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INTRODUCTION  

In this chapter, I introduce several non-traditional approaches to  structural equation 
modeling (SEM). I focus on SEM with continuous mediators and outcomes but extend 
the approaches to other metric forms in future chapters. I first consider Bayesian SEM 
and then address limited information SEM, also known as piecewise or reduced form 
SEM. I then introduce concepts from Pearl’s (Pearl, 2009; Pearl, Glymour & Jewell, 
2016) structural causal modeling (SCM) framework, also called non-parametric SEM. 
Knowing about these alternatives is important because I ultimately recommend using 
multiple strategies to analyze RET data. Each of the major sections in this chapter stand 
on their own, so you can read them independently and in different sittings if you want.  
 To illustrate core concepts I use RET data for a program to increase discretionary 
income by teaching people concepts related to financial literacy. Discretionary income is 
after-tax income a family has after basic living expenses are covered. The program 
addressed two topics (1) budgeting, and (2) the ins and outs of using credit cards. The 
program designers felt that educating people about each of these topics would lead to 
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increases in discretionary income. There was a control and treatment condition (scored 0 
and 1, respectively). Each mediator was measured by a knowledge test ranging from 0 to 
100. A score of 90 means that 90% of the items were answered correctly, 80 means 80% 
of the items were answered correctly, and so on. The knowledge measures were obtained 
at baseline and the immediate posttest. The outcome was an index of the monthly 
discretionary income measured six months after program completion. A baseline measure 
of discretionary income also was obtained. The sample size was 400. This was a low-
income population whose annual income was close to $20,000. The influence diagram is 
in Figure 8.1.  
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FIGURE 8.1. Logic model for income intervention 

There are no latent variables in this model, nor are there correlated disturbances. 
There are no causal relationships between the mediators. The logic model assumes all 
baseline variables are correlated. I made the curved arrows between the treatment 
condition and the other baseline variables dashed because, technically, the population 
correlations they reflect are assumed to be zero given random assignment. However, we 
often allow the treatment condition to correlate with other baseline variables to 
accommodate sample imbalance due to the nature of random assignment. 

 The logic model assumes that the two disturbance terms for the posttest mediators, 
d1 and d2, are uncorrelated. I have read articles where researchers argue that disturbances 
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among mediators should always be correlated because of likely common causes in the 
respective disturbances beyond the treatment condition, such as age and biological sex. 
Without correlated disturbances, the argument goes, one assumes the sole source of the 
correlation between the posttest mediators is the common cause of the treatment 
condition, which is unrealistic. This statement ignores the fact that common cause 
confounds often are reflected in other facets of a model. For example, the correlation 
between the two posttest mediators is influenced not only by the common cause of the 
treatment condition (paths d and e) but also by the chain from the baseline mediators to 
the posttest mediators via path b, correlation a, and path c. The two baseline mediators 
likely are correlated because of time invariant influences on them, like age and biological 
sex. Thus variables like age and biological sex often are taken into account indirectly by 
including the baseline mediators as covariates in the model. As argued in Chapter 2, 
decisions to correlate disturbances should be driven by well-articulated logic taking into 
account all model dynamics as opposed to global assertions that there must be confounds. 

Also noteworthy in Figure 8.1 is the absence of correlated disturbances between d1 
and d3 and between d2 and d3. Again, the absence of the correlation may be justified 
based on the inclusion of baseline discretionary income as a covariate. I do not want to 
get sidetracked here on what covariates should be included in this particular model. I just 
want to reinforce, again, that covariate inclusion is an important decision for RETs. Note 
also that for d1 and d3, baseline knowledge about budgeting acts as an instrumental 
variable for knowledge about budgeting at the posttest per my discussion of instrumental 
variables in Chapter 6. For d2 and d3, baseline knowledge about credit card use acts as an 
instrumental variable for knowledge of credit card use at the posttest. If judged necessary, 
I can correlate d1 and d3 (and d2 and d3) given these instrumental variables; the model 
will be statistically identified.  

A final feature of the model is that I do not include a path from the treatment 
condition directly to the outcome. This is because I am confident, given the nature of the 
intervention, that the only way the program affects discretionary income is through its 
effects on knowledge about budgeting and credit cards. I would include this path if I felt 
there are program effects over and above the mediators that it targets. SEM allows us to 
formally test for its presence. 

I do not implement a full-fledged RET analysis for the model in Figure 8.1. Rather, 
I use the model to introduce concepts of non-traditional SEM approaches. I consider 
more complete RET analyses and programming starting in Chapter 11. As a program 
evaluator, there are three questions I am most interested in for the RET and that I address 
here. First, I want to know what the (total) effect of the program is on the outcome, 
monthly discretionary income. Second, I want to know if each of the mediators the 
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program targets (budgeting knowledge and credit card knowledge) is, in fact, relevant to 
the outcome. Third, I want to know if the program affects each of the targeted mediators. 
Note that I do not include in these questions the omnibus mediation parameter that is the 
product of coefficients through a mediational chain. These parameters are of less interest 
because they confound program effects on mediators with mediator effects on outcomes. 
However, at times, some researchers will find them of interest.  

BAYESIAN SEM 

The method of Bayesian SEM (BSEM) is gaining popularity in the social sciences. 
Many researchers shy away from BSEM because it is perceived as difficult to do. The 
computer software I use in this book, Mplus, makes it easy to implement BSEM by 
offering convenient defaults and simplified programming. Often all you need to do is 
change one word in the syntax relative to traditional SEM modeling.  

As discussed in Chapter 6, Bayesian analysis estimates parameters in a model 
taking into account both one’s data and one’s beliefs about plausible values for the 
parameters prior to data collection. Formally including your prior beliefs in the analysis is 
one of the distinguishing features of BSEM. Specifically, in Bayesian analysis, 
researchers specify a prior probability distribution before data are collected that 
specifies possible values a parameter can take and the likelihood that each of those values 
is true. When estimating the mean income for a population of individuals, for example, I 
would specify possible values that the mean can take on and for each value the 
probability the population mean equals that value. A prior distribution can be 
uninformative (also called diffuse) in that a researcher may have little or only vague 
prior information about the likely value of the population parameter. By contrast, an 
informative prior is one where we have useful information prior to data collection that 
helps us specify the probability of different values of the population parameter. For 
example, when estimating the mean of a set of scores for a population, we might have 
information from prior research about the value of the mean, we might consult prior 
meta-analyses that suggest values, or we might invoke common sense to specify likely 
values of the mean. Informativeness is a matter of degree, i.e., the prior distribution can 
be uninformative, weakly informative, moderately informative, or strongly informative.  

Suppose I want to estimate the typical (mean) math achievement of seniors in high 
school in large cities. An uninformative prior distribution for the mean is shown in Figure 
8.2a. It indicates that the mean on a target math achievement test can range from minus 
infinity to plus infinity with each value having equal probability, i.e., the prior probability 
distribution is a uniform distribution.  
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Figure 8.2 Examples of prior distributions 

Suppose I plan to use a common test of math achievement that ranges from 200 to 
800. Figure 8.2b presents an uninformative prior distribution that takes into account the 
lowest and highest possible scores on the test, so it is not completely uninformative. 
Suppose a prior meta-analysis of the test found that the overall mean math achievement 
score across 30 studies for high school seniors was 530. Some of the studies in the meta-
analysis reported means higher than 530 and others reported means lower than 530. I 
capture this variability in the form of a standard deviation of the means across the 30 
studies. Suppose the standard deviation was 50. If I plot the means across the 30 studies, I 
might also find that the means are roughly normally distributed. Given the above prior 
information for my study of high school seniors, I might specify an informative prior 
distribution of plausible mean values by stating that the plausible mean values follow a 
normal distribution with a mean of 530 and a standard deviation of 50. This distribution 
is shown in Figure 8.2c. Note that the standard deviation of 50 is not the standard 
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deviation of raw test scores in the population. Rather, it reflects the variability in the 
means across the 30 different studies. The proposed mean of 530 and SD of 50 are 
referred to as hyperparameters. I am essentially saying that, based on past research, I 
think it most likely the mean achievement will be 530 and that other plausible values for 
it deviate from 530 with a probability that maps onto a normal distribution with an SD of 
50. The Bayesian analysis I apply takes this knowledge into account as well as the new 
data collected in my study to calculate an estimate of the population mean.  
 If the standard deviation associated with the mean hyperparameter is small, then I 
am saying I have greater a priori confidence the true population mean is 530 or a value 
close to it. If the standard deviation is large, I am indicating lower such confidence. In 
practice, many researchers specify a hyperparameter standard deviation that is three to 
four times larger than what prior research suggests because prior research may not map 
directly onto the circumstances of the current study. Figure 8.2d shows the prior 
probability distribution with a mean of 530 and standard deviation of 150 instead of 50. 
Informative prior distributions usually are peaked with a small variance. Non-informative 
prior distributions are more diffuse, such as a uniform distribution.  

Mplus software offers a range of prior distributions for you to choose from, 
including a normal distribution, a gamma distribution, an inverse gamma distribution, a 
uniform distribution, an inverse Wishart distribution, a log normal distribution and a 
Dirichlet distribution, each with hyperparameters that you specify to make them more or 
less informative (see Depaoli, 2021). Mplus chooses default uninformative priors for you 
making Bayes analysis simpler to implement, but you can override the defaults as 
desired. A controversial facet of Bayesian analysis is the choice of prior probability 
distributions to use because results can depend on the choice. Some analysts prefer to use 
uninformative or non-informative priors in most cases because doing so allows the to-be-
collected data to dominate the results rather than your a priori beliefs; “let the data 
speak” is the underlying philosophy. Other methodologists argue for the strategic use of 
informative priors so that prior knowledge as well as the data can be appropriately and 
formally incorporated into the analysis, especially if one has reasonable confidence in 
that prior knowledge. In an RET, we specify a prior probability distribution for every 
path coefficient and variance, including disturbance variances, in the model. Some 
researchers find this challenging and hence rely on uninformative priors as a default. 

 With prior distributions in place for every parameter, BSEM estimates the 
parameters in the model by integrating the prior distribution with the observed data in 
one’s study to form what is called a posterior probability distribution for each separate 
parameter. The posterior probability distribution for a parameter is plausible values the 
parameter can take and the likelihood that each of those values describes the true 
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parameter value after taking into account both the observed data and the prior probability 
distribution. The median of the posterior probability distribution typically is used as the 
point estimate for the parameter in question, although you can use the mean of the 
posterior distribution instead if you want. The standard deviation of the posterior 
distribution is analogous to a standard error in a sampling distribution in traditional 
statistics, although technically it is not commensurate with the standard error. The 
Bayesian counterpart of a confidence interval is called a credible interval and it is 
calculated on the posterior distribution; it is the range of values that contain 95% of the 
probability density of the posterior probability distribution. In general, the larger the 
sample size of the study, the larger will be the impact of the observed data on the 
posterior distribution, everything else being equal. The more informative the prior 
distribution, the larger its impact on the posterior probability distribution, everything else 
being equal. The integration of the two types of input, the prior distribution and the 
collected data, follows the dictums of Bayes theorem, hence the term Bayesian analysis.  

Sometimes calculating the posterior probability distributions are mathematically 
straightforward. However, for many complex SEM models, posterior probability 
distributions are mathematically intractable. In such cases, iterative algorithms are 
applied that generate pseudo-random samples from plausible posterior distributions to 
gain perspectives on the nature of those distributions. The most common algorithm for 
doing this is known as a Markov Chain Monte Carlo (MCMC) simulation. These 
simulations are complex but they often result in parameter estimates with desirable 
statistical properties. It is common to perform diagnostics on the MCMC sampling 
process as it unfolds to help evaluate if the results it produces seem trustworthy. I provide 
a brief description of the MCMC approach in Appendix A and discuss some MCMC 
convergence diagnostics both below and in Appendix A (for detailed descriptions of the 
method, see Lynch, 2007).  
 A necessary condition that the MCMC approach is that of convergence, i.e., it must 
converge on criteria that suggest stable parameter estimates have been achieved. One 
index of convergence is called the potential scale reduction (PSR). The PSR is a ratio 
that documents the instability of parameter values across different MCMC chains (see 
Asparouhov & Muthén, 2010b, for technical details; see Appendix A for additional 
characterizations). PSR values less than 1.05 suggest convergence has occurred but some 
methodologists use a less stringent standard of PSR < 1.10 for more complex models. 
Thus, one of the first statistics we look at on output when conducting BSEM is the PSR 
statistic to ensure convergence. Mplus also provides a Kolmogorov‐Smirnov (KS) test 
of convergence that evaluates a null hypothesis that the posterior distributions of a given 
parameter estimate do not show variability across the final step of the MCMC simulation. 
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If the KS test does not reject the hypothesis (p > 0.05), convergence is suggested. 
Sometimes smaller p values are used as the criterion for KS test evaluation for the case of 
complex models (e.g., p > 0.001). The Mplus software only prints the results for the KS 
test for a parameter if the KS test yields a p < 0.05.  The bottom line is that when 
conducting BSEM, you will want to examine PSR values and the KS test to ensure 
convergence has taken place. I show examples of this using Mplus in Chapter 11. 

Model Fit Indices in BSEM 

For global model fit, Bayesian SEM typically (but not always) makes available a CFI, an 
RMSEA, and a p value for close fit. In place of the p value for the traditional chi square 
test, Mplus reports what is known as a posterior predictive p-value (PPP). Technically, 
this p value derives from different logic than that of the traditional chi square test, but it 
operates in the same spirit in that it maps the correspondence between predicted and 
observed data; see Depaoli (2021) for the underlying mathematical logic and 
Asparouhov, Muthén and Morin (2015), Asparouhov and Muthén (2017), and Muthén 
and Asparouhov (2012) for details of the statistic as used in Mplus. The PPP evolves 
from MCMC estimation.  

A good fitting model is expected to have a PPP value near 0.50. In Mplus, a low 
PPP, such as 0.05 or less, indicates that the model is not congruent with the data. Note 
that the PPP value does not have the same interpretation as a p-value for a chi square test; 
if the PPP value is less than 0.05, this does not mean the Type I error rate for a correct 
model is 5%. The PPP is more like an overall index of fit in the spirit of the other fit 
indices reviewed in Chapter 7. Muthén and Asparouhov (2012) suggest that using 
observed PPP values of 0.05 or less to reject a model is reasonable; Cain and Zhang 
(2019) suggest cutoffs of 0.10 or less.      

Mplus also provides a 95% confidence interval for the difference between 
observed and replicated global chi-square values based on replicated data sets of the 
same size as the original data during the MCMC iterative process (for details, see 
Muthén, 2010; Muthén & Asparouhov, 2012; Asparouhov & Muthén 2010b). A good 
fitting model will produce a zero close to the middle of the confidence interval; if zero is 
not in the confidence interval, it suggests a poor model fit.  

For model comparisons, Mplus reports a specialized Bayesian analog to the AIC 
and BIC statistics discussed in Chapter 7 known as the Deviance Information Criterion 
(DIC; Spiegelhalter et al., 2002; Depaoli, 2021). As with the BIC, the model with the 
smallest DIC among a set of competing models is preferred but a DIC by and of itself is 
difficult to interpret. There are no clear-cut guidelines for choosing one nested model 
over another, but, roughly, differences in the DIC between models greater than 10 tend to 
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rule out the model with the higher DIC, differences between 5 and 10 are notable, and 
differences less than 5 are not definitive. Cain and Zhang (2019) recommend DIC 
differences > 7 for preferring one model over another.  

For localized fit, Bayes SEM does not produce modification indices nor residual 
tests, but it does provide predicted correlations between the model variables that can then 
be compared visually with the observed correlations on a cell-by-cell basis. Such 
comparisons are more informal but they can be revealing.  

Parameter Estimates in BSEM 

In addition to the model parameter estimates per se, Mplus also provides the analogs to 
confidence intervals for BSEM, namely the credible intervals based on the posterior 
probability distribution. The 95% credible interval is the range of values that represent 
95% of the probability density about the median of the posterior probability distribution. 
There are different ways of defining a credible interval for the posterior distribution in 
Bayesian analyses. A 95% equal tail interval is one whose right and left side each cut 
off 2.5% of the probability mass of the posterior distribution. The 95% highest posterior 
density interval (HPD), by contrast, is the narrowest 95% of the posterior density whose 
points have a density higher than the density of any value of the parameter outside the 
interval. The HPD interval is often preferred because it guarantees an interval of the 
shortest length. It can be asymmetric whereas the equal tail interval is not. In some cases, 
the HPD interval might encounter estimation difficulties, in which case you might revert 
to the equal tail interval. In general, I use HPD-based credible intervals. 

Although null hypothesis testing is not integral to Bayesian analysis, because it is so 
prominent in the social science literature, Bayesian methods have been developed to 
provide p values for statements of statistical significance for each model parameter (to 
the disdain of Bayesian purists). Mplus uses the 95% credible interval for a parameter to 
declare an effect as “statistically significant” if the credible interval does not contain the 
value zero. Mplus also reports a one tailed p value for the parameter in question. For a 
positive parameter estimate, the p-value is the proportion of the posterior distribution that 
is below zero; for a negative parameter estimate, the p-value is the proportion of the 
posterior distribution that is above zero. The idea is that the reported p value maps onto a 
one-sided p value for the test that the parameter equals zero; one can obtain an 
approximate two-sided p value by doubling it, but this is only approximate. Technically, 
the Bayesian p value is not the same as the traditional p value you are familiar with but it 
is roughly interpreted in the same way where the focal null is a value of zero.  
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Application of BSEM to Numerical Example 

I applied a traditional robust maximum likelihood SEM analysis to the model in Figure 
8.1 and a Bayesian SEM. To make the path coefficients for the mediators easier to 
interpret, I re-scaled the 0 to 100 knowledge tests to a 0 to 10 metric by dividing the 
knowledge test scores by 10. A one unit change on the re-scaled metric corresponds to a 
10 unit change on the original 0 to 100 knowledge test. I also mean centered the baseline 
covariates. I used the default Bayesian priors in Mplus, which are uninformative. For path 
coefficients with continuous outcomes, the default uninformative hyperparameters are 
assumed to be normally distributed with mean zero and extremely large variances.  

The model fit for traditional robust maximum likelihood estimation was satisfactory 
(chi square = 5.82, df = 8, p < 0.67; CFI = 1.00; RMSEA = <0.001, 90% confidence 
interval = 0.00 to 0.047, p value for close fit = 0.962; standardized RMR = 0.019). There 
were no modification indices larger than 4.0 and none of the absolute disparities between 
the predicted and observed covariances in a given cell of the covariance matrix was 
statistically significant. For the Bayes analysis, the parameter with the highest 
convergence PSR at the final step of the MCMC process had a PSR value of 1.00, which 
suggests convergence. There were no statistically significant KS tests. The posterior 
predictive p value was 0.627, which is consistent with good model fit. The 95% 
confidence interval for the difference between observed and replicated chi-square values 
was -19.48 to 13.78, suggesting good model fit. The Bayesian RMSEA was < 0.001 with 
a 90% CI of 0.00 to 0.048 and a close fit p value of 0.96. The Bayesian CFI was 1.00. 

Here are the predicted and observed correlations between variables on the Mplus 
Bayes output but where I have edited out predicted and observed correlations that are 
mathematical tautologies: 

 
                 ESTIMATED CORRELATION MATRIX  
              BUDGET2       CREDIT2       INCOME3        
              ________      ________      ________       
 BUDGET2        1.000 
 CREDIT2        0.263         1.000 
 INCOME3        0.555         0.554         1.000 
 TREAT            -             -           0.406          
 CBUDGET1         -           0.091         0.200         
 CCREDIT1       0.129           -           0.218         
 CINCOME1       0.080         0.070         0.146   
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                  OBSERVED CORRELATION MATRIX  
              BUDGET2       CREDIT2       INCOME3       
              ________      ________      ________      
 BUDGET2        1.000 
 CREDIT2        0.283         1.000 
 INCOME3        0.562         0.559         1.000 
 TREAT            -             -           0.387      
 CBUDGET1         -           0.099         0.178      
 CCREDIT1       0.158           -           0.263      
 CINCOME1       0.067         0.023         0.119      

 
There is generally close correspondence between the predicted and observed correlations.   

Table 8.1 presents for both analyses the substantive path coefficients of interest. 
The results are quite similar, which is often the case when uninformative priors are used. 
Bayes SEM does not use critical ratios for the coefficients, instead relying on whether the 
credible interval contains the value of zero to declare statistical significance. The path 
coefficient for budgeting knowledge was $44 when predicting the post-treatment income, 
indicating that for every 10 units that the original-metric budgeting knowledge increased, 
the monthly discretionary income was predicted to increase by $44, holding constant 
credit card knowledge and the other covariates. The path coefficient for credit card 
knowledge was $42, indicating that for every 10 units that the original-metric credit card 
knowledge increased, the monthly discretionary income was predicted to increase by $42, 
holding constant budgeting knowledge and the other covariates. The program effectively 
changed both types of knowledge, increasing the original-metric mean test score by 24.8 
points for the budgeting test and 31.2 points for the credit card test. The total effect of the 
program on monthly discretionary income was to increase it, on average, by $239. I walk 
you through BSEM Mplus programming in future chapters.  

Table 8.1: Substantive Path Coefficients of Interest for Bayes SEM 
 
                                                     Robust ML Analysis                            Bayesian Analysis 

Parameter Coeff 95% CI p value  Coeff 95% CI 
       
Budget → Outcome 44.17 36.85 to 51.53 <.001  44.15 36.76 to 51.59 
Credit → Outcome 41.66 35.19 to 48.20 <.001  41.63 34.60 to 48.64 
Treatment → Budget 2.48 2.02 to 2.94 <.001  2.48 2.02 to 2.94 
Treatment → Credit 3.12 2.66 to 3.57 <.001  3.12 2.66 to 3.58 
Total Program Effect 239.29 203.59 to 274.99 <.001  238.86 203.26 to 277.68 

 
(note: CI = confidence interval for ML analysis, credible interval for Bayes analysis.)  
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Mplus also shows, upon request, the estimated posterior distribution for each 
parameter. As an illustration, Figure 8.3 shows the posterior distribution densities for the 
path coefficient from budgeting knowledge to discretionary income holding constant the 
other covariates in the equation. The distribution is an estimate based on the prior 
distribution and the data that was analyzed. The distribution is approximately normal. 
Mplus reports the mean, median, mode and standard deviation of the distribution. Figure 
8.3 also shows the 95% credible interval between the vertical blue lines.  

 

Figure 8.3 Example plot of posterior distribution 

A positive feature of Bayes estimation is it does not rely on large sample asymptotic 
assumptions that maximum likelihood estimation does. This often makes it better for 
smaller sample sizes, but there also are limitations to such applications. I discuss issues of 
sample size in Chapter 28. 

In sum, BSEM is a viable alternative to traditional SEM. It is a full information 
estimation approach that has many advantages, especially with complex models. I discuss 
it in some depth in Chapter 25 for analyzing clustered RETs using multi-level SEM. It is 
definitely worth having in your statistical toolbox. 

LIMITED INFORMATION SEM 

Classic SEM uses what is known as full information estimation of the equations that 
formally define an influence diagram. This is because all of the parameters in the 
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equations are estimated simultaneously as a multivariate whole. An alternative approach 
is to use limited information structural equation modeling (LISEM), also known as 
piecewise SEM (Shipley, 2000, 2003, 2013; Shipley & Douma, 2020) or reduced form 
structural equation modeling. This strategy estimates the parameters in each equation 
but does so one equation at a time using a statistical method of one’s choice on a per 
equation basis. One then pieces together the coefficients from the separate analyses into 
the overall model. One ends up in the same place as full information SEM (FISEM), 
namely parameter estimates for an influence diagram plus significance tests and 
confidence intervals for parameters in the model. However, how one obtains the 
estimates differs from FISEM. Limited information estimation is fairly popular in 
econometrics and public health. 
 To illustrate the general logic, consider the discretionary income example from 
Figure 8.1. The model implies three linear equations (expressed here using sample 
notation), one for each endogenous variable: 

Incomet3 = a1 + b1 Budgett2 + b2 Creditt2 + b3 Incomet1 + d3     [8.1] 

Budgett2 = a2 + b4 TREAT + b5 Budgett1 + d1       [8.2] 

Creditt2 = a3 + b6 TREAT +  b7 Creditt1 + d2        [8.3] 

where the subscript t refers to the time point of measurement. In limited information 
SEM, I estimate each equation using a regression method of my choosing. In the next 
subsections, I illustrate the use of OLS regression and then apply robust regression as a 
form of LISEM (see Chapter 6). I then present Bollen’s (2019) novel method for dealing 
with latent variables in LISEM and end by formally comparing the strengths and 
weaknesses of FISEM with LISEM. 

Limited Information SEM using OLS Regression 

The use of OLS regression for SEM modeling in a LISEM framework is often used in a 
newer form of mediation analysis called causal mediation analysis, an approach I 
discuss in Chapter 9. To apply OLS regression in LISEM, I used SPSS to estimate 
equations 8.1 to 8.3 for the discretionary income example. Table 8.2 presents the results 
for the key path coefficients for the robust maximum likelihood full information SEM 
(FISEM) and for the OLS based LISEM. I present the 95% confidence intervals in the 
form of margins of error.  
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Table 8.2: Substantive Path Coefficients of Interest using OLS Regression  
 
                                                  Robust ML Analysis                               OLS Analysis 

 
Parameter 

 
Coefficient 

Critical 
Ratio 

p 
value 

  
Coefficient 

 
t Ratio 

p 
 value 

        
Budget → Outcome 44.17 ±7.36 11.76 <.001  44.17 ±7.45 11.65 <.001 

Credit → Outcome 41.66 ±6.54 12.48 <.001  41.66 ±7.01 11.68 <.001 

Treatment → Budget 2.48 ±0.46 10.58 <.001  2.48 ±0.46 10.58 <.001 

Treatment → Credit 3.12 ±0.45 13.39 <.001  3.12 ±0.45 13.39 <.001 

Total Program Effect 239.29 ±35.70 13.14 <.001  222.75 ±51.08 8.57 <.001 

 
 The results are comparable in both analyses, with the exception being the somewhat 
smaller t ratio for the total program effect in the OLS regression.1 The comparability of 
the results is important because, as I discuss in Chapter 28, FISEM often requires large 
sample sizes. With smaller sample sizes, one can apply some form of LISEM instead. 
Also, if one’s model has many variables and is complex in form, even a large sample size 
may not sustain FISEM. LISEM is an alternative to dealing with such scenarios. 

Some comments are in order about the estimated total program effect on 
discretionary income in LISEM. In FISEM, the total effect of the treatment on the 
outcome uses the component equations 8.1 to 8.3 to derive the total effect estimate. The 
values of the relevant path coefficients are combined based on the mathematics of causal 
decomposition. For the discretionary income example and using the logic of combining 
regression equations described in Chapter 5, the total effect (TE) is 

TE =  (b1)(b4) + (b2)(b6) =  (44.17)(2.48) + (41.66)(2.33) = 239.52                 [8.4] 

which, it turns out, is the robust maximum likelihood total effect in Table 8.2. To 
estimate the total program effect in LISEM, there are three approaches I can use. The 
method I reported in Table 8.2 is commonly used in randomized trials, namely I 
conducted the regression equivalent of an analysis of covariance (ANCOVA) comparing 
the covariate adjusted means for the treatment and control groups on the posttest 
discretionary income controlling for baseline income, i.e., I used the following equation: 

Incomet3 = a1 + b1 TREAT + b2 Incomet1            [8.5] 

 
1 The similarity of the coefficient estimates per se should not be surprising because in a fully recursive system such 
as this one, OLS and ML are equivalent to each other 
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The result of this analysis estimates the total effect to be 222.75 ±51.08. The value of 
222.75 is close to the FISEM result of 239.29, but the two estimates differ. This is 
because the FISEM result is model-based in the sense that the total effect is defined per 
the elements of Equation 8.4, which, in turn, presumes the model in Figure 8.1 is correct. 
By contrast, the ANCOVA approach is not tied to the model in Figure 8.1 and makes 
fewer model assumptions, a property some researchers prefer.  
 Another approach I could use is to conduct a simple t test on the posttest 
discretionary means with no covariates. This also is a commonly used strategy for 
estimating the total program effect, with the mean difference in the current example being 
219.79 ±51.53. Which of the three values, $239, $222, or $220 is correct?  
 The answer is that none of them are, by fiat, “correct.” Each reflects a model-based 
strategy for answering the question “what is the overall program effect?” but each 
invokes a different model to answer the question. The first estimate, $239, is based on the 
model in Figure 8.1, the second estimate, $222, is based on an ANCOVA model per 
Equation 8.5, and the third estimate, $220, is based on a model defined by a simple mean 
difference with no covariates (e.g., no adjustments for sample imbalance). Each strategy 
has strengths and weaknesses. For example, the FISEM strategy yielded smaller standard 
errors as reflected in the margins of error and as a result, it has more statistical power and 
narrower confidence intervals. However, it also makes more assumptions than the other 
two approaches, i.e., assumptions about the correctness of the structural relations among 
the seven variables per Figure 8.1. Few of these assumptions are made by the ANCOVA 
model nor are they made by the simple mean difference model using a t test. Each 
strategy also brings with it different statistical assumptions that may or may not be valid 
and whose violation could be consequential. You must decide which approach for 
answering the question is best for your purposes. In the present case, the FISEM analysis 
with robust standard errors seems desirable assuming the model in Figure 8.1 is correct 
because it adjusts for sampling imbalance for baseline discretionary income, it controls 
for distal confounds that operate through baseline discretionary income, and it does not 
assume normally distributed disturbances nor variance homogeneity. The simple t test 
seems less desirable because it does not adjust for sample imbalance (although the large 
N mitigates against this) and it usually has larger standard errors. In the final analysis, for 
the current example the three answers are fairly similar and my conclusions about the 
total program effect hold up across the different forms of analysis.       
 Parenthetically, there is a fourth approach to estimating the total effect that uses 
OLS-based LISEM. It relies on a method called Monte Carlo confidence intervals 
(Buckland, 1984; Hayes, 2018; Preacher & Selig, 2012; Tofighi & MacKinnon 2011, 
2015). In the current example, I would first combine the OLS-based coefficient estimates 
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in the first four rows of the right side of Table 8.2 using Equation 8.4, namely (b1)(b4) + 
(b2)(b5) from Equations 8.1 to 8.3. Thus, like FISEM, the approach is tied to Figure 8.1 
and makes stronger assumptions about model form than, say, the ANCOVA model or the 
simple t-test. I then use specialized simulation methods to estimate the confidence 
interval for the total effect, which I describe in Appendix B. I provide a program on my 
website called Monte Carlo CIs for the calculation of these simulation-based confidence 
intervals and p values. The OLS-based total effect for the discretionary income example 
using the Monte Carlo confidence interval method was 239.52 ±37.96, a result that 
comports well with the robust maximum likelihood FISEM.   

Model Fit in Limited Information SEM 

One objection to LISEM is that it does not yield overall tests of global model fit nor does 
it provide modification indices or local diagnostics of model fit. It is true that FISEM 
provides a richer array of fit diagnostics than LISEM. However, contrary to what some 
people assert, multi-equation LISEM can yield both global and localized feedback on 
model fit.  

As one example, the causal model in Figure 8.1 omits a direct path from the 
treatment to posttest discretionary income. The original equation for the post 
discretionary income was  

Incomet3 = a1 + b1 Budgett2 + b2 Creditt2 + b3 Incomet1 + d3    

I can estimate the coefficients in this equation using OLS regression. If I add the 
treatment predictor to the equation to evaluate the omitted path, the equation becomes 

Incomet3 = a1 + b1 Budgett2 + b2 Creditt2 + b3 Incomet1 +  b4 TREAT + d3    

The significance test for b4 tells me whether adding the causal path from the treatment 
condition directly to the posttest discretionary income will yield a statistically significant 
path coefficient. A non-significant t ratio for b4 indicates that the added causal path will 
not be statistically significant; a significant t ratio means the causal path will be 
statistically significant if added to the model. The larger the t ratio associated with b4, the 
larger its “modification index.” If the t ratio is based on reasonably large degrees of 
freedom, then squaring its value will yield a value equal to or close to the modification 
index for the path in FISEM. The value of b4 itself is an index of the expected parameter 
change as commonly reported for modification indices in FISEM (see Chapter 7). When I 
conducted this analysis, the coefficient for TREAT was -18.41 with a t ratio (df = 395) of 
-0.727, p < 0.468. The squared t ratio was 0.53. Rather than the mindless calculation of 
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every possible modification index, theoretically sensical or not, that occurs in FISEM, the 
LISEM modification index approach explores localized points of stress in strategic ways 
that take into account the theoretical coherence of the omitted paths. Any omitted path 
can be evaluated accordingly. 
 A more general way of characterizing the above is that one can evaluate model fit in 
LISEM by empirically evaluating the independence assertions of the model. For example, 
the model in Figure 8.1 implies that the association between the two posttest mediators 
should reduce to zero or statistical non-significance if I hold the treatment condition and 
the baseline measure of budgeting knowledge constant. I calculated the partial correlation 
in SPSS between the two posttest mediators holding constant these two covariates. The 
partial correlation was 0.021 with a p value of 0.671, which is consistent with the model.  

The formal way in which this independence relationship is symbolized is 

Budgett2 ⫫ Creditt2 | TREAT, Budgett1      

where ⫫ is read as “is independent of” and | is read as “conditional on” or “holding 
constant.” Another independence relation implied by the model is 

Budgett2  ⫫  Creditt2 | TREAT, Creditt1      

It turns out there are 11 independence relations implied by the model in Figure 8.1 that  
can be tested through partial correlation or regression-based strategies. It often is difficult 
for researchers to identify all the implied independence relationships of a model. On my 
website, I provide a program called graph theory that links to a website called 
www.dagitty.net in which you draw an influence diagram and it then identifies all of the 
independence relations implied by the model. Corrections for multiplicity can be invoked 
as desired using the FDR method or a Holm modified Bonferroni method per my website.  
 As noted in Chapter 7, localized tests of fit such as these can be more informative 
than global tests of fit because the latter are omnibus in character and do not provide 
information about the source of ill fit. The omnibus test can mask sizeable localized ill fit 
for one or two parameters if the rest of the model fits well and “swamps” the few points 
of localized ill fit. It is possible, nevertheless, to generate an omnibus test of global model 
fit in LISEM analogous to the chi square test of fit in FISEM.2 The approach is based on 
the d-separation strategy of Shipley (2000, 2003, 2013; Shipley & Douma, 2020; 
Hayduk et al. 2009) that generates a chi square statistic based on the individual p values 
for the tests of model implied independence described above. It yields an omnibus C 

 
2 Technically, FISEM focuses on disparities between the predicted and observed covariance matrices whereas the 
method I now describe focuses on independence assumptions.  

http://www.dagitty.net/
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statistic that is distributed as a chi square taking into account the results of the 
independence tests. I provide on my website a program for it (d-sep chi square). Consult 
the work of Shipley for statistical details. I do not use the test because I prefer to work 
with the localized tests.  
 Ironically, there are cases where LISEM will produce unbiased and viable 
parameter estimates for a model even when the overall C statistic suggests a bad fitting 
model or when FISEM global tests of fit suggest a bad fitting model. I discuss this 
phenomenon in the document Specification Error in FISEM and LISEM on my webpage.     

Auxiliary Statistical Tools in Limited Information SEM  

An advantage of LISEM with OLS regression is that it permits the use of OLS-based 
statistical tools to gain perspectives on a model that might otherwise not be available in 
FISEM. I illustrate this in future chapters but provide one example here. In Chapter 6, I 
described a sensitivity test for omitted variable bias. For the model in Figure 8.1, using 
OLS yielded a path coefficient for the effect of budgeting knowledge on discretionary 
income of $44.17; for every 10 unit increase on the 0 to 100 knowledge test, monthly 
discretionary income was predicted to increase $44.17, holding constant the other 
variables in Equation 8.1. Critics might argue that the coefficient estimate is spurious or 
inflated by unmeasured common causes of budgetary knowledge and discretionary 
income. Per Chapter 6, for OLS regression I can perform a sensitivity analysis that 
specifies the magnitude of the percent of variance that these unmeasured confounders 
would have to account for in both budgetary knowledge and discretionary income to 
render the causal effect of $44.17 completely spurious. I used the program on my 
website, called omitted confounds to perform the test. The percent of variance that 
unmeasured confounds would have to account for in both budgetary knowledge and 
discretionary income over and above the other predictors in Equation 8.1 to render the 
effect spurious is 44%. This seems an unlikely scenario. For the credit card knowledge 
mediator, the corresponding statistic also was 44%. Based on this result, I might be 
inclined to discount a critic’s assertion that the effect is spurious because it presumes an 
implausible strength of confounding. I do not do so here in the interest of space, but I 
could also use the program to determine how strong the confound effect would need to be 
to cut the causal coefficient in, say, half (from $44.17 to $22.08). By using OLS based 
LISEM, this tool for sensitivity analysis becomes available.3 
 There are other tools that can be used for LISEM that I illustrate in future chapters. 
My point is that LISEM can often be used when it is challenging to apply in FISEM.   

 
3 In Chapter 11, I show how to conduct sensitivity analyses in FISEM using Mplus.     
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Limited Information SEM using Robust Regression  

Another advantage of LISEM is that one can use regression methods other than OLS to 
estimate model parameters. Of particular interest is the use of outlier resistant regression. 
In chapter 6, I discussed three such methods, MM regression, trimmed mean regression, 
and quantile regression. I illustrate here the application of quantile regression. I first 
conducted a quantile regression analysis using the Quantile regression program on my 
website for the discretionary income example using a quantile of 0.50, i.e., I performed 
the analysis on outcome medians, which are outlier resistant. I applied quantile regression 
to Equations 8.1 to 8.3, separately. I used conditional quantile regression rather the 
unconditional quantile regression to map the results onto the conditional nature of the 
FISEM analyses. The results for the quantile regression analysis as well as the FISEM 
analysis with robust maximum likelihood are presented in Table 8.3.4   
 The results for the analysis of medians are not much different from those for the 
FISEM analysis of means. Although quantile regression of medians often has less 
statistical power than regression analyses of means, as is evident by the larger MOEs and 
smaller critical values in Table 8.3, it can be useful to apply if one is dealing with 
outcomes that are, by nature, subject to large outliers, such as income or reaction times.  

Table 8.3: Substantive Path Coefficients of Interest using Quantile Regression  
 
                                                  Robust ML Analysis                              Quantile Regression 

 
Parameter 

 
Coefficient 

Critical 
Ratio 

p 
value 

  
Coefficient 

Critical 
Ratio 

p 
 value 

        
Budget → Outcome 44.17 ±7.36 11.76 <.001  46.63 ±8.74 10.45 <.001 
Credit → Outcome 41.66 ±6.54 12.48 <.001  42.64 ±9.50 10.04 <.001 
Treatment → Budget 2.48 ±0.46 10.58 <.001  2.70 ±0.59 9.18 <.001 
Treatment → Credit 3.12 ±0.45 13.39 <.001  3.12 ±0.67 9.34 <.001 
Total Program Effect 239.12 ±35.70 13.14 <.001  220.06 ±70.38 6.12 <.001 
 
 Another interesting use of quantile regression for RETs is that I can evaluate if the 
effect of the treatment on, say, budgeting knowledge is uniform across the budgeting 
knowledge distribution. For example, I found that the median budgeting knowledge for 
those in the treatment group was 2.70 units higher than for the control group on the 0 to 
10 transformed knowledge metric, per Table 8.3. If I focus instead on the lower end of 

 
4 The FISEM robust maximum likelihood does not assume normality or variance homogeneity, but it is not fully 
robust in that it is not outlier resistant.      
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the knowledge distribution defined by the 20th quantile, will I still see a 2.70 unit 
difference in the quantiles? How about at the upper end, say, at the 80th quantile? 
 When quantile regression is applied to RCTs/RETs or quasi-experimental designs, 
methodologists often calculate a quantile treatment effect (QTE), a statistic that is not 
available in OLS analyses or FISEM. A QTE is the quantile value difference between the 
treatment and control group at the Qth quantile for a given outcome/mediator. In an RCT 
or RET, the difference at the Qth quantile reflects the effects of the intervention in the 
portion of the distribution defined by the Qth quantile, such as at the 50th quantile (also 
sometimes referred to as the tauth quantile). The effect might vary, at the lower portion of 
the distribution (tau = 0.20)  versus the middle of the distribution (tau = 0.50) versus the 
upper portion of the distribution (tau = 0.80). The analysis of QTEs can reveal such 
differences.  

Figure 8.4 shows the QTE concept graphically outside the context of the income 
example. The figure plots the quantile value for different taus for a treatment group (in 
blue) and then repeats this for the control group (in black). The taus are on the vertical 
axis and I have extended a horizontal line to the right for the taus of 0.20, 0.50, and 0.80. 
Note where the horizontal line intersects the cumulative distribution function or cdf curve 
as we move to the right. If you extend a line downward to the Y axis, you obtain the 
quantile value. For example, the 20th quantile for the control group for the left panel of 
Figure 8.4 is 2.15, the 50th quantile is 3.00, and for the 80th quantile it is 3.84.  

The QTE at a given tau is the dashed line between the two cdf distributions. It is the 
distance between the cdfs for the treatment and control groups. Note for the left panel, the 
distance is the same for every tau; the effect of the treatment condition on Y is the same 
across the entire distribution of Y. The QTE is uniform across quantiles. For the right 
panel, this is not the case; the dashed line is smaller at the 20th quantile than at the 50th 
quantile, which, in turn, is smaller than the dashed line at the 80th quantile. Rather than 
affecting the distribution equally at each point in the distribution, the program has its 
biggest effect in the upper portion of the distribution with virtually no effect in the lower 
end of the distribution. This might occur for an intervention that seeks to influence annual 
income but that primarily works for the wealthy.   



                                                                                                                 Non-traditional SEM 21 

 
 

 

Figure 8.4 Example quantile plots 

 On my website, I provide a program (called quantile plot) that plots empirical 
quantile curves for two groups so that you can examine the QTEs visually. Figure 8.5 
presents the plot for the discretionary income program targeting the posttest budgetary 
knowledge mediator as a function of the treatment and control groups. Table 8.4 reports 
deciles 0.10 through 0.90 for the two groups absent the baseline covariate using the 
program on my website called Deciles and MAD.5 The QTEs are roughly comparable 
across the different quantiles, indicating the treatment tends to have the same effect 
relative to the control group across the full distribution of the outcome.  

 
5 This program uses the Harrell-Davis estimator for quantiles, which is different than that used by the quantile 
regression program and can yield slightly different results. 
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Figure 8.5 Empirical QTE quantile plots for discretionary income example 

Table 8.4: QTE Effects for Budgeting Knowledge  
 
Decile Control Group Treatment Group QTE (Difference) 
    
0.10 0.27 2.45 2.17 
0.20 1.29 3.65 2.36 
0.30 2.05 4.49 2.44 
0.40 2.89 5.35 2.45 
0.50 3.61 5.97 2.36 
0.60 4.23 6.63 2.40 
0.70 4.91 7.30 2.39 
0.80 5.54 7.93 2.39 
0.90 6.64 8.83 2.19 

In the presence of control variables, QTEs can be defined in different ways. There 
are many subtleties to interpreting and computing QTEs with covariates. On the 
resources tab of my webpage for the current chapter, I provide a document called 
Quantile Regression Applied to RETs that describes different forms of quantile regression 
that can be applied to randomized explanatory trials and the nuances that need to be taken 
into account when doing so. My main point here is that one can apply robust regression 
methods in LISEM to gain insights not always available in FISEM and that quantile 
regression is one such program.    
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Simultaneous Equation Estimation in Limited Information SEM 

Thus far, I have emphasized using LISEM on a per equation basis. However, it 
sometimes is advantageous to segregate the model into components in which a 
component has more than one equation. Suppose the discretionary income model 
included correlated disturbances between d1 and d2. For the two mediators involved, 
single equation LISEM would ignore the correlation and perform two separate regression 
analyses, one regressing posttest budgeting knowledge onto the treatment condition plus 
covariates and the other regressing posttest credit card knowledge onto the treatment 
condition plus covariates. It turns out that for this case, ignoring the correlated 
disturbances will not produce biased estimates in the relevant path coefficients. However, 
statisticians have shown that sometimes working with the two equations simultaneously 
to adjust for correlated disturbances can affect standard errors for the path coefficients. 
Examples include the method of seemingly unrelated regressions (SUR; Greene, 2017) 
and simultaneous equation models using the general method of moments (Greene, 2017). 
In LISEM, this requires estimating both equations simultaneously taking into account the 
correlated disturbances. As another example, suppose the model included correlated 
disturbances between a mediator and an outcome (e.g., d1 and d3 in Figure 8.1). One 
would accommodate this in an LISEM framework using instrumental regression. 
 The core point is that LISEM does not need to only work with one equation at a 
time. Instead, a larger model can be partitioned into model subsets for purposes of 
LISEM analysis with some subsets consisting of single equations and others consisting of 
multiple equations. One can include latent variables in a subset and use FISEM within it. 
One adapts estimation algorithms to the needs of a given subset. For example, for 
complex SEM models, sometimes large N is needed for bootstrapping to work well 
(Nevitt & Hancock, 2001; Yung & Bentler, 1996). For smaller models, bootstrapping 
often can be small sample effective (Chernick & LaBudde, 2011). Splitting a model into 
subsets might permit small N bootstrapping on the different segments N. The results from 
each subset are then pieced together to capture results for the full model. 

Bollen’s Limited Information SEM Approach 

Most LISEM approaches cannot easily accommodate latent variables with 
interchangeable indicators. A common LISEM strategy is to combine the indicators into a 
composite and then use the composite as one would in standard regression modeling. If 
all the indicators have a common metric, the typical practice is to average the indicators 
to form a composite. If the indicators have different metrics, then one might standardize 
each indicator and average them. Neither of these approaches is ideal.   
 Bollen (2019) has developed an elegant LISEM framework called MIIV-SEM or 
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model implied instrumental variable SEM. A strength of the approach is that it can 
accommodate latent variables. I illustrate the logic using the model in Figure 8.6. that 
regresses adolescent depression onto maternal depression. Each latent variable has three 
interchangeable indicators which I label D1, D2 and D3. The letter M in front represents 
assessments from the mother and the letter A are assessments from the adolescent. LMD 
is latent maternal depression LAD is latent adolescent depression.  

MD1 MD2 MD3 AD1 AD2 AD3

LMD LAD

e1 e2 e3 e4 e5 e6

d1

L1
L2

L3

p7

L4
L5

L6

 

FIGURE 8.6. Latent variable model 

If I translate this model into a set of equations, per Chapter 7, I get (using sample 
notation): 

MD1 = a1 + L1 LMD + e1 

MD2 = a2 + L2 LMD + e2 

MD3 = a3 + L3 LMD + e3 

AD1 = a4 + L4 LAD + e4 

AD2 = a5 + L5 LAD + e5 

AD3 = a6 + L6 LAD + e6 

LAD = a7 + p1 LMD + d1 
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The first six equations represent the measurement facets of the model and the last 
equation represents the structural facet of the model.  
 Bollen translates a model with latent variables into a model with no latent variables 
while still respecting the latent variable character of the model. Here are the steps he 
uses. First, specify a reference indicator for each latent variable. I will use the CES-D as 
the reference indicator for each latent construct, i.e., MD1 and AD1. Second, set the 
measurement intercepts for the reference indicators to 0 and their factor loadings to 1.0. 
These constraints are not different from many FISEM applications that set a metric for 
the latent variables. The reference indicator equations thus become 

MD1 = 0 + (1.0) LMD + e1 = LMD + e1 

AD1 = 0 + (1.0) LAD + e4 = LAD + e4 

By algebraic manipulation, I can rearrange these equations to isolate the respective 
latent variables on the left of the equal sign. This yields 
 
LMD = MD1 - e1               [8.6] 

LAD = AD1 - e4                                [8.7] 

As noted, the latent variable causal equation is 

LAD = a7 + p1 LMD + d1 

If I substitute the right-hand sides of Equations 8.6 and 8.7 for LAD and LMD into the 
above equation, I get 

AD1 – e4 = a7 + p1 (MD1 – e1) + d1     

Adding e4 to both sides of the equation and factoring out p1 (MD1 – e1), I obtain 

AD1 = a7 + p1 MD1 – p1 e1 + d1 + e4 

Rearranging terms on the right side of the above equation to put all disturbance and error 
terms on the extreme right yields 

AD1 = a7 + p1 MD1 + d1 + e4 – p1 e1 

If I group the last three terms into a single disturbance term, d = d1 + e4 – p1 e1 and use a 
generic label of a for the intercept, I obtain 
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AD1 = a + p1 MD1 +  d 

which represents a measurement error-adjusted expression with no latent variables. p1 
will be a measurement-error adjusted estimate of the effect of LPD on LAD. 

The challenge of using this approach is that the disturbance term, d, has a complex 
structure including the fact that it is correlated with the predictor MD1. This complicates 
derivation of standard errors, p values, and confidence intervals. Bollen (2019) deals with 
the problem by using model inherent instrumental variables coupled with two-stage least 
squares algorithms. The estimates can be obtained using the R package MIIVsem that 
implements Bollen’s approach. I illustrate programming of the package in Chapter 11. 
The output produces estimates of the factor loadings and the coefficient for p1, but all in 
the context of limited information estimation.  

Bollen’s method can be applied to single indicator models and models with 
mixtures of latent variables and single indicator variables. I applied the approach to the 
discretionary income example coupled with a separate ANCOVA-like model to estimate 
the total program effect per Equation 8.5 (one also can use the Monte Carlo confidence 
interval approach for the total effect). Table 8.5 presents the results from the robust 
maximum likelihood FISEM and the LISEM analysis based on Bollen’s method. The 
results for the two analyses are similar except for the margin of error of the estimate of 
the total program effect, which can be brought into line with the FISEM result by the use 
of Monte Carlo confidence intervals applied to the coefficients of the original model.   

Table 8.5: Substantive Path Coefficients of Interest using MIIV-SEM   
 
                                                  Robust ML Analysis                           MIIV-SEM Analysis 

 
Parameter 

 
Coefficient 

Critical 
Ratio 

p 
value 

  
Coefficient 

Critical 
Ratio 

p 
 value 

        
Budget → Outcome 44.17 ±7.36 11.76 <.001  44.17 ±7.39 11.71 <.001 
Credit → Outcome 41.66 ±6.54 12.48 <.001  41.66 ±6.96 11.74 <.001 
Treatment → Budget 2.48 ±0.46 10.58 <.001  2.48 ±0.46 10.61 <.001 
Treatment → Credit 3.12 ±0.45 13.39 <.001  3.12 ±0.45 13.41 <.001 
Total Program Effect 239.12 ±35.70 13.14 <.001  222.75 ±51.78 8.61 <.001 

 
Bollen’s approach is different from the LISEM methods I have discussed because it 

commits to a single estimation algorithm (two stage least squares) that is applied to all 
equations. It is not as flexible as other LISEM approaches in this respect. However, it 
readily accommodates latent variables and has many positive features. The MIIVsem 
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software yields localized indices of model fit based on the Sargan test for instrumental 
variables. I describe them in more detail in Chapter 11. Bollen, Kolenikov and Bauldry 
(2014) have extended the MIIV framework to generalized method of moments estimation 
that allows greater flexibility than two stage least squares. However, the approach is not 
yet available in the MIIVsem R software that implements Bollen’s framework. Bollen’s 
approach is another useful tool for your SEM toolbox.  

Comparison of Limited and Full Information SEM  

Both FISEM and LISEM have strengths and weaknesses. I lean toward using FISEM 
when it is viable, but there are many situations where LISEM analytics are useful. In this 
section, I briefly highlight the relative strengths and weaknesses of the two approaches: 

      1. Maximum likelihood methods in SEM are based on asymptotic theory, an approach 
that assumes large sample sizes. As such, they require sample sizes large enough to yield 
sampling distributions that approximate the theoretical sampling distributions assumed by 
asymptotic theory. LISEM does not necessarily use asymptotic theory (although some 
forms of it do so) and, as such, it often is more appropriate with smaller sample sizes. As 
well, limited information estimation can be less sample size demanding because it works 
with smaller covariance matrices per model segment (see Chapter X).6 To be sure, there 
are full information SEM approaches that can be used with smaller sample sizes, such as 
Bayesian methods (McNeish, 2016; Smid, McNeish, Miočević, & van de Schoot, 2020) 
and the small-sample approaches suggested by Swain (Herzog & Boomsma, 2009), 
Yuan, Tian, and Yanagihara (2015), and Yuan, Yang and Jiang (2017). However, even 
these approaches are limited if sample sizes are too small. I consider them in Chapter 28. 

     2. Traditional maximum likelihood SEM assumes multivariate normality among the 
endogenous variables. Limited information approaches often do not make as stringent 
population assumptions. FISEM has robust estimation strategies but the robust strategies 
available in LISEM are more diverse and flexible. 

     3. FISEM can adjust for measurement error by using multiple indicators and latent 
variables. LISEM often relies on cruder approaches to accommodate measurement error, 
but some forms of LISEM can readily do so (Bollen’s MIIV-SEM). Proper measurement 
error adjustments in FISEM require the model error theory be correctly specified. 

     4. LISEM can take advantage of outlier resistant analytic methods popular in robust 
statistics. FISEM is developing similar approaches but is not nearly as far along.  

 
6 Some LISEM regression strategies also invoke asymptotic theory.  
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     5. For correctly specified models, full information estimators are often (but not 
always) more efficient than limited information estimators, in a strict statistical sense of 
the term. However, this increased efficiency is contingent on satisfaction of model and 
statistical assumptions, i.e., the absence of specification error at both the model and 
statistical level. When assumptions are violated, LISEM estimators are sometimes as 
efficient or more so than full information estimators.  

    6. Specification error in one part of the model in FISEM can reverberate through the 
larger model and adversely affect estimates of other parameters beyond those that are  
misspecified. In LISEM, the consequences of specification error in one part of the model 
are limited to that part of the model; specification error is compartmentalized. For 
examples, see Bollen, Gates and Fisher (2018) and Bollen (2020). 

    7. For over-identified models, FISEM provide global and localized indices of model fit 
independent of significance tests of path coefficients (e.g., CFI RMSEA). This is also 
true for LISEM, but the array of diagnostic indices is not as rich.  

    8. In classic FISEM, complex correlated error/disturbance structures can be easily 
modeled. In LISEM, strategies for addressing correlated disturbances are more restricted 
and more challenging to implement, but doing so is possible.  

    9. A limited information approach can “mix” analytic strategies, using the strongest 
methods tailored to each equation. Traditional SEM tends to apply the same estimation 
algorithm to all parts of the model, e.g., maximum likelihood.  

  10. With small samples sizes, FISEM may not converge. Convergence problems are less 
problematic with LISEM because many of them do not use iterative estimation. 

  11. In FISEM, if any part of the model is under-identified, the entire analysis must be 
aborted. In LISEM, under-identification in one part of the model does not render 
estimation in other parts of the model impossible.  

  There are nuances to each of these points, but they convey a sense of the relative 
strengths and weaknesses of FISEM and LISEM.  

STRUCTURAL CAUSAL MODELING 

Judea Pearl (Pearl, 2009; Pearl, Glymour & Jewell, 2016) analyzes causality using a 
general framework he calls structural causal modeling (SCM). The framework relies 
heavily on probability theory, mathematical expectations, and counterfactual 
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conceptualizations of causality. I consider each topic, in turn. After doing so, I consider 
what Pearl calls do-calculus and nonparametric causal modeling from the SCM 
perspective. SCM is not as well-known as SEM, but it is gaining in popularity and 
impact. The majority of this book is grounded in SEM, but it will be helpful to learn the 
vocabulary of SCM because I use concepts from it in future chapters.  
 Some social scientists object to SCM and the closely aligned frameworks of 
potential outcomes and counterfactual causal theory because the approaches use 
unfamiliar and unnecessary jargon only to end up in essentially the same place as 
traditional statistical frameworks. Dawid (1999, 2000, 2002, 2021, 2024) has been 
especially vocal about the matter (but see also Krieger et al., 2016; Vandenbroucke et a;., 
2016; Weed, 2016). You may experience such reactions as I articulate the counterfactual 
and SCM frameworks below. However, I believe there are some points of emphasis in 
these areas that might be worthwhile and which I will highlight in future chapters.     

Probability Theory and Causal Effects 

Pearl uses probability theory to formalize causal relationships. In probability theory, a 
variable X has different levels, x, that are referred to as events. A given event is 
symbolized as X=x, where X refers to the variable and x is a specific level or value of that 
variable. If X refers to weight, the event of weighing 150 pounds is indicated by X=150. 
If participation in a treatment condition, T, has two levels, 0 = participated in the control 
group and 1 = participated in the intervention group, then the event T=1 is participation 
in the intervention group.  

The probability that an event occurs given some other event occurs is known as a 
conditional probability. Consider an intervention program designed to reduce child 
depression. I can represent the treatment condition a person is in by the variable T, which 
is scored either 0 (the control group) or 1 (the treatment group). The probability that the 
outcome, Y, has the value y given that T has the value t is written in general notation as  

P(Y=y|T=t) 

where the symbol  | is read as “given that” and P refers to probability. Suppose Y has two 
values, 0 = a child is not depressed at the posttest and 1 = a child is depressed at the 
posttest. The expression P(Y=1|T=1) refers to the probability children are depressed at 
the posttest given they participated in the intervention. 

Total Program Effect for a Binary Outcome using Probability Theory 

One way of thinking about a probability is as a proportion, such as the proportion of 
children in a group or population who have a given outcome value. The expression 
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P(Y=1|T=1) is the proportion of children in the treatment condition who are depressed at 
the posttest. The expression P(Y=1|T=0) is the proportion of children in the control 
condition who are depressed at the posttest. The difference between these two conditional 
probabilities reflects the effect of the program on child depression: 

Program effect on Y = P(Y=1|T=1) - P(Y=1|T=0) 

In this case, the program effect on Y is simply the difference between the treatment and 
control group proportions of children who are depressed at the posttest. In SEM terms, 
this is called the total effect of the program on the outcome. 

Program Effect on a Binary Mediator using Probability Theory 

Shifting to mediation analyses, let M refer to a mediator the program addresses. In the 
current example, suppose M is parental use of guilt as a way of disciplining a child. The 
program designers believed that the use of guilt as a discipline strategy is likely to cause 
depression in children and they sought to reduce its use by parents. Suppose M has two 
possible values, 1 = the parent uses guilt as a discipline technique as measured at the 
posttest and 0 = the parent does not use guilt as a discipline technique at the posttest. The 
conditional probability P(M=1|T=1) refers to the proportion of parents using guilt as a 
discipline strategy given that parents participated in the intervention. The conditional 
probability P(M=1|T=0) is the proportion of parents using guilt as a discipline strategy 
given that parents participated in the control condition. The difference between these two 
proportions reflects the effect of the program on the mediator: 

Program effect on M = P(M=1|T=1) - P(M=1|T=0) 

The program effect on M is simply the difference between the treatment and control 
group proportions of parents who use guilt as a discipline strategy at the posttest.  

Mediator Effect on a Binary Outcome using Probability Theory 

Finally, the conditional probability P(Y=1|M=1) refers to the proportion of children who 
are depressed at the posttest given their parents used guilt as a discipline strategy as 
measured at the posttest. The probability P(Y=1|M=0) refers to the proportion of children 
who are depressed at the posttest given their parents did not use guilt. The difference 
between these two proportions is the effect of the mediator on the outcome: 

Mediator effect on Outcome = P(Y=1|M=1) - P(Y=1|M=0) 
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The effect of M on the outcome is simply the difference between proportions of children 
who are depressed for parents who use guilt as a discipline strategy compared to parents 
who do not.  
 In sum, Pearl defines program effects on an outcome, program effects on a 
mediator, and mediator effects on an outcome using conditional probabilities for the case 
of binary variables. The approach, in practice, compares group proportions for the 
outcome as a function of T, group proportions for M as a function of T, and group 
proportions for the outcome, Y, as a function of M. Pearl embellishes these indices in his 
SCM framework to take into account confounders and covariates, as I discuss shortly.  

Mathematical Expectations and Causal Effects 

The above discussion holds for dichotomous mediators and dichotomous outcomes. 
However, we often work with many-valued discrete quantitative variables or with 
continuous variables. In such cases, probabilities and proportions are not appropriate. 
Pearl accommodates these cases using the mathematical concept of expectation or 
expected value. The expected value of a variable, in practice, is simply its mean value. If 
a population has a mean salary of $40,000, then the expected value of salary for the 
population is $40,000. Most of us are familiar with symbolizing a mean as µY for a 
population or Y̅ for a sample. Another way a mean can be symbolized is E(Y), which 
translates into the phrase “the expected value of the variable Y.” Interestingly, for a 
binary variable scored 0 and 1, the mean of that variable will equal the proportion of 
people who score 1, or stated another way, it will equal the probability of obtaining a 
score of 1. If we score a child being not depressed as 0 and a child being depressed as 1, 
and if 35% of the children are depressed, then the mean or expected value of the variable 
will be 0.35. In this sense, expectations are a natural extension of probability concepts.  

Program Effect on a Quantitative Outcome using Expected Values 

Suppose that child depression is measured on a 0 to 20 scale, representing the total 
severity of depressive symptoms a child has, with higher scores indicating higher 
severity. As noted in Chapter 5 in my discussion of linear regression, means (expected 
values) can be computed not only for a variable as a whole but also for conditional 
expressions. For example, I can compute the mean symptom severity that children have 
whose parents participated in the treatment program as well as the mean symptom 
severity of children whose parents participated in the control group. Pearl would express 
these concepts as follows, with hypothetical values reported after the expression to make 
matters concrete: 



                                                                                                                 Non-traditional SEM 32 

 
 

Y̅PROGRAM = E(Y|T=1) = 3.07 

and 

Y̅CONTROL = E(Y|T=0) = 15.06 

Pearl defines the effect of the treatment on Y in the case of a continuous outcome as the 
difference between these expected values or 

Program effect on Y = E(Y|T=1) - E(Y|T=0)  = 3.07 - 15.06 = -11.99 

Children who participated in the treatment had, on average, 11.99 lower symptom 
severity than those in the control condition. The program effect is simply the mean 
difference between the two treatment conditions. 

Program Effect on a Binary Mediator using Expected Values 

Suppose, next, I focus on the dichotomous mediator reflecting parental use of guilt as a 
discipline strategy. I want to document the effect of the program on this mediator. I could 
express this effect in the form of a probability/proportion as before, but I also can express 
it as a conditional mean using 0, 1 scoring of M. The mean for the mediator for the 
treatment group is E(M|T=1), which equals 0.600. The mean for the control group is 
E(M|T=0), which equals 0.788. The effect of the treatment on M is the difference 
between these two expected values or 

Program effect on M = E(M|T=1) - E(M|T=0) = 0.600 – 0.788 = -0.188 

Families who participated in the program had 18.8% fewer parents who used guilt as a 
discipline strategy than families who participated in the control condition.  

Mediator Effect on an Outcome using Expected Values 

Finally, consider the dichotomous mediator effects on symptom severity for children. The 
mean symptom severity for children whose parents use guilt as a discipline strategy is 
E(Y|M=1), which equals 9.90. The mean symptom severity for children who had parents 
who did not use guilt is E(Y|M=0), which equals 7.24. The effect of the mediator on the 
outcome is the difference between these two expected values or   

Mediator effect on Y = E(Y|M=1) - E(Y|M=0) = 9.90 - 7.24 = 2.67 

On average, children whose parents used guilt as a discipline strategy had 2.67 more 
symptoms than children of parents who did not use guilt. The effect of the mediator on 
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the outcome is simply the outcome mean difference between the treatment conditions. 
 In sum, although SCM uses the language of probabilities, conditional probabilities, 
expectations, and conditional expectations, its definition of total effects, program effects 
on mediators and mediator effects on outcomes typically follow traditional definitions of 
the concepts.  I elaborate this point in future chapters. 

Covariate Control 

In Pearl’s framework, one can fix multiple variables at specific values when estimating 
effects based on conditional expressions, be they conditional probabilities or conditional 
expectations. Suppose in the depression example, I thought that ethnicity (ETH) is a 
potential confounder of the relationship between M and Y. Suppose there were only two 
ethnic groups in the study, Blacks (scored 0) and White European Americans (scored 1). I 
can control for the ethnicity confound by fixing ETH to a specific value when estimating 
the effect of the mediator on Y. For example, the mediator effect on Y for Blacks is 

Mediator effect on Y for Blacks = E(Y|(M=1, ETH=0)) – E((Y|(M=0, ETH=0)) 

and for White European Americans it is  

Mediator effect on Y for Whites = E(Y|(M=1, ETH=1)) – E(Y|(M=0, ETH=1)) 

Both of these effects are free of the ethnicity confound because ethnicity has been held 
constant for each effect. In this way, causal effects can be estimated in Pearl’s framework 
by “fixing” confounders at specific values.  

Do-Operators 

In the framework of SCM, Pearl (2009) distinguishes the case where we formally 
manipulate a variable to create values on it versus merely observing a value that a person 
naturally has on that variable. When we calculate conditional means for E(Y|T=1), the 
fact that T equals 1 is the result of purposive actions on the part of a researcher who 
assigns people to the intervention condition of the study. Pearl refers to this as 
intervening on a variable by actively changing the system. By contrast, fixing a variable 
at a specific value occurs when we do not change the system per se but rather narrow our 
focus to people in the system who have that particular value on the variable. Pearl 
introduces terminology to distinguish these dynamics in the form of a do operator. In an 
RET, the expected value for Y when one is assigned to the intervention condition is 
signified by E(Y|do(T=1)), because we have actively created the value of t = 1. The 
conditional mean for the control group is E(Y|do(T=0)) because we actively assigned 
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people to the control condition (even if such assignment entails leaving the system alone). 
The general expression for these operations is (Y|do(T=t)), where t can equal 0 (the 
control condition) or 1 (the intervention condition). By contrast, when we condition on a 
value by merely filtering cases, such as for documenting the relationship between the 
mediator and the outcome, Pearl uses the more traditional designation E(Y|M=1) or 
E(Y|M=0). Using the symbol Y̅ in place of E(Y) and M̅ in place of E(M), Pearl would 
write the three key causal effects discussed earlier as   

Treatment effect on Y = Y̅|do(T=1) - Y̅|do(T=0) 

Treatment effect on M = M̅|do(T=1) - M̅|do(T=0) 

Mediator effect on Y = Y̅|M=1 - Y̅|M=0 

The advantage of using do notation is that one can distinguish at a glance presumed 
causal effects based on randomization from presumed effects based on observational 
data, with the latter typically being more subject to bias due to confounders.  

Counterfactuals and Causal Analysis 

A third facet of Pearl’s SCM framework is his use of counterfactual conceptualizations of 
causality. A counterfactual is a subjunctive conditional in which the antecedents of an 
event are assumed to be known but for purposes of argument are treated as false. For 
example, one might ponder the counterfactual, “If the United States had not dropped 
atomic bombs on Japan, then the Japanese would have surrendered at about roughly the 
same time they did.” In the context of an RET, consider the variable T, i.e., the 
assignment of a person to either the treatment or control condition when evaluating a 
program. For any given person who participated in the program, we can signify what his 
or her posttest Y score is. We might also ask what that person’s Y score would have been 
had s/he been assigned to the control condition. A counterfactual approach to causality 
conceptualizes causality as the difference between (a) the outcome value if an individual 
participates in the treatment condition, and (b) the outcome value if that same individual 
had participated in the control condition under the identical circumstances, that is  

True causal effect for individual i  =  Yi|(do(T=1)) - Yi|(do(T=0))       [8.8] 

where the subscripted i refers to the individual in question and Y is the score the 
individual obtained or would have obtained in the two conditions of T, respectively. We, 
of course, can never know the true causal effect for a person because people cannot 
simultaneously participate in both the treatment and control condition under truly 
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identical circumstances; we know the value of only one of the two terms on the right side 
of Equation 8.8. The counterfactual approach, in essence, requires us to think 
hypothetically and to be clever about how we use the counterfactual formulation to 
answer causal questions.7   

As an example of one workaround to a strict counterfactual approach, I might 
imagine a study that is conducted with a group of people in the intervention condition 
who are identical in all respects to the people in the control condition; if there is a person 
who has a certain set of characteristics in the treatment condition, there will be a 
corresponding person with those exact same characteristics in the control condition. In 
this case, although I cannot identify the counterfactually defined causal effect for a given 
individual, I can define the causal effect at the group level by calculating the average Y 
for those in the treatment group, E(Y|(do(T=1)), and subtracting from this value the 
average Y for those in the control group, E(Y|(do(T=0)). This yields what is known as the 
average causal effect (ACE): 

ACE of treatment effect on Y = E(Y|(do(T=1)) - E(Y|(do(T=0))   

     =  Y̅PROGRAM - Y̅CONTROL 

Having exactly identical people in both conditions is, of course, also not possible, but we 
can think of random assignment to conditions as a means of approximating this scenario. 
Here is the logic. Not every characteristic of a person matters for Y. For example, if Y is 
childhood depression, then hair style and shoe size likely are irrelevant to childhood 
depression. Given this, if a child in the treatment condition differs from a child in the 
control condition on these two attributes, this does not matter. Suppose characteristics 
C1, C2 and C3 matter with respect to depression. With random assignment, if there is an 
individual in the intervention condition who has values C1=c1, C2 = c2 and C3 = c3, 
there likely is (but it is not certain) a corresponding individual in the control condition 
with the same values of C1=c1, C2 = c2 and C3 = c3. In this sense, our idealized study is 
approximated by the use of randomization to treatment conditions. 

 Another strategy that researchers use to approximate the idealized experiment 
when estimating an average causal effect is matching, either a priori or post hoc. In the a 
priori approach, we might yolk two individuals who have the same values on 
characteristics that matter (C1, C2 and C3), and then randomly assign one of them to the 
program condition and the other to the control condition. We then estimate average 

 
7 Pearl uses a different notation scheme for counterfactuals than what I use here. His notation is better for the many 
mathematical derivations and statistical points he makes about causal modeling. The notation I use works well for 
the simpler points I wish to make.  
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causal effects using the matched data. A post hoc variant of this strategy is propensity 
matching (Guo & Fraser, 2014; Leite, 2017), which I discuss in Chapter XX. 
 A third strategy researchers use to approximate the experimental ideal and that 
yields individual-level estimates of the counterfactual is to use a repeated measure design 
in which individuals are assessed on Y and the mediators at baseline, are then exposed to 
the intervention, and then the outcome and mediators are reassessed for the same 
individuals. Some form of change score for the outcome and the mediators is calculated 
for each individual and the change scores might be averaged to estimate the ACE. In this 
case, the baseline score is an imperfect indicator of what the person’s score on the 
outcome would be without the intervention and posttest score is an indicator of what the 
person’s score on the outcome would be with the intervention. Of course, there are a host 
of across-time confounds that make causal interpretation ambiguous, but the spirit of 
repeated measure contrasts can be conceptualized in terms of counterfactuals.  
 In RCTs and RETs, the focus usually is on average causal effects. Researchers use 
random assignment, matching, and repeated measure designs to produce estimates of 
average causal effects, often with counterfactual thinking in mind, either implicitly or 
explicitly. Traditional conceptions typically view causality in terms of (a) changes in X 
producing changes in Y, and (b) the idea that a cause must precede an effect in time. 
Counterfactual conceptions of causality formalize these conceptions.  
 There are critics of counterfactual causal concepts (see Dawid, 1999, 2000, 2002, 
2021, 2024; Russo, Wunsch, & Mouchart, 2011; Krieger & Smith, 2016; Hernán, 2005; 
Meehl, 1970). One objection is that because the framework relies on empirical 
impossibilities (e.g., being in a treatment while also simultaneously not being in a 
treatment), it is without empirical basis. Dawid (2007, p. 510) argues “there is no world, 
actual or conceivable, in which both variables could be observed together.”  

A second objection has been posed by Lewis (1979) who argues that 
“counterfactuals are infected with vagueness” (p. 457; see also Greenland, 2002). 
Consider the causal statement that education impacts health. The counterfactual asks 
what would happen for individuals with counterfactual values of low versus high 
education. Just what are the counterfactual values one should consider? What is “high” 
education and what is “low” education. Education has many possible values, such as an 
advanced degree from a prestigious university, attending a vocational school, a high 
school degree versus a GED equivalent, and so on. What is the “factual” and what is the 
“counterfactual?”  

A related set of objections focus on the case where the counterfactual involves 
continuous variables, such as reaction times to a computer task to measure implicit 
attitudes. If the outcome is discriminatory behavior and the mediator is implicit racial 
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attitudes, the effect of this mediator, M, on behavior, B, is expressed as the counterfactual 

Mediator effect on B = E(B|(M=m1) – E(B|(M=m2) 

where m1 is one value of implicit attitude and m2 is another value of an implicit attitude. 
In such cases, there are potentially hundreds of thousands of counterfactual values that 
can be specified, such as a reaction time response of m1 = 10.2ms versus m2 = 10.1ms, 
m1 = 11.1ms versus m2 = >11.2ms, and so on. Which values for m1 and m2 do we use in 
a counterfactual analysis? Counterfactuals are fine for cases of simple binary variables or 
variables with few values; they become difficult to work with when the variables 
involved are continuous.  
 Yet another objection to counterfactuals is that they sometimes assume context 
stability that is implausible. Suppose a researcher finds in a regression analysis that IQ is 
related to increased years of education. S/he forms a regression-based counterfactual that 
for a given high school dropout, if everything else that happened to the student remained 
exactly the same but the student’s IQ had been, say, 20 points higher, then the student 
would have advanced 4 grades more in school based on the observed coefficient in the 
regression analysis. Meehl (1970) argues that this counterfactual represents what is 
known in philosophy as a counter-nomological because it carries with it the requirement 
that well-established physical and/or psychological principles be violated. For example, 
Meehl argues that the counterfactual assumes the student’s parents, teachers, and peers 
will treat him or her exactly as they did when his or her IQ was 20 points lower, which he 
argues is not plausible. The counterfactual statement about IQ and education carries with 
it so many implausible contextual assumptions of constancy that the counterfactual itself 
is not meaningful given this ambiguity.     
 Finally, causality is a complex concept that philosophers have grappled with for 
decades. Critics argue that counterfactuals are too simplistic an approach to causality; 
that counterfactuals cannot fulfill the requirements of an adequate causality theory.  
 It is well beyond the scope of this book to delve into the merits and demerits of 
counterfactual conceptions of causality on a more philosophical level. I merely note here 
that the concept is not without controversy.   

Nonparametric Causal Analysis 

A final facet of SCM I mention is its emphasis on non-parametric modeling. Pearl (2009) 
uses the term non-parametric somewhat differently than in traditional statistics. The 
essence of his thinking is captured with reference to an equation that expresses a 
quantitative outcome, Y, as a linear function of two quantitative mediators, M1 and M2 
and a quantitative covariate C1, each measured on a 0 to 10 metric:   
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Y = α + β1 M1 + β2 M2 + β3 C1 + ε 

Pearl is not invested in such linear functions and instead expresses the relationship more 
generally as  

Y = 𝑓𝑓(M1, M2, C1, U)            

where 𝑓𝑓 means “is some function of” and U is the disturbance term that reflects all 
unmeasured independent influences on Y other than M1, M2 and C1, i.e., the ε in the 
above equation. The goal is to evolve approaches that either map the relevant function or 
that do not require function identification. For example, suppose I make the simplifying 
assumption that the mean of U is zero, i.e., that the net effect of all the positive and 
negative unmeasured independent influences on Y is zero because the positive influences 
cancel the negative influences. If I focus on average causal effects and if I have a large 
sample size, I can calculate the mean Y for any combination of M1, M2 and C1 that 
occurs in the data with reasonable frequency. I can then strategically compare predictor 
profiles with one another. I might calculate the mean of Y for people where M1 = 10, M2 
= 0 and C1 = 5 and also for people where M1 = 9 and M2 = 0 and C1 = 5. Note that the 
only difference between these two profiles is that M1 has been varied by one unit at the 
high end of its scale. I can examine how the mean of Y changes across these two 
“profiles.” In essence, Pearl advocates determining how the expectation of Y, namely 
E(Y), or some other summary statistic of Y, varies across substantively interesting 
predictor profiles but without tying one’s hands to a linear model nor by trying to find a 
function that links E(Y) to variations in X. In this sense, SCM pursues non-parametric 
causal modeling. This goal, to me, is often more aspirational than realistic given the 
complex models we work with coupled with small sample sizes in RETs, but significant 
advances are being made in this direction (see Chapter 15).  
 Most explications of SCM and of the causal mediation framework associated with it 
use binary variables when conveying their logic. This is because the frameworks can 
become somewhat messy or impractical when conditional continuous variables are 
involved unless one makes simplifying assumptions about the functions between 
variables. I can illustrate the challenges using the discretionary income example for the 
case of estimating the effect of budgeting knowledge on monthly discretionary income in 
a two mediator model where the mediators are budgeting knowledge and credit card 
knowledge and baseline income is a covariate to control for confounds. The effect of 
budgeting knowledge (Budgett2) on discretionary income (Incomet3) as a function of any 
two values of budgeting knowledge (x1 and x2) would be denoted as   
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Effect of M on Y = [E(Incomet3) | Budgett2 = x1, Creditt2 = x3, Incomet1 = x4]  - 
[E(Incomet3) | Budgett2 = x2, Creditt2 = x3, Incomet1 = x4] 

where Creditt2 is the second mediator that is held constant at a specific value (x3) as is the 
baseline income variable, Incomet1, at the value x4. That is, the effect is the mean posttest 
discretionary income when budget knowledge equals the value x1, credit card knowledge 
equals the value x3, and the baseline discretionary income equals the value x4 minus the 
mean posttest discretionary income when budget knowledge equals the value x2 and 
credit card knowledge and the baseline discretionary income are again equal to x3 and x4 
so as to hold them constant.  
 But what two values of budgeting knowledge do I use for x1 and x2 in this 
formulation? The budgeting knowledge scale ranges from 0 to 10 and in this particular 
data set, there are over 50 different values that occur between 0 and 10 (remember, this is 
a continuous variable whose untransformed scores ranged from 0 to 100). For a non-
parametric analysis, do I use an x1 score of 5.0 and compare it with an x2 score of 6.0? 
Or should I use x1 = 5.5 and x2 = 6.5? There are an unworkable number of score 
combinations for Budgett2 I could explore. I need some rationale that is not arbitrary for 
choosing them. I also need to specify values of x3 and x4 at which to hold the other 
mediator and covariate constant. There are over 50 different values of credit card 
knowledge and over 200 values of the baseline discretionary income in the data set. What 
particular combination of covariate values do I choose out of the thousands of possible 
combinations? Suppose I decide I will use the mean values for the other mediator and the 
covariate. The mean values in the data are x3 = 4.5 and x4 = $198, which is the mean 
baseline income rounded to the nearest integer. When I examined the data to isolate cases 
with the values of 4.5 and 198 so I could calculate the expected values of Incomet2 at my 
chosen values of x1 and x2, there were no such cases! I cannot execute the above 
equation using these values because they do not exist.   
 Clearly, a non-parametric analysis of the type envisioned by SCM is complex for 
continuous variables and we often need to deal with such complexity by imposing 
simplifying assumptions to make things manageable. One simplifying assumption is to 
assume linear relationships between the variables. I also might make simplifying 
assumptions about disturbance terms. Indeed, specifying assumptions such as these are 
exactly why we so often rely on linear regression in general; by making simplifying 
assumptions, we turn an unmanageably complex situation into a manageable one. And 
the fact is that this is what most applied scientists who use SCM end up doing when faced 
with continuous mediators and/or covariates, i.e., they make use of familiar linear or 
familiar non-linear regression methods that translate into straightforward versions of 
LISEM and that are assumption bound. Mind you, I am not critical of SCM researchers 
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who make such simplifying assumptions; they often are necessary. Nor am I critical of 
framing SCM as a non-parametric enterprise; it is a worthy goal and provides a way of 
thinking nonparametrically. However, the fact is that real-world applications of SCM to 
RETs can be challenging without the imposition of simplifying parametric assumptions 
and despite the lofty goals of a non-parametric SCM, practical applications typically 
require assumptions. In Chapter 15, I describe several non-parametric approaches that 
can be used in RETs and that are promising.             

Concluding Comments on SCM 

In sum, the SCM framework of Pearl is considered by many as a useful approach to the 
analysis of causal models. Its most noteworthy features are the use of DAGs to express 
models (see Chapter 2), the use of DAGS from which to derive causal equations, the 
introduction of do-operator notation, a reliance on counterfactual conceptions of 
causality, a system for expressing effects of interest using conditional probabilities and 
expectations, and its emphasis on “functionless” non-parametric modeling. The analysis 
of RETs has been impacted by Pearl’s work and I will draw on it in future chapters. 
 Counterfactual and potential outcome concepts that are core to SCM have gained 
increasing popularity in the social sciences. Dawid (2020) is somewhat critical of these 
approaches, arguing instead for embedding causality into traditional statistical and 
decision theories and rebranding the concept of causality into a form of “assisted decision 
making.” He finds the concepts of potential outcomes and counterfactuals to be 
unnecessary, obscure, overly complex, and potentially misleading. To illustrate his 
reasoning, suppose you have a headache and need to decide whether to take an aspirin. If 
we focus on the core outcome of headache relief, your task is to consider the consequences of 
two options in the choice set, (a) the likelihood of headache relief if you take the aspirin 
and (b) the likelihood of headache relief if you do not. Information that you can use to 
assist your choice is the distribution of headache relief for people who have taken aspirin 
(which I call P1) as compared to the distribution of headache relief for people who, say, 
take a placebo (which I call P0,). If you take the aspirin, Dawid argues, you become like 
(or exchangeable with) people in the treated group with the distribution P1. If you do not 
take the aspirin, you become like (or exchangeable with) people in the control group with 
the distribution P0. To assist your decision, you basically need to solve the statistical 
problem of whether P1 is greater than P0 from the collected data, i.e., to learn about P0 
and P1 with the assistance of available data from a scientific study. You then make your 
choice accordingly.  

Note that there is no need to invoke a counterfactual nor hypothetical potential 
outcomes (e.g., “what would have happened to a treated study individual if he or she had 
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not been treated?”). The average effect between the above two groups reflects the 
difference in expected outcomes for the two possible choices, simple as that. All we need, 
according to Dawid, is to invoke basic statistical and decision theory without getting 
encumbered by the baggage of counterfactuals. The above description, of course, is an 
oversimplification of Dawid’s arguments so I urge you to look at his work in more depth 
(Dawid, 2024, 2021, 2020, 2007, 2002, 2000, 1999) and, of course, the exchanges 
between him and the major proponents of counterfactual thinking (e.g., Robbins, Pearl). 
My own view is that although Dawid makes many excellent points, there are certain 
unique points of emphasis within the SCM framework that are useful and that make it 
worth considering. I elaborate on these in future chapters.   

CONCLUDING COMMENTS 

There is no one correct way to analyze RET data. In addition to traditional FISEM, there 
are many non-traditional ways for doing so, only some of which I have considered in this 
chapter (e.g., see penalized likelihood SEM by Huang et al., 2017; Huang, 2018; 
Jacobucci, 2017; Jacobucci, Grimm, & McArdle, 2016). A popular approach to SEM in 
some disciplines is known as partial least squares SEM or composite SEM (Hair et al., 
2018; Henseler, 2020). This approach has generated controversy to the point that editors 
of some journals have adopted a policy of desk-rejecting manuscripts that use it (Rönkkö 
et al., 2016). Given its controversial nature, I do not consider it in this book. I personally 
think the approach has a place in causal analysis of some forms but it also has significant 
limitations (Rönkkö et al., 2023). For a discussion of the approach by advocates, see 
Henselar (2020). For critiques of the method, see Rönkkö et al. (2016, 2023).   
 The present chapter introduced you to core concepts for a subset of alternatives to 
traditional SEM approaches for analyzing RETs. I like to explore RET data from multiple 
vantage points, which often requires using non-traditional approaches. By necessity, my 
treatment has been superficial. However, I develop the different strategies in more depth 
in future chapters.  
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APPENDIX A: ADDITIONAL BAYESIAN DIAGNOSTICS 

This appendix provides an overview of key concepts associated with Markov Chain 
Monte Carlo simulation (MCMC) with the idea of elaborating additional convergence 
diagnostics for it. In Bayesian analysis, posterior probability distributions allow you to 
make inferences about model parameters which means you want to have as good a 
mapping as possible of the posterior distribution. MCMC estimates the probability 
densities or likelihoods of randomly selected values from the posterior probability 
distribution. Sometimes it does so by making assumptions of distributional form (e.g., it 
is normally distributed) and other times it does so even when there is no known closed 
form method for accomplishing the task. The name MCMC combines two facets, (a) a 
Monte Carlo facet and (b) a Markov chain facet. The Monte Carlo facet refers to 
selecting random samples of values from the distribution. The Markov chain facet refers 
to the fact that the samples from the distribution are generated using a specialized 
sequential process; each selected sample is used as a stepping stone to generate the next 
sample, hence the term “chain.” The chain is such that while each new sampled value 
depends on the one before it, it does not depend on any of the previously sampled values 
prior to the one before it. It only relies on the prior one.  

I begin by characterizing MCMC fundamentals in somewhat intuitive terms using a 
simplified analogy with surfaces. My task is to describe the surface to you, or stated 
another way, draw a picture of it. Suppose the surface is lumpy with peaks and valleys 
that vary in their height. The goal of MCMC is to select sample locations from the 
surface but without knowing the height for any given location that is sampled and still be 
able to build a reasonable picture of what the surface looks like. The way MCMC 
achieves this is to ‘wander around’ the surface in ways that the amount of time spent in 
each location is proportional to the height of that location (although it may not be the 
exact height itself). If this “wandering process” is done carefully, then proportionality 
between the time spent in the different locations can be used to map the surface. For 
example, I  might spend twice as much time on a location on a hill that is 100 feet high 
(which I call Location A) as I do at a location that is 50 feet high (which I call location 
B). Note that I even if I do not know the absolute height of the two locations, I can still 
draw a reasonable picture if I know that one location is twice as high as the other 
location.  

One strategy I might use for surface mapping (called a Metropolis-Hastings 
algorithm) is as follows: Assume that at every (discrete) time-step I take on the surface 
during the wandering process, I decide on the next "proposed" location to go to and 
formally record its proportional height relative to my current location based on the time 
spent at that new location. The location I choose is a randomly selected distance from my 
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current location. If the proposed location is higher than where I am standing now, I 
record its proportional height relative to my current location in my notebook. If the 
proposed location is lower, then I formally record its proportional height into my 
notebook but only with probability p, where p is the ratio of the height of the proposed 
location to the height of my current location. For example, suppose the ratio is 0.20. I 
randomly select a number with decimals between 0 and 1 and if the number is .20 or less 
(the value of p), I move to the new location and formally record its value; otherwise I stay 
where I am. This strategy favors ascending rather than descending steps because I am 
more interested in generating samples around the peaks of the surface rather than the 
valleys. I keep a list of the locations I have been to at every time-step and after I repeat 
this process many times (say 500,000 times), I have estimates of the proportion of time 
spent at each part of the surface, and,, hence, their relative heights (e.g., I will have spent 
twice as much time at Location A than at Location B).   

There are different schemes for proposing new locations in the above analogy but 
the basic idea is to (1) pick a starting place on the surface, (2) pick a new proposed 
location; (3) determine how much higher or lower that location is compared to your 
current location; and (4) probabilistically stay where you are or move to that new location 
in a way that respects the goal of spending time proportional to the height of the location. 
You then repeat steps 2 to 4 many times until you have adequately mapped the surface. 
You then translate your results into a formal surface map. In SEM Bayesian analyses, the 
surface is analogous to a probability density. With most SEM models, the mapping 
process is more complicated than the above because multiple interdependent parameters 
(surfaces) are considered simultaneously/multivariately but the above provides a very 
rough sense of one particular algorithm class. Mplus often uses a process known as a 
Gibbs sampler which is a type of MCMC method.  

I now take the above characterization a bit further by applying it to hypothetical 
data to illustrate some more key concepts. Suppose I want to map the posterior 
probability distribution of a parameter that is the mean of a knowledge test, which I 
symbolize using the general parameter notation, θ. In Bayes modeling, this posterior 
distribution is a function of (a) the prior probability distribution I specify for θ and (b) the 
data that I collect in my study to provide perspectives about the likelihood that θ equals 
each of a set of different values given the data I have observed. The function follows the 
tenets of Bayes theorem, namely that the posterior probability is the product of the prior 
likelihood for the value of θ under consideration times the likelihood of that value of θ 
given the data. This product is, in turn, divided by a normalizing constant. I choose a 
starting value for θ, say 110 and then I apply the first iteration of a computational 
(wandering) algorithm to it. As I pursue this first iteration, I specify a proposal 
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distribution that defines the next “location” or θ value to be considered at the next step. 
Suppose I decide to use a normal distribution with a mean of zero and a standard 
deviation of 5 as my proposal distribution. This means the new proposal will be 110 (the 
last sample) plus a number randomly sampled from the proposal distribution. Note that 
the sampled value from the proposal distribution can be positive or negative. I calculate 
from the data in my study and the prior distribution an estimated probability density of 
the new proposed value and the probability density of the sample just prior to it. I then 
calculate the acceptance value or acceptance ratio as the ratio of the density for the new 
proposed value divided by the density of the prior sample. If the ratio is greater than 1, I 
accept the new proposal; otherwise I accept the new proposal with a probability equal to 
the acceptance ratio. If the new proposal is accepted, it becomes the next sample in the 
MCMC chain; otherwise the next sample is just a copy of the most recent sample. I then 
repeat this process for a large number of iterations, say, 1,000. 

A trace plot of the parameter shows the values of the sampled mean knowledge 
score at each of the 1,000 steps/iterations of the MCMC process. Here is the trace plot for 
a starting value of 110 on the left plot and a starting value of 300 on the right plot:      

 
 
In a trace plot, if you see a distinct, extended descending or ascending trend in the 
sampled values across the iterations, then this means that the MCMC process has not 
stabilized. A horizontal trend with seemingly random fluctuations about it suggests 
stabilization. For the above case, I constructed the data such that the true mean of the 
posterior distribution for the knowledge test is 100, the true standard deviation is 15, and 
the distribution is normal in form. You can see that with a reasonable choice of a starting 
value (a value of 110), stabilization around the mean occurs quickly whereas with a 
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suboptimal choice of a  starting value (an extreme value of 300), it takes time for the 
process to stabilize. Instability also can result from a poor choice of a proposal 
distribution that results in outlier values. Because of such properties, it is common 
practice when using MCMC to discard the initial iterations when estimating the 
probability densities of values in the posterior distribution. The discarded iterations are 
referred to as a burn-in phase. Iterations during burn-in are thought to not yet be 
representative of the target posterior distribution. It is like MCMC needs to "warm up" to 
reach a stable state before meaningful data processing begins. Mplus by default typically 
discards half of the MCMC iterations as burn-in.  
 Mplus uses an approach to MCMC estimation in which multiple separate MCMC 
chains are constructed from different starting points in the posterior distribution. 
Comparisons are then made between the sets of results as the MCMC process unfolds in 
each instance. Only when the results being produced from the different chains are 
sufficiently close to one another does Mplus determine that convergence has been 
achieved. Such agreement is what the PSR index discussed in the main text represents, 
namely a ratio of the between chain differences after taking into account within chain 
variability. A PSR of 1.00 indicates the different chains yield functionally the same 
results, suggesting convergence. Larger PSR values indicate otherwise. 
 Figure A.1 presents the resulting probability density plot from the above MCMC 
process applied to my hypothetical data for the knowledge test using 50,000 iterations 
with the known true probability density plot that I a priori defined overlaid on it in red. In 
practice, we never know the true probability densities so I can’t construct such a plot. 
However, I wanted to see how well the MCMC algorithm would capture the true 
probability densities in a Monte Carlo like simulation, hence Figure A.1. You can see 
there is close correspondence between the plots. This, of course, will not always occur 
because we must make a host of assumptions as part of the MCMC algorithm, per my 
above discussion. However, the MCMC approach at least seems to be a viable possibility.    
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FIGURE A.1. Estimated and true posterior probability distributions 

 One assumption I made when applying the MCMC strategy to estimate the above 
posterior probability densities is that the sampled values from the posterior distribution 
are independent. However, this assumption is likely violated if the current sampled value 
is impacted by the sampled value just prior to it, which is the case in MCMC simulations. 
This fact creates an autocorrelation between sampled parameter values that are close in 
sequence. One strategy to address this problem is called thinning. With thinning, we 
reduce the autocorrelation towards zero by only using the result for iterations that are 
spread out from one another, say, every second iteration or every third iteration in the 
MCMC process. The greater the distance between iterations, the less likely there will be 
autocorrelation between them. Autocorrelation generally will not be a problem if you 
have a large number of iterations, but if you decide you need to address it, then thinning 
is a strategy to do so. Mplus provides a thinning option.  
 I used Mplus to generate diagnostic plots for the discretionary income example 
described in the main text so you can gain an appreciation of the appearance of such plots 
within Mplus. I focus on the posterior distribution for the plot of the path coefficient for 
the effect of budgeting on discretionary income, whose value in the sample data was 
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estimated to be 44.155 (which is the median of the posterior distribution). Here is the 
trace plot for the MCMC process: 
 

 
 
Mplus worked with two separate chains in this case, one shown in blue and the other in 
red. There is considerable overlap between them. Note also they hover around the mean 
value of the coefficient . The trace plot appears reasonable. 
 Here is a plot for the autocorrelation that was present: 
 

 
     The red bars at each entry on the X axis extend upward or downwards from the 
centered zero line to reflect the degree of autocorrelation relative to that entry. The X axis 
shows the number of steps that separate the iterations, i.e., the degree of thinning. For 
example, the entry 5 indicates a case where every fifth iteration is used. The number 10 
indicates the autocorrelation when every 10th iteration is used. All of the autocorrelations 
in this plot were near zero, so thinning does not appear to be necessary.    
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 My characterization of the MCMC approach in this appendix is greatly 
oversimplified and more intuitive than jumping into the technical details. My intent is to 
provide you with a sense of some core concepts of MCMC estimation. Fortunately, 
Mplus does the heavy lifting for you in framing and executing the relevant MCMC 
analytics. In general, it is good practice to examine the diagnostics mentioned here when 
conducting Bayesian SEM.     
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APPENDIX B: MONTE CARLO CONFIDENCE INTERVALS 

The method of Monte Carlo confidence intervals can be applied to a single path or 
regression coefficient but it typically is applied to combinations of path coefficients from 
the same model. The coefficients can be combined in diverse ways to address a research 
question of interest. Three of the more common applications in RETs include (1) 
calculating significance tests and confidence intervals for total effects, (2) calculating 
significance tests and confidence intervals for omnibus indirect effects, and (3) 
calculating significance tests and confidence intervals for sequential mediation effects 
across time. I address each of these uses as well as others in future chapters; here I use a 
simple example of an omnibus indirect effect for a mediated path with two links in which 
path coefficients, a and b, are multiplied by each other per the traditional product 
coefficient method. Let a be the coefficient for the effect of the treatment on the mediator 
and b be the coefficient for the effect of the mediator on the outcome. Assume for now 
that I use OLS-based LISEM to estimate the coefficients in two separate regression 
equations, the regression of M on T and the regression of Y on M.  
 In theory, the target coefficients can be multiplied by one another, divided, squared 
or whatever as theoretically dictated by the research question. To explain the Monte 
Carlo confidence interval (MCCI) approach, it is useful to draw an analogy with 
bootstrapping. As discussed in Chapter 5, bootstrapping is a non-parametric method for 
empirically estimating the sampling distribution of a parameter, such as a product 
between two path coefficients. We select thousands of repeated samples from the original 
sample data of the same size as the original sample, but using sampling with replacement. 
Each of these repeated samples represents a bootstrap replicate. The parameter of interest 
is calculated in each of the thousands of replicates and the result is an empirical sampling 
distribution that supposedly reflects the true sampling distribution of the parameter. The 
empirical sampling distribution is then used to construct p values and confidence 
intervals for the target statistic. The MCCI approach also estimates a sampling 
distribution for a single coefficient or a multiplicative combination of statistics but it does 
not rely on bootstrap replicates. The MCCI method instead uses the estimated asymptotic 
covariance matrix (ACM) for the component coefficients of the expression of interest 
and, coupled with simplifying assumptions about the sampling distributions of each 
component coefficients, constructs an empirically estimated sampling distribution. 
Preacher and Selig (2012) use the following example for a parameter of the ratio of two 
means to convey the logic8:  

 
8 The asymptotic covariance matrix is also known as the coefficient covariance matrix, the Fisher information 
matrix, or sometimes the information matrix. The variances of it are the squared standard errors of the coefficients in 
the expression. The off diagonals are the covariances between the coefficients in their joint sampling distributions. 
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… a sampling distribution for the ratio of two independent means could be 
generated by first fitting a model to empirical data and obtaining point 
estimates and asymptotic variances for the means. Because…[the sampling 
distribution of means]… are asymptotically normal according to the 
Central Limit Theorem, a large number of random draws could be taken 
from a bivariate normal distribution of the means, each time creating the 
ratio 1 2* / *x xθ = , yielding a sampling distribution of the ratio. A CI can 
then be formed on the basis of this sampling distribution in the same way as 
bootstrap intervals. (p.83) 
 

The idea is that by assuming a bivariate normal distribution for the two means, and 
knowing the shape of the sampling distributions of each component part, one can 
construct a sampling distribution of the ratio of the means. For a product of coefficients 
to calculate an indirect effect, the MCCI method assumes the parameters a and b have a 
joint normal sampling distribution with parameter values supplied by the results of the 
fitted model equations.  
 I do not delve into the underlying mathematics of the approach because they are 
eloquently described in Tofighi and MacKinnon (2015) and Buckland (1984). 
Advantages of the MCCI method are that it is not computationally intense, it can be used 
with just summary data, and it can be used both in certain types of FISEM as well as 
LISEM contexts. I demonstrate such applications in future chapters. For the case of 
LISEM, if two coefficients are calculated in separate equations, then the covariance 
between the coefficients is set to zero. If the two coefficients come from different 
predictors in the same equation, then you must obtain the coefficient covariance from 
computer output to use in the MCCI calculations. See the video for the MCCI program on 
my website for calculating MCCIs using a concrete example. I include a document on the 
resources tab of my website (for Chapter 8) that explains how to find the asymptotic 
covariance matrix from computer output in Mplus, in the R programs lavaan, MIIVsem 
and lm, and in SPSS and STATA.  
 


