes than through the product of 
coefficients method; see Chapter XX.  
 For RETs, I personally emphasize a focus on the individual links in a mediational 
chain. I seek to determine if any of these links are “broken” and then make a judgment if 
the broken link is “repairable.” I document the strength of each separate link using effect 
size indices and standards described in Chapter 10. If all the links in a mediational chain 
are statistically significant and reasonably strong, then I conclude for meaningful 
mediation by the target mediator. The overall omnibus effect size of the full mediational 
chain, as documented by the coefficient product approach, is of less utility for program 
evaluation purposes, a point I elaborate in Chapters XX and XX. The work needed to 
improve a program is usually determined from a link-by-link analysis, not an overall 
omnibus effect. Yzerbyt et al. (2018) report that omnibus mediation indices dominate 
reporting of mediational effects and lament that this “unfortunately means that 
researchers may not even look at, let alone test, the components of the indirect effect” (p. 
940). To me, omnibus tests of mediators of program effects typically are of lesser import 
in RETs.  
 There is considerable support for the performance of the JST as a test of the null 
hypothesis of mediation and tests of moderated mediation (MacKinnon et al., 2002; 
Thoemmes, MacKinnon & Reiser, 2010; Huang, 2018; Leth-Steensen & Gallitto, 2016; 
Valente et al., 2016). Yzerbyt et al. (2018) conducted extensive simulations of the JST 
and different product coefficient methods for null hypothesis tests and concluded that 
"the joint-significance method constitutes the best compromise between Type I error rate 
and power and ought to be the method of choice” (p. 940). Biesanz et al. (2010) 
conducted a comparative simulation and also found reasonable performance of the JST 
relative to other approaches across normal and non-normal conditions. 
 One issue relevant to the application of the JST in SEM is that the path coefficients 
in the mediational chain can be dependent (MacKinnon, 2008; Valente et al., 2016). To 
elaborate, the logic of the JST derives, in part, from the idea that the joint probability of 
two events a and b equal the product of the probability of a times the probability of b. 
This relationship holds when a and b are independent. However, in some mediation 
modeling that uses SEM software, this will not be the case. Some methodologists argue 
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that failure to take the dependency into account might affect JST performance in certain 
contexts. Valente et al. (2016) used SEM to conduct a comparative simulation of the JST 
with a bootstrap version of the product coefficient method. They replicated a study by 
Leth-Steensen and Gallitto (2016) but they used a more comprehensive design. The 
tested models had negative dependencies in the coefficients comprising the target 
mediational chain, ranging from dependency correlations of -0.03 to -0.10. Both Valente 
et al. (2016) and Leth-Steensen and Gallitto (2016) found that the JST yielded mediation 
Type I error rates near (or just slightly below) the nominal alpha level of 0.05, so the 
dependency was not consequential for Type I errors. Valente et al. (2016) found in an 
SEM context that the Type I error rates were inflated for a biased corrected bootstrap 
method and that the power of the JST and the bootstrap approach were comparable. For 
example, for N = 400, the comparative powers for one set of mediation scenarios were 
0.90, 0.92, 0.89 for the JST versus 0.91, 0.92 versus 0.93 for the bias corrected bootstrap 
method. These differences are slight. In sum the relatively good performance of the JST 
across a wide range of simulation studies suggest it is a reasonable candidate for 
mediation tests of the null hypothesis of no mediation (e.g., Hayes & Scharkow, 2013; 
MacKinnon et al., 2002; Taylor et al., 2008; Yzerbyt et al., 2018). 
 Hayes (2022; Montoya & Hayes, 2016) argues for the product coefficient method 
over the JST because the former uses a single test of the mediational effect rather than 
multiple tests in the JST, one for each link in the chain of effects. By conducting multiple 
tests, Hayes argues, the probability of at least one Type I error increases; the fewer tests 
conducted, the better. This logic ignores the fact that (a) the product coefficient approach 
itself is not straightforward,2 and (b) simulation studies indicate that the JST usually 
strikes a better balance between Type I and Type II errors than the product coefficient 
approach (e.g., Yzerbyt et al., 2018), i.e., Hays argument is focused only on Type I 
errors. In short, the choice is more complex than the sheer number of tests involved.      
 Most simulation-based evaluations of the JST as well as the product coefficient 
method have used unrealistic scenarios with a single distal variable, a single mediator, 
and a single outcome. The fact is we simply do not know much about how the JST or the 
product coefficient approaches fare under more complex scenarios typical of RETs, 
especially when the variables have combinations of non-normal distributions, missing 
data, and mixtures of continuous, binary, and/or ordinal variables. To illustrate the 
complexity of mediational dynamics in RETs and why a simple three variable system is a 
gross oversimplification, consider the sequential mediation model in Figure 9.4 with 
three mediators (M1, M2, M3) and an outcome (Y) each measured at a posttest and a 6-

 
2 For example, there are different types of bootstrapping that can be applied with their performance varying by 
context. 
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month follow-up (I omit covariates for the sake of pedagogy and to avoid clutter, but they 
further complicate the model). I designate the time of assessment by subscript t followed 
by a number (2 = the posttest, 3 = the follow-up). There are reasonable first order 
autoregressive and contemporaneous effects in the model. The treatment condition 
impacts the outcome at time 2 independent of the three mediators. Also, M1 influences 
M2 contemporaneously.  

     

TREAT

a

M1t2

b

c d

M2t2

M3t2

M1t3

M2t3

M3t3

Yt2 Yt3

e

f

g

i

j

k

m

n

o

p

h l

 

FIGURE 9.4. Example of a Treatment by Mediator Interaction 

 Suppose I want to map the mediation effect from the treatment (TREAT) through 
M2t2 to the outcome at follow-up, Yt3. It turns out there are five mediational chains from 
TREAT to Yt3 that include M2t2 that are relevant to the mediation analysis. They are  

TREAT →  M2t2 → Yt2 → Yt3 
TREAT →  M2t2 → M2t3 → Yt3 
TREAT →  M1t2 →  M2t2 → Yt2 → Yt3 
TREAT →  M1t2 →  M2t2 → M2t3 → Yt3 
TREAT →  M1t2 →  M1t3 → M2t3 → Yt3 

If any one of these mediational chains does not have a “broken” link via a statistically 
nonsignificant path coefficient, then the JST would lead to an omnibus declaration that 
M2 mediates some of the effect of the treatment on Yt3. The product coefficient method 
also uses the above five mediational chains to calculate the omnibus mediation effect of 
TREAT on Yt3 through M2 but using an additive combination of the product of path 
values. Using the path labels in Figure 9.4 the mediation effect is  
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mediation effect = (b)(f)(m) + (b)(j)(o) + (a)(h)(f)(m) + (a)(h)(j)(o) + (a)(i)(l)(o) 

The product coefficient method must derive an estimated standard error and significance 
test for the above expression, all while accommodating possible non-normality, missing 
data, and mixtures of variable types (e.g., continuous, ordinal, binary) in the respective 
chains. This is no small feat, all for the purpose of making an omnibus mediation 
statement that, in my opinion, is not central to the objectives of RET analysis for program 
evaluation (see Chapters XX and XX).  
 In sum, the JST as a basis for evaluating the null hypothesis of no omnibus 
mediation versus some omnibus mediation seems to be a reasonable strategy, as good as 
or better than most other approaches in most contexts.  
 Parenthetically, if one applies both the JST and the product coefficient method to 
the same data, one sometimes obtains a statistically non-significant omnibus test despite 
the fact that the individual links within the target mediational chain all are statistically 
significant. Or, one might observe a statistically non-significant path within the JST tests 
but still obtain a statistically significant omnibus product coefficient test. Such disparities 
occur because the two tests are based on different statistical theories. One statistical 
theory is not necessarily better or “more correct” than the other in all contexts. If the tests 
agree in their conclusions, you might have more confidence in the conclusion. However, 
demanding that both tests simultaneously be “statistically significant” can lower 
statistical power and lower the actual Type I error rate below the a priori specified alpha 
level of 0.05. Such an orientation must be taken cautiously.     

Extending the Joint Significance Test to Total Effects 

The logic of the JST also can be extended to the analysis of total effects in RETs, that is, 
the estimated effect of the treatment on the outcome. In limited information SEM with 
continuous outcomes, the total program effect on the outcome is usually tested using a 
simple ANCOVA-like regression model predicting the outcome from a dummy variable 
for the treatment condition plus any relevant covariates, per my discussion in Chapter 8. 
This is straightforward. In full information SEM, however, one identifies all the causal 
chains in the model that link the treatment condition to the outcome and then evaluates 
each of them using either the JST or the coefficient product method. For the model in 
Figure 9.4, there are 10 such chains:    

TREAT →  M2t2 → Yt2 → Yt3 
TREAT →  M2t2 → M2t3 → Yt3 
TREAT →  M1t2 →  M2t2 → Yt2 → Yt3 
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TREAT →  M1t2 →  M2t2 → M2t3 → Yt3 
TREAT →  M1t2 →  M1t3 → M2t3 → Yt3 
TREAT →  Yt2 → Yt3 
TREAT →  M1t2 → Yt2  → Yt3 
TREAT →  M3t2 → Yt2  → Yt3 
TREAT →  M1t2 →  M1t3 → Yt3 
TREAT →  M3t2 →  M3t3  → Yt3 

If any one of these mediational chains does not have a “broken” link via a statistically 
nonsignificant path coefficient, then the JST would make the omnibus declaration that the 
treatment condition has an effect on the program outcome Yt3. The product coefficient 
method addresses the matter also using the ten chains but calculates the total effect as 
follows (using the path labels in Figure 9.4): 

total effect = (b)(f)(m) + (b)(j)(o) + (a)(h)(f)(m) + (a)(h)(j)(o) + (a)(i)(l)(o) (d)(m) +             
                      (a)(e)(m) + (c)(g)(m) + (a)(i)(n) + (c)(k)(p) 

Again, deriving an estimated standard error and significance test for this expression while 
accommodating non-normality, missing data, and mixtures of variable types can be 
challenging. In addition, there are “anomalies” that can occur when using the FISEM 
approach based on product coefficients for total effects. For example, for a correctly 
specified model with no direct effect of the treatment to the outcome and for which the 
total effect and indirect effect are identical in value, the power for the test of the total 
effect can be dramatically smaller than the power for the test of the indirect effect, which 
seems contradictory (Kenny & Judd, 2014). Concretely, suppose in a single mediator 
model the population path from T→M (which I will refer to as path a) is 0.30 , the 
population path from M→Y (which I will refer to as path b) is 0.30 and the direct effect 
of T→Y (which I will refer to as path c) is zero. In this case, the mediation effect is (a)(b) 
= (0.30)(0.30) =0.09 and the total effect is (a)(b) + c = (0.30)(0.30) + 0 = 0.09, i.e., they 
are identical. In this case, the JST approach for testing if the total effect is non-zero will 
achieve power of 0.80 with a sample size of 114 but the product coefficient method that 
uses (a)(b) + c requires a sample size of 966 (Kenny & Judd, 2014). This power 
advantage of the JST approach over the product coefficient method is often large enough 
that greater power results for the JST even when the value of c is greater than zero (see 
O’Rourke & MacKinnon, 2015). For example, if a = .30, b = 0.30 and c = 0.06 and N is 
200, the power of the JST approach is 0.98 but for the product coefficient method where 
the total effect is 0.15 instead of 0.09, the power is only 0.57 (Kenny & Judd, 2014). 
These same type of dynamics occur when comparing the JST to a simple t test of the 
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overall effect of the intervention, i.e., taking into account a third variable (M) vis-a-vis 
the joint significance test generally will yield more statistical power when evaluating the 
total effect than a simple t test comparing the treatment and control groups (Shrout & 
Bolger, 2002). Numerous other “anomalies” have been noted for the different approaches 
to mediational analysis and these are identified and explained mathematically in Wang 
(2018; see also Loeys, Moerkerke & Vansteelandt, 2015).       

HAYES CONDITIONAL PROCESS ANALYSIS 

Hayes (2018, 2022) has developed a set of specialized computer programs, called 
PROCESS, for mediation and moderation analysis that rely primarily on SPSS and SAS 
software (an R version was recently released as well). The approach has become popular 
in marketing and some subfields of psychology. It is a form of limited information SEM 
(LISEM), the advantages and disadvantages of which I discussed in Chapter 8. 
PROCESS is easy to use but it is somewhat limited in scope compared to more general 
SEM software and other LISEM approaches. PROCESS uses traditional OLS regression 
to estimate equations and creates omnibus mediational effect estimates using the product 
coefficient method with either the Sobel test or bootstrapping. In my opinion, it is better 
to use SEM because it is more flexible than PROCESS, but PROCESS can come in 
handy when the sample sizes are too small to accommodate FISEM; see Chapter 27.  

THE MACARTHUR NETWORK MODEL 

In 2000, the MacArthur Network on Developmental Psychopathology, led by Helena 
Kraemer, developed the MacArthur model for mediation and moderation analysis. The 
motivation was to clarify what the group considered to be ambiguities in the then 
dominant Baron and Kenny framework. The MacArthur model defines a moderator as a 
variable that identifies for whom or in what contexts T affects Y. Three conditions for a 
moderator must be met, (1) the moderator must temporally precede Y, (2) the moderator 
must be uncorrelated with T, and (3) if the population is stratified on different values of 
the moderator, the effect of T on Y should vary across one or more of the strata. Any 
measured baseline variable satisfies the first two conditions, so such variables 
automatically represent candidates for moderation. All one needs to show is that the third 
condition is met for them, using methods described in the third section of this book. For 
example, if the effect of T on Y varies as a function of biological sex, then sex is a 
moderator because it meets the other two conditions as well.  
 In the MacArthur Network model, a mediator of T on Y explains how or why T has 
an effect on Y. Four conditions for a mediator must be met, (1) the mediator must 
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temporally precede Y, (2) T must precede the mediator, (3) T must impact the mediator, 
and (4) the effect of T on Y can be explained, wholly or in part, by the mediator.  
 The MacArthur Network model deviates from other frameworks in its insistence 
that the same variable cannot be both a moderator and a mediator of the effect of T on Y. 
This is because the framework defines moderators as being independent of T while it 
defines mediators as following from and, hence, associated with T. As an example, it 
might be found that social support as measured at baseline moderates the effect of a 
program to reduce smoking during pregnancy; the program is more effective at reducing 
smoking for women with higher initial levels of social support. It also is possible that the 
program affects the amount of social support women receive to reduce smoking and that 
this, in turn, leads to post-program smoking reductions. In the MacArthur Network 
model, social support at baseline is viewed as distinct from social support during 
treatment, with the former acting as a moderator and the latter acting as a mediator. It is 
not the case that social support is acting as a moderator and a mediator. Rather, the two 
measures of social support represent different variables because they are measured at 
different points in time.  
 There are scenarios in the MacArthur Network model where an interaction effect 
between two variables, which is traditionally associated with the concept of moderation, 
is said to be mediation. Consider the example in Figure 9.5 for a program to increase 
monetary donations for victims of a natural disaster by making the suffering of victims 
salient to potential donors. Suppose the program impacts the mean belief about victim 
suffering relative to the control condition (path a). However, there is a second dynamic at 
play; the program also makes victim suffering more salient to potential donors 
independent of creating mean changes in it. Stated another way, the program increases 
the value of the path coefficient for the impact of the belief on the amount donated for the 
treatment group but not the control group (see paths b and d). The MacArthur Network 
model would frame all such effects as mediation, despite the fact that other frameworks 
would say there is moderation in the form of moderated mediation vis-à-vis a treatment 
by mediator interaction. Note that the causal dynamics are not different in the MacArthur 
Network model than in other frameworks; the dynamics are captured by Figure 9.5. It is 
more a matter of labeling what those dynamics are called, mediation or moderation. 
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Treatment vs. 
Control

Amount 
Donated

a

Belief Victims 
are Suffering b

c

d

 

FIGURE 9.5. Example of a treatment by mediator interaction 

 In the MacArthur model, if two mediators interact with one another (in a statistical 
sense) to impact an outcome, then the interaction effect also is said to reflect mediation, 
not moderation. In other frameworks, the interaction effect is moderation because the 
effect of a mediator on the outcome depends on the value of the other mediator. Consider 
the model in Figure 9.6 for a program that reduces stress (path a) and increases positive 
coping skills (path b). The mechanism by which coping skills is thought to impact the 
outcome, anxiety, is by weakening the impact of stress on anxiety (paths c and d). In 
frameworks other than the MacArthur Network, coping skills is said to moderate the 
impact of stress on anxiety. However, the MacArthur Network model would not 
characterize coping as a moderator because it is impacted by T. Again, the causal 
dynamic is the same in all frameworks but the labels differ.  

Treatment vs. 
Control

Anxiety
a

Stress

b

c

d

Coping

 

FIGURE 9.6. Example of mediator interaction 

 In sum, the MacArthur Network Model distinguishes itself primarily in the way it 
defines and conceptualizes mediation and moderation. Analytically, it is relatively 
agnostic as to the statistical approaches used for mediation analysis, although most 
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applications of it do not use SEM.3 I find the terminology used in the framework a bit 
awkward but it nevertheless is firmly entrenched in several literatures. Kraemer et al. 
(2008) formally compare the MacArthur approach to the Baron and Kenny approach to 
mediation and moderation but I personally find their characterizations of the latter to be 
too narrow and overly strict relative to Kenny’s orientations across multiple studies.      

CAUSAL MEDIATION ANALYSIS 

A sixth method for mediation modeling is often referred to as causal mediation analysis. 
The label is somewhat misleading because all of the approaches I consider seek to make 
causal statements about mediation, but the phrase nevertheless is increasingly used to 
refer to a particular approach to mediation analysis. Some people associate the label  with 
Pearl’s structural causal modeling (SCM) approach, while others associate it with what is 
known as a potential outcomes or counterfactual framework in public health and 
epidemiology (Imai, Keele & Tingley, 2010; Robins, 2003; VanderWeele, 2016). SCM 
and potential outcomes modeling have much in common but there also are differences 
between them (see Bollen & Pearl, 2013). I emphasize here the SCM formulation. Causal 
mediation analysis also is linked to structural equation modeling, but it typically uses 
limited information rather than full information estimation. In the following discussion, I 
assume you have read the material on SCM in Chapter 8. 
 SCM embraces somewhat different perspectives on total effects, direct effects and 
indirect/mediated effects than traditional mediation analyses. Most traditional forms of 
mediation analysis seek to decompose a total effect into (a) the indirect effect of a distal 
variable on an outcome through one or more mediators and (b) the direct effect of the 
distal variable on the outcome that is the effect of the variable on Y holding constant the 
mediators. SCM approaches the decomposition process differently than traditional 
mediation analysis does. In this section, I highlight the similarities and differences. I 
illustrate the SCM approach using a treatment versus control condition (T) as the distal 
variable, a single continuous mediator (M), and a single continuous outcome (Y). I use 
the notation for SCM from Chapter 8, but simplify it for you, expressing means using the 
more familiar symbols of Y̅ and M̅ rather than expectation notation.  
 Figure 9.7 presents the example mediation model I use. A program is designed to 
increase the amount of money that middle income young adults save towards retirement 
by educating them about the benefits of setting aside a portion of their monthly income 
for retirement purposes. The outcome is the amount in dollars that participants set aside 

 
3 Some argue that there are indeed prescribed analytic approaches in the MacArthur framework (see Kraemer et al., 
2008), but in practice, studies that claim to use the framework are often quite variable in the methods they employ.  
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per month for retirement as measured over the course of the ensuing year after program 
completion. The mediator of perceived benefits is a multi-item scale where each item 
describes a benefit the person could receive from saving towards retirement. The items 
are rated on a  -3 to +3 disagree-agree metric in terms of whether the individual believes 
s/he will obtain the benefit. The item responses are averaged so the total score ranges 
from -3 to +3, with higher scores indicating more perceived benefits. A (passive) control 
group received no education about the benefits. To keep matters simple for purposes of 
exposition, there are no baseline measures or covariates.  

Perceived 
Benefits (M)

Money Saved 
(Y)

Treatment versus 
Control (T)

p1
p2

p3

 

FIGURE 9.7. Simple mediation model (disturbances omitted for clarity) 

Here are some summary statistics that I will use to make concepts concrete. First, 
the mean perceived benefits (the mediator) for the treatment and control groups are 2.0 
and -1.0, respectively. This means the value of p1 in Figure 9.7.is 3.0, which is the 
difference between these two means. Second, based on a linear regression of money 
saved (Y) onto perceived benefits (M) and the treatment condition (T), the path 
coefficient p2 reflecting the effect of perceived benefits on money saved is found to be 
$25; for every one unit the perceived benefit scores increase, the amount of money saved 
towards retirement per month increases by $25. Third, based on this same regression 
analysis, the direct effect of the treatment on the outcome independent of the mediator, 
p3, is $20; holding constant perceived benefits, people in the intervention condition saved 
$20 more per month than people in the control condition, probably because the program 
made saving towards retirement salient. The equation for the linear regression is Y = 90 + 
25M + 20T. Finally, the Y outcome means for the treatment and control groups are $160 
and $65 per month, respectively, so the program positively impacted retirement savings 
by increasing it, on average, by $95 per month. With these statistics in mind, I now 
develop core mediation concepts in the SCM and causal mediation frameworks. 
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Three Types of Direct Effects 

In the literature on causal mediation and SCM, the term direct effects has been used in 
different ways. Sometimes the term “direct effect” refers to the direct effect of a mediator 
on an outcome controlling for one or more confounds (p2 in Figure 9.7); other times the 
term refers to the direct effect of the treatment condition on the outcome controlling for 
one or more mediators (p3 in Figure 9.7). Yet other times, the term refers to the total 
effect of a treatment on an outcome controlling for confounds, such as those that might 
result from sample imbalance. I sometimes find these multiple uses somewhat confusing, 
but there is a coherence to them that I do not want to get sidetracked on here. My focus is 
on defining direct effects per p3 in Figure 9.7. In traditional SEM, p3 is the estimated 
effect of the program on the outcome independent of the mediators in the model; that is, 
if we hold the measured mediators that a program targets constant, does the treatment still 
have an impact on the outcome through unmeasured mediators? The causal mediation 
framework distinguishes three variants of p3. Terminology varies in the literature, so I use 
the distinctions outlines by Mplus (Muthén, Muthén & Asparouhov, 2016).  
 One variant of p3 is called a controlled direct effect (CDE). It focuses on the case 
where an investigator is interested in evaluating the direct effect of T on Y when holding 
the targeted mediator constant at a specific value of a priori interest to the investigator. It 
is formally defined by Pearl as    

CDE(M = m) =  (Y̅TREAT|M=m) – (Y̅CTRL|M=m)                   [9.1] 
 

where CDE(M = m) is read as “the controlled direct effect of T on Y when the mediator 
has the (same) value m in the treatment and control groups.” For example, I might want 
to know what the mean difference is in retirement savings for the treatment and control 
groups when perceived benefits takes on a score of 0, the neutral point (neither agree nor 
disagree) on the disagree-agree metric of the perceived benefits scale. It turns out that I 
can use the regression equation Y = 90 + 25M + 20T that I presented above to calculate 
the mean outcome for the treatment group when m = 0. I substitute the values of 1 for T 
and 0 for M in the equation, like this: 

Y = 90 + 25(0) + 20(1) = $110 

which yields the predicted mean I seek. I can do the same for the control group but now 
using a value of 0 for T, which yields  

90 + 25(0) + 20(0) = $90 
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The difference between these means, per Equation 9.1 is the value of CDE(M = 0), which 
is $20. This suggests that T has an effect on Y independent of M when perceived benefits 
are “neutral” because I held M constant at a value of 0. Researchers sometimes evaluate 
direct effects of a treatment on an outcome at different a priori specified values, such as 
when M takes on an a priori specified “low” score, an a priori specified “moderate” 
score, and an a priori specified “high” score.  

A second variant of p3 is a pure natural direct effect (PNDE). It takes the same 
form as Equation 9.1 for the controlled direct effect but with a notable exception. Instead 
of the researcher choosing an a priori value to hold the mediator constant at, the mediator 
is held constant at what is thought to be the “typical” value of the mediator for the control 
group. A “typical” value usually is defined as the mean of the mediator, but it could be 
something else, such as the median or mode of the mediator. Here is the relevant formula:   

PNDE(M = mCTRL) =  (Y̅TREAT|M=mCTRL) – (Y̅CTRL|M=mCTRL)         [9.2] 

where mCTRL is the mean of the mediator for the control group. The PNDE is the expected 
change in the outcome (reflected by Y̅TREAT minus Y̅CTRL in Equation 9.2) if we “freeze” 
the typical mediator value at the level it would take for people not exposed to the 
program, i.e., at the value M=mCTRL. In the retirement savings example, the mean 
perceived benefits for the control group was -1. Just as I did with the CDE, I can compute 
the predicted retirement savings for the treatment group when the perceived benefits = -1 
by substituting into the original regression equation a score of 1 for T and -1 for M: 

Y = 90 + (25)(-1) + (20)(1) = $85 

and for the control group it is 

Y = 90 + (25)(-1) + (20)(0) = $65 

The difference between them is $20 and this is the value of the pure natural direct effect. 
 The third variant of p3 is called a total natural direct effect (TNDE). It is defined 
the same way as the pure natural direct effect but instead of conditioning on the value of 
the mediator mean for the control group, we condition on the mediator mean for the 
treatment group: 

TNDE(M = mTREAT) =  (Y̅TREAT|M=mTREAT) – (Y̅CTRL|M=mTREAT)                       [9.3] 

The TNDE is the expected change in the outcome (reflected by Y̅TREAT minus Y̅CTRL in 
Equation 9.3) if we “freeze” the typical mediator value at the level it would be if people 
were to be exposed to the program. I can again calculate the value of the TNDE using the 
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regression equation Y = 90 + 25M + 20T. Recall that the mean perceived benefits for 
those in the treatment group was 2.0. I substitute this value for M into the equation and a 
value of 1 for T, yielding  

Y = 90 + (25)(2) + (20)(1) = $160 

and for the control group it is 

Y = 90 + (25)(2) + (20)(0) = $140 

The difference between them is $20 and this is the value of the total natural direct effect. 
 The TNDE and PNDE are conceptually distinct because they differ on the value of 
the mediator that is held constant. Of substantive interest is whether the results for the 
TNDE and PNDE are comparable; if so, this signifies generalizability of the direct effect 
across the different values. It is analogous to calculating the value of the direct effect of T 
on Y for different predictor profiles per my discussion in Chapter 5 to determine if results 
generalize across profiles. In the current example, the values of the TNDE and PNDE are 
identical, namely both were $20. It turns out that in a linear system with no interaction 
effects and a continuous mediator and continuous outcome, this will always be the case. 
Because of this property, the distinctions between the types of direct effects in such 
scenarios are statistically moot and we typically just refer to them as direct effects, per 
SEM tradition. When relationships are non-linear or there are moderated relationships in 
the model, the values of PNDE and TNDE can differ and we then need to  elaborate the 
substantive implications of those differences, a topic I address in future chapters.   

Two Types of Indirect Effects 

The SCM and causal mediation literature also distinguishes two variants of the indirect 
effect in Figure 9.7. Traditionally, an indirect effect is captured by paths p1 and p2 in the 
figure. In the product coefficient approach, p1 and p2 are multiplied by one another to 
determine the indirect effect of T on Y through M. In our example, the indirect effect of 
the program on retirement savings through the perceived benefits mediator equals (3)(25) 
or $75. In SCM and the causal mediation approach, the first variant of an indirect effect is 
called a total natural indirect effect (TNIE). It is defined as  

TNIE =  (Y̅TREAT|M=mTREAT) – (Y̅TREAT|M=mCTRL)                      [9.4] 

where mTREAT is typically defined as the mean of the mediator for the treatment group, 
which is 2.0 in the retirement savings example, and mCTRL is the mean of the mediator for 
the control group, which is -1.0. TNIE evaluates the difference between the expected 
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posttest value of Y (i.e., Y̅TREAT) as we move the value of the mediator from the expected 
value of the mediator given non-exposure to the program (M=mCTRL) to the expected 
value of the mediator given exposure to the program (M=mTREAT).  
 I can again use the regression equation Y = 90 + 25M + 20T to calculate the 
relevant values in the expression. The value of Y̅TREAT when m = 2.0 is 

90 + 25(2) + 20(1) = $160  

and the value of Y̅TREAT when m = -1.0 is 

90 + 25(-1) + 20(1) = $85 

The difference between these conditional means is $160 - $85 = $75 and defines the 
value of the TNIE. Note that this value equals the classic definition of an indirect effect 
by the product coefficient method, namely (p1)(p2) = (3)(25) = $75. Again, it reflects 
what the treatment mean is when we change the mediator from its typical, expected value 
given non-exposure to the program (M=mCTRL) to what its expected value would be given 
program exposure (M=mTREAT).  

The second variant of the indirect effect is called the pure natural indirect effect 
(PNIE). It is the same expression as TNIE but now Y̅CTRL is substituted for Y̅TREAT:  

PNIE =  (Y̅CTRL|M=mTREAT) – (Y̅CTRL|M=mCTRL)                        [9.5] 

The PNIE is the expected difference in the outcome when the mediator changes from the 
expected or “typical” value it would take given non-exposure to the treatment program 
(M=mCTRL) to the expected or “typical” value the mediator given program exposure 
(M=mTREAT) for those in the control condition.  
 For the PNIE, the mean Y̅CTRL is calculated under the two mediation scenarios 
depicted in Equation 9.5 again using the linear equation of Y = 90 + 25M + 20T. For the 
first expression on the right side of the equation where m = 2.0, the predicted Y̅CTRL is 

90 + 25(2) + 20(0) = $140 

and for the second expression on the right side when m = -1.0, it is  

90 + 25(-1) + 20(0) = $65 

The difference between these values is $140 - $65 = $75, which is the same value we 
obtained for the total natural indirect effect, TNIE.  
 Like the TNDE and PNDE, the TNIE and PNIE are conceptually distinct. In both 
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cases, we vary the likely value of the mediator to what it would be if people are exposed 
to the intervention versus what it likely would be if people are not exposed to the 
intervention. However, for the TNIE, we document the effect of this variation in the 
mediator on Y in the treatment condition whereas for the PNIE, we document the effect 
of this variation in the mediator on Y in the control condition. Of interest is whether these 
constructs take on the same or different values. If the values are discrepant, one then asks 
what are the substantive implications of the disparity and which of the two are we more 
interested in. It turns out that in a linear system with no interaction effects and a 
continuous mediator and continuous outcome, the PNIE always will equal the TNIE, so 
the distinctions between them are statistically moot. This was true for our current 
example. In such cases, the tradition is to refer to both as indirect effects, per standard 
SEM terminology. However, cases can be encountered where the values differ. 
 In sum, there are similarities between the traditional SEM language of direct and 
indirect effects in mediation analysis and the language of direct and indirect effects in 
causal mediation analysis vis-à-vis the potential outcomes framework. Often the 
frameworks lead to the same conclusions and the same parameterizations. But sometimes 
they do not and I will discuss these divergences in later chapters. Some researchers view 
the distinctions between the different types of effects in the potential outcomes 
framework as meaningful and important, while others treat them with suspicion as to 
their practical value (e.g., Naimi, Kaufman & MacAclehose, 2014). I tend to be neutral 
on the matter, seeing utility in some contexts but not others.    

Broader Perspectives on the Causal Mediation Approach 

Counterfactual conceptions of causality are core to the causal mediation and SCM 
frameworks. The presence of counterfactual thinking is evident in all of the above 
definitions of direct and indirect effects. For pure natural direct effects, for example, the 
conditional expectation Y̅CTRL|M=mCTRL represents a single “world” in the sense that the 
two components of the conditional expectation (Y̅CTRL and M=mCTRL) are features of the 
same “world,” i.e., both are expressions about the control group. By contrast, the 
conditional expectation Y̅TREAT|M=mCTRL represents what is known as a cross-world 
counterfactual because it represents a “world” consisting of a treatment group parameter 
to the left of the | symbol coupled with a parameter from a different “world,” namely a 
control group parameter. The parameters “cross worlds” to represent a counterfactual. 
The total natural direct effect consists of one conditional expectation (Y̅TREAT|M=mTREAT) 

whose components are from the “same world” and a cross-world counterfactual 
Y̅CTRL|M=mTREAT, whose components are from different “worlds.” The total natural 
indirect effect consists of a “same world” conditional expectation (Y̅TREAT|M=mTREAT) and 
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a cross-world counterfactual Y̅TREAT|M=mCTRL. Finally, the pure natural indirect effect 
consists of a “same world” conditional expectation (Y̅CTRL|M=mCTRL) and a cross-world 
counterfactual (Y̅CTRL|M=mTREAT). The causal mediation framework assumes that cross-
world counterfactuals are meaningful, an assumption that some researchers question 
(Meehl, 1970; Naimi et al, 2014). For example, some argue that perhaps it is not the case 
that M=mCTRL seamlessly generalizes to equal the mean of the mediator for the 
intervention group had people in that group not participated in the intervention vis-à-vis 
the expression Y̅TREAT|M=mCTRL.  
 Much of the focus of the causal mediation framework in the research literature is on 
characterizing omnibus indirect effect coefficients through a given mediational chain, just 
as this is so using the classic product coefficient method in SEM. As noted in Chapter 1 
and in future chapters, I tend to shy away from such omnibus characterizations of 
mediational chains. I argue instead that one gains greater insights into the underlying 
mediational dynamics by analyzing the individual links within a chain and then piecing 
together the omnibus implications from separate-link analyses. Knowing just the overall 
omnibus effect for a given mediator is insufficient because it conflates the effect of the 
treatment on the mediator with the effect of the mediator on the outcome. We need to dig 
deeper than this. Some researchers argue that documenting the omnibus mediation effect 
for each mediator gives insights into the relative importance of the mediators in shaping 
the outcome (Hayes, 2022). I question such logic in Chapter 17. Despite my inclinations, 
I make use of some concepts from the causal mediation framework in future chapters.  
 A non-trivial limitation of the causal mediation framework is that it has difficulty 
accommodating multiple mediators with causal relationships among one or more of the 
mediators as well as accommodating certain forms of correlated disturbances. The typical 
application of causal mediation analysis resorts to a series of single mediator analyses 
that consider the mediational dynamics of one mediator at a time with no correlated 
disturbances, like this: 
 

Mediator (M)

Treatment vs. 
Control (T)

a

Outcome (O)

b

c  
 
In this representation, path a reflects the effect of T on M, path b reflects the effect of M 
on O, and path c reflects the effects of all excluded mediators, measured or unmeasured, 
from the analysis. If I have three measured mediators in my RET, then I conduct three 
separate analyses with each analysis using a different mediator in the M box. For a given 
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single mediator analysis, we can estimate the indirect effect of the mediator on the 
outcome (by computing path a times path b or some variant thereof) and we can estimate 
the total effect of T on O by summing the product of (a)(b) with c (or some variant 
thereof). The exact way we do so depends on the metric of M and O and the presence or 
absence of treatment by mediator interactions on the outcome.  
 It is well known, however, that the causal mediation framework runs into non-trivial 
analytic difficulties when more than two mediators are simultaneously brought into a 
model or when there are mediator-mediator interactions or causal relationships among the 
mediators. This is because the number of unique treatment effect decompositions into 
direct and indirect effects grows at an extremely large rate as a function of the number of 
mediators, especially when the mediators are causally ordered (see Daniel et al., 2015). 
The analyses quickly become unworkable unless one uses restrictive models with strong 
assumptions, thereby limiting the practical utility of the approach. The causal mediation 
framework also has difficulties with certain forms of latent variable modeling. 
Methodologists are working on overcoming these challenges and hopefully, practical 
solutions to them will be forthcoming. However, much work still needs to be done.   

STRUCTURAL EQUATION MODELING  

Structural equation modeling is yet another approach to the analysis of RETs.  It is 
closely related to SCM but not synonymous with it. SEM predates SCM. Like SCM, 
SEM relies heavily on influence diagrams. The causal model represented by an SEM 
influence diagram makes predictions about how RET data should pattern themselves. 
SEM seeks to test those predictions while also providing feedback about how an 
intervention can be revised for purposes of improvement, i.e., it provides perspectives on 
(1) what is the effect of the intervention on the outcome, (2) what is the effect of the 
intervention on the mediators the program is intended to affect, and (3) are the mediators 
that an intervention targets meaningfully related to the outcome. SEM elegantly addresses 
models with multiple mediators, causal relationships among mediators, correlated 
disturbances, measurement error, longitudinal dynamics, interaction effects among 
mediators, interaction effects between the treatment and mediators, and it can handle both 
linear and non-linear relationships for variables measured with diverse metrics (e.g., 
ordinally scaled or binary variables), all while allowing for confound control. Given that 
the bulk of this book is devoted to SEM analyses of RETs, I let the remaining chapters 
speak to its utility and flexibility for RET analysis. 
 Some researchers who embrace the causal mediation framework mischaracterize 
SEM by stating SEM cannot do things that SEM readily accommodates. For example, 
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some claim that SEM cannot deal with non-linearity nor treatment by mediator 
interactions, which is not the case. Other researchers claim that SEM does not address or 
cannot address confounds in mediation and moderation analysis, which also is incorrect. 
The latter claim is often followed by a discussion of sequential ignorability in causal 
mediation contexts, with the implication that SEM does not concern itself with 
assumptions of sequential ignorability. This is false. To be sure, SEM, like all of the 
major mediation analytic frameworks, assumes sequential ignorability which raises 
statistical challenges for it. I address these challenges in future chapters. One certainly 
can find applications in the literature where SEM is poorly applied to RCT or RET data 
without sufficient concern for covariate control. However, misguided applications occur 
for most complex statistical methods and should not be the basis for making claims about 
the utility of a statistical method per se.  
 Another questionable criticism directed at SEM is that it does not embrace 
counterfactual conceptions of causality. Although counterfactual thinking is not central to 
SEM, such logic can be incorporated into it. Let me illustrate this by using the numerical 
example from Chapter 12 in conjunction with profile analysis. For this RET, I evaluated 
an intervention to increase parental communication with their middle school children 
about issues surrounding sex and birth control. The intervention was designed to increase 
such communication and targets three mediators, parental perceived advantages of 
engaging in such talks (PA), parental perceptions about how knowledgeable they are 
about sex and birth control (PK), and parental perceptions of how embarrassing it would 
be to engage in such talks (PE). Each mediator was measured on a -3 to +3 metric for a 
multi-item scale anchored by the average of item responses on a strongly disagree (-3) to 
strongly agree (+3) metric. Post-intervention communication with the child (COM) is 
binary (1 = talked with child, 0 = did not talk with child) as is the treatment condition 
(TREAT; 0 = parent participates in the control condition, 1 = parent participates in the 
intervention condition).  
 In SEM, one equation I work with is the logistic (or probit) equation that regresses 
the outcome onto the three mediators and the treatment condition. 

log odds (Y) = a + b1 PA + b2 PK + b3 PE + b4 TREAT                [9.6] 

Suppose I want to calculate the total natural indirect effect for perceived advantages 
using counterfactual logic but now in an SEM context. Recall that the general equation 
for the TNIE (Equation 9.4) is 

TNIE =  (Y̅TREAT|M=mTREAT) – (Y̅TREAT|M=mCTRL)                         

To calculate TNIE for perceived advantages (PA), I first need to calculate the probability 
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of communication for individuals in the intervention group when PA equals its mean in 
the intervention condition, the first term in the above Equation. Then, I calculate the 
probability of communication for individuals in the treatment group when PA equals the 
mean PA in the control group. The mean PA in the treatment group was 0.88 and it was 
0.07 in the control group. I estimate these terms of the TNIE using profile analysis with 
the SEM-based Equation 9.6. To apply profile analysis using the equation, I must specify 
not only the values of mTREAT and mCTRL to use but also the values of PK and PE that I 
want to hold constant. I have flexibility to choose whatever values I think are 
substantively appropriate. Suppose I decide to use the mean values for mTREAT and mCTRL 
per traditional causal mediation logic and the respective mean scores in the intervention 
condition for PK and PE, which is consistent with the general logic of a TNIE. This 
yields the following two profile equations for the TNIE in the SEM framework: 

log odds (Y) for term 1 of TNIE = a + b1 0.88 + b2 0.85 + b3 -0.06 + b4 1  

log odds (Y) for term 2 of TNIE = a + b1 0.07 + b2 0.85 + b3 -0.06 + b4 1 

 I then convert these two log odds values to predicted probabilities, yielding the 
probability of communication for the first term of TNIE = 0.57 and for the second term, 
0.45. The probability difference, or the TNIE, is thus 0.12. This is an estimate of the 
effect of the intervention on the proportion of parents who communicate about sex and 
birth control with their middle school child through the mediational chain of perceived 
advantages holding constant PK and PE at their intervention mean values. Note that these 
calculations use the same-world and cross-world counterfactual terms dictated by the 
causal mediation framework, showing that counterfactuals can indeed be incorporated 
into SEM through profile analyses. When I repeat the analysis using values for the PNIE 
instead of the TNIE, I obtained a result similar to that of the TNIE; the PNIE also was 
0.12.4  
 I discuss in future chapters ways that counterfactual thinking can be brought into 
SEM. Here, I merely wish to question the assertion that counterfactual logic cannot be 
incorporated into SEM frameworks.         

ADDITIONAL APPROACHES TO MEDIATION ANALYSIS  

There are numerous other approaches that have been suggested for mediation analysis. 
As examples, Imai and colleagues (Imai, Keele & Tingley, 2010; Imai, Keele & 

 
4 Some implementations of causal mediation analysis use conditional regression as an estimation method but others 
do not. I discuss the different strategies in Chapter XX.  
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Yamamoto, 2010; Imai, Keele, Tingley & Yamamoto, 2010) propose different parametric 
and semi-parametric methods for evaluating mediation that use counterfactual concepts. 
VanderWeele (2009) suggests a method based on propensity-score weights in weighted 
regression. Linden and Yarnold (2017) describe methods based on classification tree 
analysis. Wodtke and Zhou (2020) articulate a regression-with-residuals approach. Vig et 
al. (2021) present a mediation framework based on neural network modeling. Biesanz, 
Falk and Savalei (2010) suggest a method in the spirit of the joint significance test that 
relies on partial posterior p values. Saunders and Blume (2018) describe a regression 
framework using a single regression model. Tofighi and Kelley (2020) develop a method 
they call the model-based constrained optimization (MCBO) procedure. Loh, Moerkerke, 
Loeys and Vansteelandt (2022) describe a form of mediation analysis called 
interventional indirect effects (see also Didelez et al., 2006; Hayes, 2018; VanderWeele 
et al., 2014; Vansteelandt & Daniel 2017). The approach focuses on multiple mediator 
models and seeks to estimate the omnibus mediation effect for a given mediator without 
regard to the causal structure among the multiple mediators. I describe the approach in 
Chapter 11. In the final analysis, mediation modeling is an evolving literature that is both 
diverse and complex.  

CORE ASSUMPTIONS OF MEDIATION ANALYSIS 

There exist critiques that question core assumptions of mediation analytics. I seek to put 
these critiques in perspective in this section. The assumptions made when modeling 
mediation vary depending on (a) the particular statistical approach used, (b) the nature of 
the model being evaluated, and (c) the questions being asked. Central to almost all 
mediation approaches is the assumption of sequential ignorability, which I introduced in 
Chapter 1. Definitions vary but sequential ignorability essentially refers to the idea that 
net the formal control of measured confounders, there is no meaningful unmeasured 
confounding of the treatment-mediator, treatment-outcome, and/or mediator-outcome 
relationships. This assumption typically is needed in order to obtain unbiased estimates of 
the causal coefficients in mediation modeling.  
 The presence of unmeasured confounds when estimating coefficients that document 
the strength of a causal link is problematic not just for mediation analyses but for many 
popular statistical methods in the social sciences (Montgomery et al., 2018). For example, 
in Chapters 2 and 6, I discuss the problem of omitted variable bias (also known as left out 
variable error, or LOVE) as a source of biased estimation in traditional OLS regression 
modeling. In RETs, the use of random assignment to treatment conditions is often 
thought to eliminate unmeasured confounds between the treatment condition and the 
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mediator (T→M) and between the treatment condition and the outcome (T→Y). 
Unfortunately, this is not always the case because of the occurrence of treatment 
dropouts, treatment non-compliance, treatment contamination, and missing data (see 
Chapters 26 and 27). In addition, some sample imbalance between conditions can occur 
even with properly implemented randomization (see Chapter 4). Despite these facts, in 
mediation modeling in RETs, unmeasured confounds typically are least likely to occur 
for the T→M and T→Y links and most likely to occur for the M→Y link and in 
hypothesized causal links between mediators for the case of multiple mediator models.  
 Unmeasured confounds are a fact of life in much of the social and health sciences. 
They almost always operate in mediation modeling. The question is not so much whether 
they are present but rather whether the degree to which they are present meaningfully 
misleads us in term so of the conclusions we make. Unmeasured confounds can cause 
errors but some errors are tolerable and inconsequential. If I want a sense of how long it 
takes to drive from New York City to Boston and inquire about the distance between the 
two cities, if what I am told is off by a few feet or inches, the error will not matter 
practically. If I report male versus female differences in annual income for high level 
executives in the United States and my estimate of the sex difference is off by, say, a few 
dollars, this is not going to be of consequence. By the same token, the strength of 
confounding by an unmeasured confounder might be strong, it might be moderate, it 
might be weak, or it might be negligible. If confounding is so weak that it produces trivial 
error in our estimates, then we can effectively ignore it because it is functionally zero.  

As discussed in Chapter 2, Clarke (2005, 2009; Clarke et al., 2018) objects to 
traditional textbook discussions of omitted variable bias and unmeasured confounds 
because he claims the discussions oversimplify omitted variable dynamics. In reality, 
Clarke argues, there typically are so many omitted variables or unmeasured confounders 
that it is almost impossible to know how they bias coefficients when considered 
multivariately. Some plausible unmeasured confounders may induce positive bias while 
others induce negative bias. Their effects ultimately may cancel each other or, 
alternatively, the unmeasured confounders may magnify each other synergistically. We 
simply do not know. The likelihood that unmeasured confounders undermine conclusions 
depends on the nature and complexity of our models and the amount of error that we can 
tolerate, among other things. In my view, it is irresponsible to object to mediation 
modeling by waving the general wand of “unmeasured confounders” without making a 
thoughtful case for such dismissal by advancing a compelling narrative about which 
unmeasured confounds are at work and building a case for their biasing effects. We, of 
course, should always acknowledge the risks of confounds in our modeling efforts and  
then adopt an attitude of risk mitigation and risk management of those confounds when 
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designing, executing, and analyzing our RETs. This is good modeling practice in general. 
However blindly dismissing mediation analysis on the general grounds of unmeasured 
confounders is naïve at worst and somewhat simplistic at best.  

A strategy I discuss in Chapter 2 for dealing with sequential ignorability is to 
identify during the design phase of an RET the most likely and important potential 
confounds, measure them, and then control for them analytically, as appropriate. In other 
words, convert the most critical unmeasured confounds to measured confounds, leaving 
only the weak or very weak unmeasured confounders to do their dirty work, perhaps in 
offsetting or trivial ways. We may not be able to completely remove bias, but perhaps we 
can reduce it to the point that its effects are negligible. In essence, we seek to achieve 
reasonable approximations to sequential ignorability so that we can make viable 
inferences about mediational links. I discuss strategies for identifying and prioritizing 
plausible confounders in Chapter 2 (see also Mändli & Rönkkö, 2023, and Vanderweele, 
2019).  

Another strategy for addressing the problem of unmeasured confounders is to use 
instrumental variables in conjunction with correlated disturbances to take their effects 
into account (see Chapter 6 and the document titled Dealing with Correlated 
Disturbances in Chapter 11 on the Resources tab of my web page). A third strategy is to 
use specialized experimental designs that render the unmeasured confounds moot (see 
Chapter 29). One must be cautious with the latter approach because these methods often 
make their own set of assumptions that may be problematic.  

A common adage one hears in social science research is “do not control for 
posttreatment variables.” The idea is that if a measured variable refers to a person’s status 
after the intervention, the variable should not be included as a covariate or control 
variable in regression or SEM analyses that link the treatment condition to the outcome 
assuming one’s goal is to estimate the overall effect of the intervention on the treatment. 
This recommendation usually derives from the observation that the posttreatment variable 
might constitute a mechanism through which the intervention impacts the outcome. By 
controlling for it, you will underestimate the intervention effect on the outcome by not 
allowing a mechanism or “active ingredient” through which it operates to be “active.” If 
the magnitude of the overall intervention effect on the outcome is the question you seek 
to answer, then posttreatment controls must be invoked judiciously so as not to negate 
meaningful active ingredients of the intervention.  

Having said that, if one blindly adopts the adage “never control for posttreatment 
variables” (which is sometimes asserted as such in the research literature) then mediation 
modeling as commonly practiced grinds to a halt because mediators typically are 
measured posttreatment and are simultaneously included in regression-like models in 
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order to assess the strengths of all or parts of mediational chains. Sometimes we seek to 
answer substantively important questions that require control for measured mediators at 
the posttreatment. For example, if the estimand of interest is whether the effect of a 
mediator on an outcome holds independent of other mediators, then controlling for those 
other mediators may be necessary in a regression or SEM model, albeit in a statistically 
principled way.   

One, of course, still must be careful about one’s choice of covariates because it is 
possible for subtle biases to enter into some forms of mediational modeling through 
posttreatment controls. One example is collider bias in complex multivariate mediational 
chains. I discuss collider dynamics in Chapter 2 and do not repeat that discussion here. I 
delve into collider bias in mediational modeling in the document called Collider Bias and 
Mediation Analysis on the Resources tab of my website for Chapter 2 and refer you to 
that document for elaboration.  

As I discuss in Chapter 10, traditional mediation analysis often seeks to decompose 
a total effect into (a) indirect effects through a priori specified mediators and (b) direct 
effects of the treatment condition on the outcome independent of those mediators. It is in 
the context of such foci that unwanted collider bias from unmeasured confounds can 
arise. By contrast, my approach to RET analysis for purposes of program evaluation is 
different than decomposing omnibus total effects into direct and indirect effects. In my 
framework, I examine each mediational chain on a link by link basis to determine the 
strength of each link and to isolate where in a mediational chain a link might be “broken” 
or be so weak that it needs to be addressed by program designers. The direct effect of 
T→Y independent of the measured mediators is more of an incidental parameter because 
it only tells me that the intervention may be affecting the outcome through other 
unspecified and unmeasured mechanisms that I am left to speculate about. The real 
“meat” of program evaluation is the analysis of the separate links in the different 
measured mediational chains and the estimated total effect of the intervention on the 
outcome per se. Because I emphasize somewhat different questions for program 
evaluation than traditional mediation modeling, the modeling challenges I encounter do 
not overlap completely with those of traditional mediation modeling. Again, the 
challenges you face depend on the questions you seek to answer and the modeling you 
use to answer those questions.   

Like most statistical methods, both traditional regression and SEM based mediation 
analysis make assumptions that can and should affect the confidence we have in our 
conclusions. As Montgomery et al. (2018) nicely put it, unpacking the “black box” of 
interventions through mediation modeling typically must be paid for in the form of 
assumptions and potential bias in our estimates (more or less). Montgomery et al. (2018) 



                                                                                                                     Mediation    31 

 
 

emphasize that researchers should make explicit their assumptions in their research 
reports, approach their conclusions humbly in light of those assumptions, and, where 
possible, report margins of error and perform sensitivity tests to determine the 
consequences and boundaries of assumption violation.  

At its heart, SEM guided mediation analysis is designed to provide perspectives on 
the viability of causal models of mediational links. SEM as applied to program evaluation 
(or most any other substantive area for that matter) cannot prove the existence of causal 
links between variables in the social and health sciences. Rather, causal inference evolves 
from a logic model that goes something like this: Based on a detailed and careful analysis 
from the perspective of multiple constituencies of a program or intervention, we 
formulate what we think is a viable causal model about why a program affects the target 
outcome of interest. This model invariably is based not only on a detailed logical analysis 
of the program, but also past theory and scientific knowledge, past research, and viable 
hunches about the underlying causal dynamics. The causal model typically includes both 
meaningful mediation links as well as confounds for those links that need to be controlled 
lest we be led astray when evaluating the model. Based on this causal model, we then 
collect data to gain perspectives on the formulated model. Importantly, the model makes 
predictions about how the data should pattern themselves. In full information estimation 
SEM, this often takes the form of predictions about the variances and covariances of the 
variables in the model and the statistical significance of model path coefficients. In 
limited information estimation, it often takes the form of conditional independencies and 
the statistical significance of path coefficients. An interesting facet of SEM is that the 
model we posit sometimes includes a measurement theory in addition to a structural 
theory so that we can take into account measurement error when evaluating model 
predictions. These measurement submodels also make predictions about how data should 
pattern themselves, as you will see in Chapter 11. 

With the data in hand, we then compare how the data are predicted to pattern 
themselves by the model with how the data actually pattern themselves. If there is close 
correspondence between the predicted and observed data patterns, then this increases our 
confidence in the posited model. If there is not close correspondence, then we question 
the model and perhaps reject it. In this sense, the SEM approach allows us to gain 
perspectives on the viability of causal models but it does not prove unambiguously that 
causal relationships exist. We feel more confident in our hypothesized model when the 
data pattern themselves in accord with model predictions and feel more confident that the 
causal dynamics within the model may be operating. However, even then, we also must 
recognize that there may be one or more alternative models that account for the data 
equally well. Sometimes we can competitively test the two models against one another 
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with the data at hand but other times, we need to collect data in a newly designed study 
that will allow us to choose between the competing models. If we cannot do so because 
of lack of resources or practical constraints, we accept the limitations of the collected 
data and adjust our confidence in the tested model accordingly.  

If we have what we think is a viable model that is data consistent, then we often 
take data analysis a step further and interpret the values of the parameter estimates of the 
model, i.e., the estimated path coefficients, variable correlations, disturbance terms, and 
the parameters of the measurement model. Strictly speaking, the path coefficients are not 
causal coefficients. They are estimates of the causal coefficients tied to the assumption 
that the model in which they are embedded is a reasonable approximation to the true 
underlying causal dynamics at play (if there is such a thing). I carefully reflect on the 
signs and magnitudes of the various coefficients to ensure they make conceptual sense 
and then consider the practical implications of them for program design and 
implementation. If I see a coefficient value that makes no sense and contradicts logic and 
past research, it may lead me to re-think the model.  

The process of specifying a causal model, deriving predictions about how the 
collected data should pattern themselves, and then comparing model predictions with the 
collected data is fundamental. The process characterizes what we do in social science 
research for both experimental and non-experimental research, cross-sectional and 
longitudinal research, and for multi-level research more generally. When we conduct an 
experiment to test the efficacy of a vaccine, for example, we formulate a theory or model 
about the biological mechanisms the vaccine should affect and the ultimate outcome that 
should occur, such as disease prevention. The model makes predictions about how the 
data we collect in an efficacy trial that focuses on these variables should pattern 
themselves. All we can then do is determine if the data do, in fact, pattern themselves that 
way. If the predictions are close to the observed data patterns, then we have increased 
confidence in the conclusions we make about the efficacy of the vaccine. However, we 
recognize that there may be limitations to our study design that do not permit us to 
unambiguously assert our conclusions are accurate. There almost always will be some 
error involved. Given a good fitting model, we then interpret the parameter estimates of 
the model to make statements about how efficacious the vaccine is.     

In the above sense, our ability to evaluate causal models and the parameter 
estimates they yield is not only a function of how we analyze the data but also how well 
we design a study to take into account the noise and confounds that can mislead us. Study 
design is crucial. Some scientists believe that some study designs are inherently better 
than other study designs for evaluating causal models, but their choice of examples is not 
always on target. For example, some believe that longitudinal designs are better than 
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cross sectional designs for evaluating causal dynamics. But consider the case of 
evaluating whether changes in A impact B where the length of time it takes for changes 
in A to translate into changes in B is extremely short, say a matter of seconds. Would we 
have better sensitivity for detecting this causal dynamic using a cross sectional design 
than a longitudinal design that, say, measures A and B several weeks or months apart? 
Granted there are challenges that would arise in the cross sectional study but perhaps 
addressing the challenges of making causal inferences in cross sectional data that more 
closely approximates the operative time interval between cause and effect would be better 
than using a blatantly wrong longitudinal design that seriously misspecifies the relevant 
causal lags. Instantaneous change or near instantaneous change often is impossible to 
study “longitudinally.” I discuss the issue in more depth in Chapter 16.      

In the final analysis, study “noise,” confounds, measurement error, and model 
specification error are facts of life in most social science research. This is not a reason to 
abandon such research just as we do not want to abandon efforts to evaluate programs or 
interventions because of them. Rather, we should seek to articulate the operative sources 
of bias involved in a study, manage them as best we can when designing our study, and 
then keep them salient when we draw conclusions and make decisions about how to 
proceed. Such is the nature of mediation modeling.    

WRITING REPORTS OF MEDIATION ANALYSES 

In the scientific literature, several expert panels have made recommendations about the 
core facets to include when writing reports about mediation. On the Resource page of my 
website, I provide a link to an influential consensus panel’s recommendations for 
reporting mediational analyses in RETs (Lee et l., 2022). In the interest of space, I do not 
repeat their recommendations here but they are comprehensive. They also are somewhat 
unrealistic given the page and word limits that operate in most journals. Fortunately, most 
reputable journals have on-line supplement webpages where authors can provide more 
information about their study, designs and modeling efforts. If you make use of these 
supplemental pages, you usually will be able to address the recommendations of expert 
panels.  
 Writing for journals is one thing. Writing for administrators, executives, and 
program staff is quite another. Such reports often begin with a short “Executive 
Summary” that highlights the most important findings of the evaluation in non-technical 
and practical terms. Graphics and visual aids might be used liberally. Jaccard and Jacoby 
(2020) provide useful tips to keep in mind when writing reports and structuring 
presentations. I do not shy away from providing technical information that is written for 
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other scientists in my final reports, but much of it I put in appendices. Unfortunately, the 
contexts and audiences one encounters for program evaluations are so varied that it is 
difficult to provide specific guidelines other than to keep it simple, keep it practical, and 
make it interesting. I use a heuristic of three words: communicate, motivate, and facilitate 
(CMF). I seek to communicate what I found, I seek to motivate evaluators to act on the 
results I present, and I seek to facilitate ways they can act on the results by making 
implementation recommendations. I design my evaluation strategies from the outset with 
all three of these tasks in mind, conducting interviews with staff to help me strategize 
each of them.                        

CONCLUDING COMMENTS 

In sum, a variety of methods have been suggested for analyzing mediation in RETs, 
including the Baron and Kenny method, the coefficient product method, the joint 
significance test, the Hayes PROCESS approach, the MacArthur network model, SCM 
and its associated causal mediation analysis, and SEM, among others. Each method has 
strengths and weaknesses and I address many of them as I develop the fundamentals of 
SEM-based analyses of RET data throughout this book. I define the SEM umbrella more 
generally than many researchers and, as such, I see it as encompassing a broad range of 
analytic tools that all can be brought to bear when evaluating programs using RETs. I do 
not hesitate to augment traditional SEM with analytic methods that enhance its flexibility 
and applicability. However, SEM is the core framework I use to organize my thinking 
about analyzing RET data.  
 Of the many methods for testing the null hypothesis of mediation versus no 
mediation for a given mediator, I lean to use of the joint significance test, but I recognize 
its shortcomings. As I have noted, my primary focus is usually on the evaluation of the 
strength and statistical significance of each individual link in a mediational chain using 
results from FISEM and often one or more LISEM methods for sensitivity purposes. To 
document effect size for a given link in a mediational chain, I use one of the effect size 
methods discussed in Chapter 10. I personally do not find the omnibus test of a given 
mediator to be all that informative for program evaluation purposes because it confounds 
the effect of the treatment on the mediator with the effect of the mediator on the outcome. 
Nevertheless, some researchers like to work with it. They argue that mediation is 
fundamentally multivariate in character so that the test of mediation should be 
multivariate in ways that reflect that character. It is like arguing in ANOVA, the omnibus 
F test is the proper way to evaluate the null hypothesis of no group mean differences. 
Some methodologists argue for this perspective while other methodologists instead argue 
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that (a) the null hypothesis of no group differences is not of much interest in its own 
right, and (b) knowing what is happening at a more fine grained level in terms of specific 
group differences for the groups being evaluated provides more useful information as 
long as it is handled properly statistically. I return to this issue in more depth in later 
chapters.  
 


