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INTRODUCTION  

In this chapter, I introduce the basics of structural equation modeling (SEM). There are 
many different versions of SEM, including full information SEM and limited information 
SEM and many variants within each of these types. In Chapter 8, I delve into these 
variants but in the current chapter, I focus on traditional full information estimation SEM. 
Some researchers make a distinction between path analysis and SEM, defining the 
former as models that have no latent variables; each construct is represented by a single  
measure. I personally find the distinction arbitrary. The phrase “structural equation 
modeling” implies we “model” a set of “equations” that specify “structural” or causal 
relationships between variables. This applies to both path analysis and models with latent 
variables. As well, path analytic models have latent variables and measurement models 
implied within them. A path analytic model with an observed measure consisting of a 
self-report of income assumes that the self-report is impacted by a latent construct of true 
income and that the measure has no measurement error (see Chapter 3). Path analytic 
models also include unmeasured latent variables in the form of disturbance terms. In this 
book, I will not make a distinction between path analysis and SEM. To me, they both 
represent SEM.  
 SEM is a complex method that can’t be adequately summarized in a single chapter. 
The current chapter is long and not well suited to reading in a single sitting. My emphasis 
is on describing core concepts including discussion of the concepts of 
covariance/correlation decompositions, model identification status, maximum likelihood 
estimation, global indices of model fit, localized fit indices, the inclusion of latent 
variables in causal models, making model revisions when faced with poor model fit, and  
comparing competing models in SEM. I recommend you roughly divide the chapter into 
thirds and read each third in a separate sitting. Useful references for learning more about 
SEM include the books by Bollen (1989), Brown (2015), Kaplan (2008), Kline (2023), 
Little (2013) and Schumacker and Lomax (2016). I introduce SEM using a highly 
simplified example outside the context of an RET. I do so for pedagogical purposes. 
Future chapters beginning with Chapter 11 apply SEM to RETs directly. 

THE BASICS OF SEM  

The general logic of SEM is as follows: 
 
1. We posit a causal model that we think may be operating in a given context, such as an 
RET 
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2. We specify the predictions the model makes about how the data that we collect to 
evaluate the model should pattern themselves 

3. We analyze the data to determine if they do indeed pattern themselves in the predicted 
fashion 

4. We reject the model if the data do not pattern themselves in the predicted ways. If the 
data pattern themselves as predicted by the model, our confidence in the viability of the 
model usually increases, depending on the quality of the research design we used. 

5. If the model proves to be consistent with the data, then we interpret the parameter 
estimates of the model to gain further insights into the phenomena we are studying. 
 
  Consider the model in Figure 7.1. The substantive focus of this model is on the 
relationship between the size of the family that a child grows up in and the child's 
intelligence. According to the model, family size influences the amount of time a parent 
can devote to each child; parents with a large number of children devote less time to each 
child than parents with few children. This decreased attention from the parent, in turn, is 
thought to negatively impact the intellectual development of the child. For the sake of 
pedagogy, set aside for now the problem of confounding and omitted variables. It turns 
out that the model in Figure 7.1 makes certain predictions about how the correlations or 
covariances between the three variables should pattern themselves. The question is, do 
the predicted correlations, in fact, pattern themselves in the way the model predicts. SEM 
addresses this question and the correspondence between data and model represents a test 
of model viability. 

Family 
Size (X3)

Time Spent with 
Child  (X2)

Child IQ  
(X1)

p23 p12

d2 d1

 

FIGURE 7.1. Example model of child IQ 

  In traditional SEM, a common practice is to label a causal path with a p and two 
subscripts. The first subscript indicates the variable number the path is directed at and the 
second number is the variable number the path emanates from. I adopt this notation when 
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explaining the logic of SEM because it is convenient for the proofs I present later. 
However, I deviate from it in future chapters for the sake of simplicity.  
  The model in Figure 7.1 can be translated into a set of linear equations. We need to 
perform such a translation in order to be specific about the model’s predictions about how 
the data should pattern themselves. The first step in the translation process is to identify 
the endogenous and exogenous variables in the influence diagram. An endogenous 
variable is a variable with at least one cause that is explicitly represented in the system, 
i.e., any variable with a straight causal arrow pointing directly to it. An exogenous 
variable is a variable with no represented causes in the system or no arrows pointing 
directly to it. In Figure 7.1, family size is an exogenous variable and time spent with the 
child and child intelligence are endogenous variables. The number of equations to be 
specified equals the number of endogenous variables. For Figure 7.1, there are two 
equations.1 
  To specify each equation, pick one of the endogenous variables and treat it as an 
outcome. Express it as a linear function of all variables that have an arrow pointing 
directly to it and then add a disturbance term. For the variable of child IQ, using 
traditional regression notation, I have 

X1 = a1 + b1 X2 + d1 

where a1 is the intercept, b1 is the regression coefficient and d1 is the disturbance term (I 
use sample notation here). For time spent with the child, the equation is: 

X2 = a2 + b2 X3 + d2 

  If I use the notation scheme mentioned earlier, the equations substitute ps for bs, but 
they represent the same thing, namely regression coefficients, like this: 

X1 = a1 + p12 X2 + d1 

X2 = a2 + p23 X3 + d2 

  To introduce the logic of SEM in ways that are somewhat easier to understand, I am 
going to work with the standardized equations rather than unstandardized equations. 
Thus, I standardize X1, X2, and X3 and turn them into Z scores. This allows me to 
develop the core logic of SEM using correlations rather than covariances, which will be 
simpler for many of you. Technically, the underlying statistical theory of SEM uses raw 

 
1 Technically, the equations that describe a full SEM model are more complex than my characterizations here and 
are best represented using matrix algebra (see Bollen, 1989). I simplify matters now for the sake of pedagogy.  
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scores and covariances but such data and statistics makes it more challenging to 
understand the general logic of SEM that I am going to present. Using standardized 
equations makes it easier to gain a general appreciation of the method. The two model 
equations expressed in standardized form are 

Z1 = p12 Z2 + d1 

Z2 = p23 Z3 + d2 

where Z1 is the standard score of intelligence, Z2 is the standard score of time spent with 
each child, Z3 is the standard score for family size, and d1 and d2 are the disturbance 
terms for these standardized equations.2 There is no intercept in these equations because 
intercepts are always equal to 0 in linear equations with fully standardized scores, a 
concept that is taught in introductory statistics.  
  Suppose I collect data on the three variables in the causal model in Figure 7.1 and I 
calculate a correlation matrix for the measures of them. Here is the correlation matrix that 
might result: 
 

 Family Size     Time Spent IQ 
 

Family Size         1.00         -.30        -.60    
Time Spent          -.30         1.00       0.30 
IQ                   -.60         0.30       1.00 

 The model in Figure 7.1 represents a theory about this correlational structure, i.e., it is 
thought to explain why the observed correlations pattern themselves as they do. 
According to the theory, intelligence and the amount of time that a parent spends with 
each individual child are correlated because the latter variable influences the former 
variable. Similarly, family size and the amount of time spent with a child are correlated 
because family size influences time spent with the child. As I stated, there are many 
confounds for these relationships, but I set those aside for now in the interest of 
exposition.  
  So, what are the predictions that the model makes about the values and patterning of 
the observed correlations? To specify this in a precise way, I need to decompose each 
correlation in the correlation matrix to express that correlation to be a function of the path 

 
2 Do not confuse these Z scores with my use of Z scores in Chapter 5 for probit analysis. In Chapter 5, the Z scores 
referred to scores in a cumulative standard normal distribution. Here they are traditional Z scores in which a mean is 
subtracted from person’s raw score and this result is divided by the standard deviation 
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coefficients in the model. This decomposition process is the heart of SEM and is what 
separates it from many other forms of statistical analysis. It is important that you 
understand this decomposition process conceptually. The actual decomposition 
mechanics are not difficult but the process involves numerous algebraic manipulations. 
Bear with me as I illustrate the procedure to you. In order to simplify my explanation, I 
am make some simplifying assumptions, almost all of which can be relaxed in real world 
applications: 
 
1. First, I assume there is no measurement error in the variables.  

2. Second, I assume all the relationships in the model are linear.  

3. Third, I assume the metrics of the variables have interval level properties.  

4. Fourth, I assume that a disturbance term is uncorrelated with the presumed 
determinants of the endogenous variable in the equation that generates the disturbance 
term. In the present case, d1 is assumed to be uncorrelated with X2 and d2 is assumed to 
be uncorrelated with X3.  

5. Finally, I assume the disturbances (d1 and d2) are uncorrelated.  
 
  To perform the decomposition of each correlation, I use a special formula for the 
correlation coefficient. You have undoubtedly encountered formulae for calculating a 
correlation in your introductory statistics texts but I use one that is not widely known. 
The formula illustrated for r23 from our example is: 

r23  =  (1/N) Σ Z2 Z3 

That is, I calculate a correlation between two variables by (1) standardizing each variable, 
(2) multiplying the two standardized scores for each individual, and then (3) averaging 
these products. Executing this formula will produce the exact same result as other 
formulae for correlations that you have encountered. 
  The decomposition process for r23 is summarized in Table 7.1. I explain each row of 
that table shortly. Here is a video link that talks you through the decomposition process if 
you prefer that form of learning (I recommend you watch the video as well as reading the 
text): SEM decomposition. [If you are not reading this pdf in a browser, then just left 
click on the link. If you are reading this pdf in Chrome, right click the link and choose to 
open the link in a new window; if reading it in Safari, hold down the command key while 
clicking the link. If reading a printed copy, see the video link on the Resources tab of my 
webpage for Chapter 7.]   

https://www.youtube.com/embed/oepWlbmAFgg
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Table 7.1: Decomposition of r23 
   
Row            Expression Principle Used 

   

  1 r23  =  (1/N) ∑ Z2 Z3   correlation formula 

  2       =  (1/N) Σ (p23 Z3 + d2) Z3 Substitution 

  3       =  (1/N) Σ (p23 Z3 Z3 + Z3 d2) a(b+c) = ab + ac 

  4       =  (1/N) [ Σ p23 Z3 Z3 + Σ Z3 d2 ]   ∑ (X + Z) =  ∑ X +  ∑ Z 

  5       =  (1/N)  Σ p23 Z3 Z3 + (1/N)  Σ Z3 d2   c (∑X + ∑Z) = c ∑ X + c ∑ Z 

  6       =  p23 (1/N) ∑ Z3 Z3 + (1/N) ∑ Z3 d2 ∑ c X = c ∑ X   

  7       =  (p23)(1.0) + 0 - 

  8       =  p23 - 

 
  Row 1 of Table 7.1 presents the prior formula for the correlation coefficient. Recall 
that according to the model in Figure 7.1, Z2 = p23 Z3 + d2. I can substitute the right-hand 
side of this equation for Z2 in the correlation formula, as follows (per row 2 of Table 7.1): 

r23  =  (1/N) Σ (p23 Z3 + d2) Z3 

  In row 3, I expand the product of (p23Z3 + d2)Z3 by multiplying each term within the 
parentheses by Z3, i.e., Z3 times p23Z3 and Z3 times d2. This yields 

r23  =  (1/N) Σ (p23 Z3 Z3 + Z3 d2) 

  There is a rule for summations in algebra that states that  

Σ (X + Y) = Σ X +  Σ Y     

I invoke this rule for the term Σ (p23 Z3 Z3 + Z3 d2) to obtain the expression in row 4 that 
splits up the summation into two summations: 

r23  =  (1/N) [ Σ p23 Z3 Z3 + Σ Z3 d2 ] 

        Another summation rule is that for a constant, c, 

c (Σ X +  Σ Y) = c Σ X +  c Σ Y         

 I use this rule in row 5 to multiply each of the summation terms in the expression [ Σ p23 
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Z3 Z3 + Σ Z3 d2 ] by 1/N, yielding 

 (1/N) Σ p23 Z3 Z3 + (1/N) Σ Z3 d2 

  Yet another summation rule is that if c is a constant then 

Σ c X =  c Σ X     

I invoke this rule in row 6 to bring p23 outside of the summation because p23 is a constant: 

r23  =  p23 (1/N) Σ Z3 Z3 + (1/N) Σ Z3 d2 

The above equation is noteworthy in several respects. First, note that the expression (1/N) 
Σ Z3 Z3 in it is the formula for a correlation coefficient and, in this case, it is the 
correlation of Z3 with itself. It must equal 1.0. Also, the expression (1/N) Σ Z3 d2 is a 
correlation between Z3 and d2, which must be zero given the assumptions I made at the 
outset. This yields  the following (see rows 7 and 8 of Table 7.1): 

r23  =  (p23)(1.0) + 0  

r23  =  p23 

  According to the decomposition exercise, the correlation between Z2 and Z3 for this 
model is simply the path coefficient, p23. This is not particularly earth shaking and 
underscores a well-known statistical fact; in bivariate regression, the standardized 
regression coefficient for the regression of one variable on another equals the value of the 
correlation coefficient. If I conduct a comparable decomposition for r12, the result would 
be similar, namely I would find that r12 = p21 because this path also is focused on a  
bivariate relationship. I can now re-draw the influence diagram but  substitute into it the 
values of the (standardized) path coefficients taken from the observed correlation matrix 
because the path coefficients equal the correlations. I do so in Figure 7.2. 

Family 
Size (X3)

Time Spent with 
Child (X2)

Child IQ 
(X1)

-0.30 0.30

d2 d1

 

  FIGURE 7.2. Path model with standardized values 



                                                                                                                 Traditional SEM 9 
 

 
 

  The significance tests for the path coefficients in this case are simply the 
significance tests for the correlation coefficients. As is well known, one minus the 
squared correlation is the proportion of unexplained variance, so I can further fill out the 
influence diagram with values for the variances for the disturbance terms, which I do in 
Figure 7.3. Family size accounts for 9% of the variation in the time parents spend with a 
child (with 91% of the variance being due to other factors) and the amount of time a 
parent spends with a child accounts for 9% of the variation in the child IQ. 

Family 
Size (X3)

Time Spent with 
Child (X2)

Child IQ 
(X1)

-0.30 0.30

.91 .91

 

FIGURE 7.3. Model with disturbance values 

  None of the above is very insightful beyond what we do in traditional statistics. The 
unique logic of SEM becomes more apparent when I perform the same decompositional 
analysis but now focused on the correlation between Z1 and Z3. Everything I am about to 
do I have already illustrated in the prior decomposition; there is nothing new here. Let’s 
go through the decomposition. The correlation is 

r13  =  (1/N) Σ Z1 Z3  

According to Figure 7.1, Z1 = p12 Z2 + d1. I therefore substitute the right-hand side of this 
equation for Z1 into the formula: 

r13  =  (1/N) Σ (p12 Z2 + d1) Z3 

I next expand the product of Z3 times (p12Z2 + d1), so that 

r13  =  (1/N) Σ (p12 Z2 Z3 + Z3 d1) 

Next, I break the above summation into two summations and apply (1/N) to each one: 

r13  =  (1/N) Σ p12 Z2 Z3 + (1/N) Σ Z3 d1 

and because p12 is a constant, I bring it to the left of the summation  
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r13  =  p12 (1/N) Σ Z2 Z3 + (1/N) Σ Z3 d1 

Note that the expression (1/N) Σ Z2 Z3 in the above equation is the formula for a 
correlation coefficient and in this case it is the correlation of Z2 and Z3. As shown above, 
the correlation between Z2 and Z3 equals p23. The expression (1/N) Σ Z3 d1 also is a 
correlation in this case between Z3 and d1, which is zero, by assumption. This yields 

r13  =  (p12)(r23) + 0  =  (p12)(p23) 

  Based on this equation, if the underlying causal model in Figure 7.1 is correct, r13 
should equal the product of p12 and p23. Because I know the estimated values of these 
path coefficients (see Figure 7.3), I can multiply the two path coefficients to obtain a 
prediction of what the correlation r13 should be assuming the model in Figure 7.1 is 
correct. The values of p12 and p23 are 0.30 and -.30, respectively, and the product of these 
two coefficients is -.09. According to the model in Figure 7.1, the correlation between 
family size and IQ should be -.09. However, when I examine the observed correlation 
between these two variables that occurred in the data, the correlation is -0.60. The 
discrepancy between the predicted and observed correlation is large and this calls the 
model into question. The data are not patterning themselves as the model predicts. 
  This is a simplified example, but it conveys the basic logic of SEM. The researcher 
specifies a conceptual model that s/he believes can account for the variances and 
covariances among a set of observed variables. This model is translated into a set of 
linear equations. A decomposition analysis is performed on each variance/covariance, 
similar to what I did above. SEM software derives values for the path coefficients in the 
model (a process I comment more on shortly) and then calculates from these values and 
the decomposition analyses the predicted variances and covariances by the causal model 
under consideration. We then compare the predicted variances and covariances with the 
observed variances and covariances in the data. If the predicted values are close to the 
observed values, then the model is said to be consistent with the data (note: the model is 
not proven; it is merely consistent with the data) and our confidence in the model’s 
viability increases. If the predicted values deviate substantially from the observed values, 
the model is rejected as viable.  
  Table 7.2 presents the observed correlation matrix for the current example (repeated 
from earlier), the predicted correlation matrix based on the model (via the decomposition 
analyses), and the difference between the two matrices, where each cell of the predicted 
matrix has been subtracted from the corresponding cell of the observed matrix. This latter 
matrix is called a residual matrix. A perfect fitting model will yield a residual matrix 
that has all zeros in it, i.e., it will be a zero matrix. 
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Table 7.2: Predicted, Observed and Residual Correlations 
 
Observed Matrix              Predicted Matrix              Residual Matrix 
 
1.00    -.30    -.60             1.00    -.30    -.09             0.00    0.00   -0.51  
-.30    1.00    0.30             -.30    1.00    0.30            0.00    0.00    0.00  
-.60    0.30    1.00             -.09    0.30    1.00           -0.51    0.00    0.00  

          If a model fits the data well and is judged to be consistent with the data, then 
researchers often interpret the estimated path coefficients in the model. The path 
coefficients are interpreted like regression coefficients in a linear model because, after all, 
they are regression coefficients. In the present case, I would not interpret the path 
coefficients because the model was a poor fitting model given the non-zero character of 
the residual matrix. It makes no sense to conclude that a model is inconsistent with the 
data and then to interpret the parameter estimates for that bad fitting model.  
 In sum, one property that separates SEM from traditional regression modeling is 
that it translates a causal model into a set of equations and then evaluates the viability of 
the causal model by comparing the predictions the model makes about the patterning of 
data with the actual patterns of data that occur. In traditional regression, one simply 
assumes that the regression model one tests is correct and calculates and interprets the 
regression coefficients for the model without testing model viability. SEM takes the 
analysis a step further by allowing us to test the viability of a casual model. To be sure, 
we can never prove causality from correlational data nor prove that the model is correct. 
But we can use correlational data to evaluate if a causal model accurately predicts data 
patterns and in that sense, gain perspectives on the viability of the causal model.  
 You will see in future chapters many other advantages of SEM over traditional 
regression methods, which is why I like to use SEM for the analysis of RETs. To be sure, 
there are challenges that one encounters in using SEM, but in the final analysis, it is a 
powerful method for analyzing RETs and conducting program evaluations. The 
remainder of this book illustrates this fact. Although the decomposition analyses I 
outlined above seem cumbersome, SEM computer software does all decompositional 
analyses for you automatically and it also produces predicted versus observed 
correlations and covariances for most models. It also generates summary indices of the 
degree of fit between model predictions and the observed data, which I consider below. 
 For completeness, let’s examine a few additional examples of predictions that 
different models make based on SEM decomposition analyses. Consider the model 
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Variable 2

Variable 1

  

Variable 3

d2 d3

p21 p31

 

Decomposition analysis of this model shows that the model predicts that r23 = p21 
times p31 when the path coefficients are standardized. If the standardized p21 = 0.50 and 
p31 = .20, what should r23 equal for this model to be viable? Suppose you found in your 
data that p21 and p31 had these values and that r23 equals 0.50. What would you conclude?  
    For the model  
 

Variable 2

Variable 1   

Variable 3

d2 d3

p21

p32

Variable 4

p41

d4  
     

decomposition analysis shows the correlation between variables 3 and 4 should equal  p21 
times p32 times p41 for the standardized path coefficients. If the standardized values are 
p21 = 0.20 and p32 = .20, and p41 = .50, what should r34 equal? Suppose the correlation r34 
equals 0.02. What would you conclude?  

I now discuss numerous qualifications and elaborations of the core SEM logic.   

TAUTOLOGICAL PREDICTED AND OBSERVED COVARIANCES 

Inspection of Table 7.2 reveals some subtleties in the logic of comparing predicted and 
observed covariance matrices in SEM. On the one hand, we test the viability of a model 
by examining how well it reproduces the covariance/correlation matrix between the 
observed variables from the path coefficients in the model. However, we also use the 
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covariance/correlation matrix to derive the values of the path coefficients. This can 
sometimes leads to cases where perfect prediction of a correlation or covariance is 
guaranteed because it is a mathematical tautology with the path coefficient(s). For 
example, I found in our decomposition of correlations in the family size and IQ example 
that r23 equals p23. In this case, the "prediction" of r23 from p23 is tautological; perfect 
"prediction" of the correlation from the path coefficient is guaranteed because, after all, I 
defined the values of the path coefficient and the correlation coefficient as being the same 
Stated another way, I am telling you the value of the path coefficient is the value of the 
correlation coefficient and then asking you to think I have done something meaningful by 
predicting the value of the correlation coefficient from the path coefficient.     
  Such a tautology, however, was not true for r13. This correlation, according to the 
model, should equal p12 p23 and I found that the product of the two estimated path 
coefficients did not predict the observed value of r13 well. In short, some of the variances 
and covariances will be perfectly reproducible because of mathematical regularities and 
tautologies within the theoretical system but this may not be true of other variances and 
covariances in the model. Only in the latter case are comparisons between predicted and 
observed values meaningful as formal tests of model viability.  
  Sometimes a theorist may specify a causal model to evaluate in which every 
observed variance and covariance is perfectly predictable because of rampant 
mathematical dependencies and tautologies in the model. Such models are said to be just-
identified and these models cannot be evaluated by comparing predicted and observed 
correlations/covariances because it is mathematically guaranteed that the predicted and 
observed correlations will be identical. Another term sometimes used for a just-identified 
model is a saturated model. These models are not testable by virtue of traditional SEM 
logic. We need to use specialized methods for testing just identified models and I discuss 
these strategies in future chapters (as well as below).  
  Other models that might be specified by a theorist will have at least one variance or 
covariance/correlation that is not a mathematical tautology vis-a-vis the underlying path 
coefficients. These models are said to be over-identified. Over-identified models can be 
meaningfully tested by comparing predicted and observed covariances because there is at 
least one variance or covariance that is not guaranteed to be perfectly reproduced by the 
underlying mathematics. The model in Figure 7.1 is an example of an over-identified 
because the correlation r13 is not guaranteed to be perfectly reproduced relative to the 
path coefficients in the model; the model can be disconfirmed if the observed value of r13 
is discrepant from the value of p12 p23. And in this case, the model was disconfirmed.  
  There also are situations where a model is under-identified. This occurs when a 
theorist specifies a model for which there is no unique solution for the path coefficients 
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and an infinite number of possible values exist for the path coefficients, all of which 
result in perfect reproduction of the observed variances and covariances. Such models 
cannot be uniquely tested in SEM and are problematic more generally because we do not 
know which of the many solutions that perfectly reproduce the correlation matrix to use. 
It is analogous to the problem in algebra where you are given the equation 6 = a + b and 
asked to specify the single, correct values of a and b that satisfy the equation. There are 
an infinite set of “correct” values for a and b and we do not know which ones to choose. 
If your model is under-identified, it turns out there are strategies you can use to still gain 
perspectives on the viability of the model, but they are tricky. I discuss these strategies in 
Chapter X.   
  An important step in applying SEM is to know if the model you are working with is 
just identified, over-identified, or under-identified. Most SEM software, including Mplus 
(the featured software in this book), perform identification checks and will inform you of 
the identification status of your model. You then adjust your model evaluation strategy 
accordingly.  
  As some examples of identification status, here is an influence diagram for a model 
that is over-identified (I omit disturbance terms to avoid clutter): 

MX Y
pMX pYM

 

The variable X is assumed to influence the outcome Y through the mediator M. 
Decomposition analysis finds that the correlation between X and Y should equal pYM 
times pMX, which is not tautological. Given there is at least one non-tautological 
correlation in this model, the model is said to be over-identified. Note that within this 
model, the correlation between rMY is tautological because the pYM path is set equal to this 
correlation. The same is true for the relationship between rTM and pMT. By contrast, a 
meaningful comparison in this model is between the predicted and observed 
covariances/correlations of rXY.  
  To provide an obvious example of a just identified model, consider an 
unrealistically simple two variable model that states that the number of hours studied for 
a test impacts one’s test performance: 
 

Hours Performance
pPH  

 
Suppose I obtain a measure of both of these variables and find a correlation of 0.30 
between them. This correlation also is my estimate of the path coefficient pPH. If you ask 
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me what evidence I have that this model is valid, I might answer that it is valid because 
the path coefficient perfectly reproduces the correlation between two variables. Of 
course, this is meaningless because I defined the path coefficient as the correlation. The 
model is just identified model and such a model “test” is meaningless. To be sure, the fact 
that the number of hours studied and test performance are correlated 0.30 is indeed 
consistent with my predictions and this is model affirmative. However, the fact that the 
path coefficient perfectly reproduces the observed correlation is in this case irrelevant.  
  Here is an influence diagram for another model that is just-identified: 
 

M

X

Y

pMX

pYM

pYX

 
 
This model has two endogenous variables and, hence, two linear equations: 

Y = a1 + pYM M + pYX X + d1 

M = a2 + pYMT X + d2 
 
To test this model, I need to conduct two regressions, one for each of the above 
equations. Note that for this  model every variable is connected to every other variable by 
a direct causal arrow. This usually is a recipe for a just-identified model. If I applied SEM 
to this model, I would find a zero residual matrix. However, such a model test is not 
meaningful because the mathematics of this model are such that it is guaranteed I will 
perfectly reproduce every observed correlation in the data.  
  Here is an influence diagram for an under-identified model applied to cross 
sectional data, i.e., measures of depression and alcohol use taken at the same time: 

Depression (D) Alcohol Use (A)
pA,D

pD,A

 

This model has only two variables in it, depression and alcohol use. The model asserts 
that depression and alcohol use measured at a given point in time are correlated because 
of two causal dynamics that have played themselves out prior to the assessment of the 
variables: (1) depression has increased the tendency for people to drink excessively and 
(2) drinking excessively has caused people to become depressed. There are two 
endogenous variables in this model, hence two equations that capture its essence: 
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Alcohol Use = a1 + pA,D Depression + d1 

Depression = a2 + pD,A Alcohol Use + d2 
 
It turns out that a decomposition of rA,D would show that it equals pA,D times pD,A. The 
problem is that there are an infinite number of pairs of values of the two path coefficients 
that will perfectly reproduce rA,D. If rA,D (and hence rD,A) equals 0.24, then one possible 
set of path values that will perfectly reproduce this correlation is pA,D = 0.8 and pA,D = 
0.30. Another possible set of coefficient values that will perfectly reproduce 0.24 is pA,D 
= 0.60 and pD,A = 0.40. Yet another possible set of coefficient values that will perfectly 
reproduce 0.24 is pA,D = 0.70 and pD,A = 0.34. The model is under-identified in that there 
are many possible solutions and we have no idea which solution to choose. By contrast, 
for the just-identified models presented above, there is only one set of path coefficient 
values that will perfectly reproduce the observed covariance/correlation matrix despite 
the fact that the model estimation is guaranteed to produce a zero residual matrix. This is 
what makes those models just identified. It turns out I can augment the above under-
identified model with additional variables to make it just identified or over-identified but 
how I do so is a topic for a different chapter.      

MAXIMUM LIKELIHOOD ESTIMATION 

Another way that SEM differs from traditional regression is the way in which it estimates 
the values of the intercepts and the path coefficients for the equations comprising the 
model. Consider the following model for an RET design where T is a dummy variable for 
the treatment condition, M1, M2 and M3 are mediators that the program targets, and Y is 
the outcome that is thought to be influenced by the three mediators:  

T Y

M1

M2

M3

pYM2pM2T

d1

d2

d3

d4
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This model has four endogenous variables and can be captured in four equations: 
 
M1 = a1 + pM1T T + d1 

M2 = a2 + pM2T T + d2 

M3 = a3 + pM3T T + d3 

Y = a4 + pYM1 M1 + pYM2 M2 + pYM3 M3 + d4 
 
In traditional regression frameworks, we use OLS to estimate values of the 
path/regression coefficients by conducting, in this case, four separate regression analyses, 
one for each equation. The path/regression coefficients are obtained one regression 
equation at a time. In contrast to this approach, full information SEM estimates the values 
of the path coefficients for all four equations simultaneously in a single analysis. This 
multivariate rather than piecewise approach to coefficient estimation can yield more 
efficient estimates of the path coefficients and it also lends itself well to global tests of 
model fit, as discussed below.  
  Traditional regression analyses select values for coefficients in a given equation by 
minimizing the sum of the squared differences between the predicted and observed scores 
for individuals in the sample (called the ordinary least squares criterion). Full 
information SEM, by contrast, uses algorithms to select path coefficient values that yield 
the closest possible correspondence between the predicted and the observed covariance 
matrices thereby taking into account all the model equations simultaneously. This is a 
different statistical orientation to coefficient estimation than traditional OLS regression 
although the results of the two frameworks often will be quite similar.  
  The full information SEM algorithms for selecting coefficient values use a “trial 
and error” process, also called an iterative process. An initial set of values for all the path 
coefficients is specified and then used to derive a predicted covariance matrix from the 
decomposition analyses. If the predicted and observed covariances are highly discrepant, 
then a different set of values for the path coefficients is tried to see if the prior 
correspondence can be improved upon. Then another set of values is tried, each time with 
the idea of improving model fit as one iterates through different sets of values for the path 
coefficients. The choice of values to use on a given iteration is not random. Rather, it is a 
very intelligent search process that quickly zeros in on the values that will produce the 
best possible correspondence between the predicted and observed covariances given the 
model. Once it is determined that the best possible correspondence has been achieved, the 
iterative process stops. The solution is said to have converged.  
  Minimizing the disparity between the predicted and observed covariances requires 
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that we have a quantitative index of the degree of correspondence or “fit” between the 
predicted and observed covariance matrices that we seek to minimize during the iteration 
process. There are many candidates for such indices. For example, we could find path 
values that minimize the sum of the absolute values of the cells of the residual matrix. 
Alternatively, we could derive path values that minimize the sum of the square of the 
elements of the residual matrix. Statisticians have found it useful to minimize what is 
known as a maximum likelihood criterion that is defined in SEM using matrix algebra as: 

FML  =  ln |∑'|  -  ln |∑|  +  trace[(∑)(∑'-1)] -  k 

where ∑ is the observed covariance matrix, ∑' is the predicted covariance matrix by the 
model, k is the number of variables in the covariance matrix, ln is the natural log function 
and |  | signifies the determinant of the matrix between the two bars.3  This criterion is 
sometimes called the maximum likelihood fit function or the maximum likelihood 
discrepancy function. Although it appears formidable, it actually is straightforward if 
one knows matrix algebra (if you do not, you can skip the remainder of this paragraph 
and just accept the fact that it is a viable fit criterion). Consider the case where there is 
perfect model fit and ∑' equals ∑. In this case, the determinant of ∑ will equal the 
determinant of ∑' and the difference between the logs of these determinants in the first 
part of the right-hand side of the equation will equal 0. Similarly, if ∑ = ∑', then (∑)(∑'-1) 
in the equation is equivalent to (∑)(∑-1). In matrix algebra, any matrix multiplied by its 
inverse yields an identity matrix, which is a matrix that has the same number of rows and 
columns of the matrix being operated on but with all 1s in the diagonal and all zeros in 
the off-diagonal. The trace function says to sum the diagonal elements, the result of 
which, for a perfect fitting model, will be the sum of the diagonal elements of an identity 
matrix, the value of which must be k. Subtracting k from this value yields zero. Thus, 
when there is perfect model fit, FML equals zero. As model fit to the data becomes worse, 
values of FML become larger. 
  The reason statisticians prefer to minimize FML as compared with other fit functions 
is that FML has many useful statistical properties. Specifically, it is possible to use the 
final value of FML that results after the solution converges during the iteration process in 
the sample to calculate estimated standard errors for each path coefficient in the model 
and to perform significance tests for the path coefficients. FML also can be used to define 
a variety of intuitive indices to evaluate overall model fit. I discuss these indices shortly. 
  Although FML has many desirable statistical properties, there are scenarios where it 
is ill-behaved (I elaborate some of these scenarios below). When this occurs, different 

 
3 The determinant of a covariance matrix results from a complex set of operations that yield an index of multivariate 
variability. See Namboodiri (1984).  



                                                                                                                 Traditional SEM 19 
 

 
 

minimization criteria typically are used by statisticians. Alternative fit criteria include 
unweighted least squares and weighted least squares, among others. Unweighted least 
squares minimizes the sum of the squared residuals in the residual matrix. Weighted least 
squares also minimizes the sum of the squared residuals in the residual matrix, but it 
gives an empirically determined weight to each squared residual before summing the 
residuals into an overall index. Thus, in weighted least squares, some squared residuals 
are given more weight than others. I generally do not use FML. Instead, I use a robust 
variation of it based on Huber-White estimation principles, as detailed later. See the 
resources page on my website for different fit functions options offered by Mplus, the 
SEM software I use in this book.  

GLOBAL INDICES OF MODEL FIT 

Because interpretation of FML is not intuitive, statisticians have developed additional  
indices of the correspondence between the predicted and observed covariance matrices to 
make it easier to evaluate a hypothesized model. These global fit indices give us a sense 
of how well a model fares in reproducing the observed correlations and covariances 
separate from FML. Over 30 such indices have been proposed and there is little agreement 
as to which index is best. In this section, I discuss the more popular indices.  
  When characterizing the fit between model predictions and data, there are three 
classes of fit indices that are often used. One class measures absolute fit by comparing in 
various ways the predicted versus observed variances and covariances. A second class 
uses absolute fit but includes a penalty function for lack of model parsimony. One can 
always improve fit by including additional paths in the model to the point where perfect 
fit is virtually guaranteed because the model becomes just-identified. The second class of 
indices penalizes this practice. The third class of fit indices compares the absolute fit of 
the model to a competing or alternative model that is either a priori specified or imposed 
arbitrarily on the data.  
  I now discuss exemplars of fit from each category. The current wisdom is that 
evaluation of data-model correspondence should use at least one fit index from each 
class. If good correspondence is suggested across diverse indices, then one has increased 
confidence in model viability. If the different fit indices provide different conclusions 
about model viability, then caution is warranted. This classification of indices may be 
different than other categorizations you encounter in the literature. One can get into 
endless debates about how the indices should be parceled, but in the final analysis, you 
want to work with multiple indices that view model-data correspondence from different 
perspectives. 
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The Chi Square Test of Fit 

In the first category, one index of model-data fit proposed early in the evolution of SEM 
is what is called the chi square fit index or the chi square statistic. This is simply the 
sample value of FML at the final step of the iterative process (which I symbolize as F̂ML) 
times N-1, where N is the sample size. The chi square statistic is symbolized by χ2 (some 
researchers use the letter T). When the F̂ML is zero, the chi square index will be zero and 
perfect fit exists in the sample; there is no disparity between the predicted and observed 
covariance matrices. As F̂ML increases in value, so does the chi square index, everything 
else being equal.  
  The magnitude of the chi square index per se lacks intuitive interpretation for most 
researchers, so, instead, they rely on a significance test associated with it. This test 
evaluates the null hypothesis that there is perfect fit between the predicted and observed 
covariances in the population, i.e., that the population residual matrix is all zeros versus 
an alternative hypothesis that the population residual matrix is not all zeros. Statisticians 
have shown that under the assumption of multivariate normality among observed 
variables in the model and with reasonably large sample sizes, the product of F̂ML times 
N-1 has a chi square sampling distribution. The degrees of freedom for the sampling 
distribution varies depending on the number of observed variances, covariances, and 
means available for estimating parameters and the number of estimated parameters, but 
the value is routinely reported by SEM software and need not concern us now.  
  As an example, for a study that has k = 5 observed variables, there are a total of 
(0.5)(k)(k+1) = 15 variances and covariances in the data. These statistics might be used to 
estimate a model that has 7 free parameters. The model degrees of freedom is 15-7 = 8. If 
the model also estimates means and intercepts, then the sample means are brought into 
the mix. Once the degrees of freedom are known, one can compute a p value to evaluate 
the null and alternative hypotheses for the chi square test. If the chi square test is 
statistically significant (p < 0.05), then the null hypothesis of perfect model fit in the 
population is rejected and the model is called into question. If the chi square is 
statistically non-significant, then there may or may not be perfect model fit in the 
population. Given this, a model is often said to be viable if it yields a statistically non-
significant chi square test, but even if this is the case, it does not mean the model is the 
correct population model; the test may lack statistical power to detect misspecification or 
an alternative causal structure may account for the data equally well.  
  Based on the above, the chi square index serves two functions. First, it is an index 
of fit between model predictions and data, albeit one that many researchers find difficult 
to interpret. The larger the value, the worse the fit, everything else being equal. Second, it 
is an omnibus model test that informs you, with assumptions, if the null hypothesis of a 
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population zero residual matrix can be rejected. For the family size-child IQ example, the 
chi square statistic for the model was 37.70, p < 0.05. This suggests an unsatisfactory 
model in terms of global model fit.    
  The chi square index and its associated test of significance have been criticized on 
several grounds. First, the statistic is not always chi square distributed for purposes of 
testing statistical significance, such as when sample sizes are small or for some forms of 
non-normal data. In such cases, the p values for it may not be accurate. I discuss in 
Chapter 28 attempts to re-scale the chi square statistic to be better behaved with small 
samples but there still remains the problem of low power for small sample sizes. Second, 
the p value associated with the chi square statistic tends to decrease with large sample 
sizes for models whose deviations from zero in the population residual matrix might be 
trivial. This can lead researchers to giving too much weight to trivial model-data 
disparities when evaluating a model. Relatedly, some scientists are uncomfortable with 
the idea that a model is considered viable only if it perfectly fits the population data. The 
argument is that reasonable models may not fit the population data perfectly but that such 
models might still be useful approximations to the true underlying dynamics and, hence, 
worthy of consideration i.e., they are good enough. Bollen (1989) frames the argument 
this way: “In virtually all cases we do not expect to have a completely accurate 
description of reality….The assumption that we have identified the exact process 
generating the data would not be accepted. Yet the chi-square test derives from a 
comparison of the hypothesized model to a model of perfect fit. A perfect fit may be an 
inappropriate standard, and a high chi-square estimate may indicate what we already 
know – that the null hypothesis holds approximately, not perfectly.”  
  My own view is that the chi square test has shortcomings but that a statistically 
significant chi square test (under reasonable conditions that conform to a valid test) 
constitutes a red flag that informs you that you need to dig deeper into model-data 
correspondence because something might be amiss. Perhaps after doing so, you will 
conclude that the magnitude and nature of the disparity from a zero residual matrix is 
substantively non-consequential and declare the data are reasonably model consistent. Or 
perhaps not. In the final analysis, however, we need to be cautious about dismissing red 
flags of ill fit without further probing and, given ill-fit, making a good case for why it is 
ignorable if you decide to move forward with the model anyway. 

 The Standardized Root Mean Square Residual 

Another global fit index in the first category is called the standardized root mean squared 
residual, or more simply, the standardized RMR. The standardized RMR is an index 
that roughly reflects the average absolute discrepancy between predicted and observed 
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correlations. A standardized RMR value of 0.10 suggests, roughly, that the predicted and 
observed correlations deviate from each other by 0.10 correlation units, on average. The 
smaller the value of the standardized RMR, the better the model-data fit, with the 
smallest possible value being zero. Technically, the SRMR is not the same as the average 
absolute disparity between the predicted and observed correlations, which is known as 
the correlation root mean squared residual or CRMR (Bollen, 1989). I  explain the 
difference between the two indices in the Appendix, but they often are close in value.  
  The standardized RMR in sample data is a biased estimator of the population 
standardized RMR; it tends to underestimate it over the long run (Kenny, 2018; Maydeu-
Olivares, 2017a; Maydeu-Olivares, Shi & Rosseel, 2017). The bias is more pronounced 
for small N and smaller model degrees of freedom. If your N is large and your degrees of 
freedom are large, the bias is likely minimal. Maydeu-Olivares (2017a) suggested a bias 
correction for the SRMR and a method for calculating confidence intervals and  
significance tests for it (see also Maydeu-Olivares et al., 2017; Pavlov, Shi & Maydeu-
Olivares, 2021). The approach is implemented in lavaan (see option lavResiduals) but not 
Mplus. For a discussion of the use of the SRMR statistic in Mplus, see Asparouhov and 
Muthén  (2018). Asparouhov and Muthén  (2018) recommend caution when using SRMR 
for N < 200. Some researchers suggest the SRMR should be at less than 0.05 as a fit 
standard while others suggest 0.08. These are rough rules of thumb that sometimes work 
well and other times not.      
  One problem with the standardized RMR and the CRMR is that they can, at times, 
paint what I think is a deceptively positive picture of the average disparity between 
predicted and observed correlations. The indices include in their calculation disparities 
that are true tests of model fit because they are not tautologically determined as well as 
disparities that are tautological and guaranteed to be zero. Inclusion of the latter drive the 
indices downward. I think a more accurate model test is to focus on the average absolute 
disparity between the predicted and observed values for non-tautological disparities only. 
My website has a program that allows you to do this, called generalized RMR.  For the 
family size-IQ example, the standardized RMR as reported on Mplus output was 0.19, 
which includes both the tautological and non-tautological parameters. Compare this with 
the absolute disparity between the predicted and observed correlations for the one non-
tautological comparison in the model. It was 0.51, which is quite a bit larger than 0.19. 

The Root Mean Square of Approximation 

In the second class of fit indices (absolute fit with penalty functions), the most commonly 
reported index is the root mean square error of approximation (RMSEA) and the test 
of close fit associated with it. The RMSEA (Steiger & Lind, 1980; Browne &  Cudek, 
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1993) is formally defined in the population as 

ε  =  (F0 / df )1/2                      [7.1] 

where F0 is a generic discrepancy function reflecting disparities between the predicted 
and observed covariances and df is the degrees of freedom associated with the 
discrepancy function.4 The population FML is typically used as F0, so that ε is defined as 

ε  =  (FML / df )1/2 

where FML is the population value of the maximum likelihood fit function. Conceptually, 
ε reflects the lack of fit per degree of freedom because FML is divided by the model df. 
The larger the value of ε, the more ill fit in the model per degree of freedom. 
  The above formula is the population representation of the RMSEA. In sample data, 
the computational formula for estimating the population RMSEA is  

RMSEA  =  [ ((χ2 / df) - 1)  / (N-1) ] 1/2 

where χ2 is the sample value of FML multiplied by (N-1). This formula includes a 
correction factor to adjust for the fact that the sample FML is a biased estimator of the 
population FML. The smallest value a sample RMSEA can take is 0 (if it is less than 0, it 
is set to zero). It rarely exceeds 1.00 but it can be greater than 1.00. The presence of FML 
in the defining formula for the RMSEA makes it difficult to interpret on an intuitive 
level. In general, the smaller the value of the RMSEA, the better the global fit between 
the model and data everything else being equal. More parsimonious models have larger 
degrees of freedom, so the presence of df in the equation acts indirectly as a penalty 
function for lack of parsimony. James Steiger, who proposed the first variant of the 
RMSEA), argues that the RMSEA can roughly be thought of as a type of (standardized) 
root mean square residual somewhat analogous to the SRMR but now with a penalty 
function attached to it (see Steiger’s SEPATH manual in TIBCO, 2020; see also Kline 
2023). This is a reasonable way of thinking about the RMSEA index in some contexts 
(e.g., for simple models in which the correlations between variables are small to moderate 
in size) but there are scenarios (e.g., large correlations between variables in complex 
models) where such an interpretation becomes dubious (see Steiger, 2000; Saris et al., 
2009; Marsh et al., 2004; Savalei, 2012).     
  Browne and Cudek (1993) suggest that, as a rough rule of thumb, RMSEA 
population values less than 0.08 reflect adequate model fit, values less than 0.05 imply 
good model fit, and values less than 0.01 represent excellent fit. These values have 

 
4 Raising a quantity to the ½ is the same as taking the square root of it. 
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become “rules of thumb” that often are invoked when evaluating model fit. However, 
based on extensive simulation work, Chen et al. (2008) concluded that “any effort to 
identify universal cutoff points for the RMSEA is not supported and should not be 
pursued as a single way of assessing model fit” (see also the simulations by Savalei, 
2012). I revisit this point below when I suggest a weight of the evidence perspective for 
model evaluation.  
  Browne and Cudek (1993) argue that the p value for the chi square test of model fit 
is too stringent because it tests a null hypothesis of perfect model fit. Framed in terms of 
the RMSEA index that uses FML, the traditional chi square test essentially evaluates the 
following null and alternative null hypotheses: 

H0: ε = 0 

H1: ε > 0 

Browne and Cudek (1993) devised an inferential test for a "close" fitting population 
model rather than a perfectly fitting model, where “close” is defined as a population 
RMSEA value of 0.05 or less. The underlying idea is that sometimes a model applied to 
population data may not perfectly reproduce the observed population covariance matrix, 
but it might come very close to doing so, close enough that the model can still provide 
useful insights into the phenomena being studied. It is analogous to me telling you the 
distance between the cities of Los Angeles and New York using a new measuring device 
and being off by 1 inch. Technically, the device is inaccurate. But the degree of error is 
so small that it functionally does not matter. In the Browne and Cudek approach using 
RMSEAs, the null and alternative hypotheses for the test of close fit are 

H0: ε ≤ 0.05 

H1: ε > 0.05 

where ε is the population value of the RMSEA (do not confuse the 0.05 in the above 
expressions with p values; they are RMSEA population values). Just like the chi square 
test yields a p value for the null hypothesis test of perfect fit, the test of close fit also 
yields a p value but now for a null hypothesis of a close fit. If the p value associated with 
the test of close fit is non-significant (p  > 0.05), then this is consistent with (but does not 
prove the presence of) a close fitting model in the population as defined by an RMSEA of 
0.05 or less. A statistically significant p value for the test of close fit (p < 0.05) leads one 
to reject the null hypothesis that ε ≤ 0.05 and one concludes the population model does 
not yield a close fit to the population data. 
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  As an example, suppose when evaluating an RET model, I apply the traditional chi 
square test and find a statistically significant p value for it, p < 0.05. This might lead me 
to reject the viability of the model because it does not perfectly reproduce the population 
covariance matrix. I might also evaluate the test of close fit and find that the p value for it 
is statistically non-significant (p > 0.05). This means that the model could be close fitting, 
so perhaps we should not reject it even though it does not perfectly reproduce the 
population covariance matrix.  
  By contrast, suppose that both the chi square test and the test of close fit yield p 
values less than 0.05 leading both tests to reject their respective null hypotheses. This 
would suggest the RET model neither perfectly accounts for the population covariance 
matrix nor does it even come close (as defined by a population RMSEA < 0.05) to 
accurately predicting the population covariance matrix. I might therefore reject the 
model. 
  A problem with the above logic is that it assumes that an RMSEA of 0.05 is a 
reasonable standard for defining a close fitting model. This is controversial which makes 
the test controversial. The RMSEA has other shortcomings as well. A property of the 
sample RMSEA is that it is sample size dependent, i.e., it generally decreases as sample 
size becomes larger, a property that critics object to (Kenny et al., 2015). Also, the impact 
of the model degrees of freedom on the value of the RMSEA sometimes is counter-
intuitive (Kenny et al., 2015). Kenny et al., (2015) suggest that if a model has more than 
4 degrees of freedom and N > 175, then the RMSEA likely is reasonable to consider as a 
model-data fit index. However, they caution against use of the index in conjunction with 
traditional rules of thumb when model df are less than 5 and with smaller N; the strategy 
tends to over-reject reasonably fitting models in such cases. For example, a 
nonsignificant chi square of 2.10 for a model with df=1 and N = 70 yields an RMSEA of 
0.13 despite a statistically non-significant chi square value.  
  A useful feature of the RMSEA is that methods have been developed for calculating 
confidence intervals for it. A 90% confidence interval often is evaluated given the one-
tailed nature of significance tests for the RMSEA (e.g., we evaluate the null hypothesis 
that ε is zero relative to the alternative hypothesis that ε > 0). MacCallum et al. (1996) 
proposed a third type of test of model-data fit that makes use of the RMSEA confidence 
interval called the test of not close fit. In this test, the model is rejected if the upper limit 
of the 90% confidence interval is less than a cutoff value. For example, if one defines an 
acceptable model as one that has a population RMSEA < 0.08, then one would evaluate if 
the upper limit of the sample RMSEA 90% confidence interval is less than 0.08. If it is, 
one is confident that the population RMSEA is indeed less than 0.08 and concludes the fit 
of the population model is acceptable. Maydeu-Olivares, Shi & Rosseel (2017), however, 
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raise concerns about the accuracy of RMSEA confidence intervals when models have a 
large number of variables (>30) and when the data are non-normal. They argue for the 
use of an unbiased SRMR statistic and its associated confidence intervals as a basis for 
testing model-data fit (but see Pavlov et al. 2021 for qualifications to their arguments).  
  For the family size-IQ example, the RMSEA was 0.60 and the test of close fit 
yielded a p value <0.05. These results raise questions about model adequacy. The 90% 
confidence interval for the RMSEA was 0.45 to 0.78. Because the upper limit of 0.78 is 
larger than a cutoff of 0.08, the test of not close fit also indicates a suspect model. 
  In sum, although the RMSEA is quite popular, its interpretation is not 
straightforward and can be impacted by incidental parameters and model complexity. In 
some cases, the RMSEA is roughly analogous to a standardized root mean residual with a 
penalty function but not always. Rules of thumb for evaluating model fit using RMSEA 
standards have been suggested, but they are controversial. A strength of the RMSEA is 
that it can be adapted to perform a test of close fit and one can calculate confidence 
intervals. However, I personally find it to be a somewhat difficult index to work with.        

The Comparative Fit Index 

In the third class of model-data fit indices, we compare two models. A popular index is 
called the comparative fit index (CFI). It compares model-data fit of the target model 
with the fit of a competing model known as the independence model or the null model 
(also sometimes called the baseline model). The independence model is defined 
somewhat differently depending on the model analyzed but it typically specifies a zero 
correlation between the exogenous-endogenous variables and between the various 
endogenous variables. Such a model is not realistic in most research situations, so one 
expects that a “good” model will be far more in accord with the data than the null model. 
The CFI ranges from 0 to 1.0, with larger values implying the target model fits the data 
better than the independence model. A CFI of 0.90 means, roughly, that the target model 
improved fit by 90% relative to the independence model, after adjusting for model 
complexity. A CFI of 0.70 means, roughly, the target model improved fit by 70% relative 
to the independence model. A rule of thumb often suggested is that models with a CFI 
less than 0.95 are suspect.  
  The formal definition of the CFI is as follows: Let dM =  the χ2 value for the target 
model minus its degrees of freedom and dI =  the χ2 value for the independence model 
minus its degrees of freedom. Then   

CFI  =  (dI – dM ) / dI            [7.2] 

If the index is greater than one, it is set to one. There are two noteworthy features of the 
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CFI. First, it incorporates a penalty function for model complexity by virtue of the 
inclusion of the model degrees of freedom into the formula. In this sense, it is a hybrid 
between indices that include penalty functions and those that focus on comparative fit. 
Second, the CFI reflects the improvement in fit of the model to data compared to the  
independence model (the numerator in the above equation) scaled against the lack of fit 
of the independence model (the denominator). This is a common way in the statistical 
literature of indexing improvement rates. For example, if a medication reduces the 
incidence of an adverse medical condition from 20% to 15%, then it is often said to have 
improved the incidence by (20-15)/20 = 0.25 or 25%.  
  It turns out that the CFI is affected by the size of the correlations between variables 
in the population. If all of the population correlations between variables are, in fact, low, 
then the independence model actually will fit the data well and the target model cannot 
improve much on it. Based on simulation work, Kenny et al. (2015) recommend not 
using the CFI if the RMSEA for the independence model is less than 0.16, because the 
CFI will be artificially low (but see van Laar and Braeken, 2021, for qualifications). I 
provide on my website a program for calculating the RMSEA value for the independence 
model (see the program called CI for RMSEA) so that Kenny’s recommendation can be 
applied, if desired. The CFI also can be impacted by the type of independence model 
used in its calculation; for details. See van Laar and Braeken (2021).    
  Parenthetically, there are two other indices of relative fit that use the same structure 
of Equation 7.2. One index is the Tucker-Lewis Index that defines the d in Equation 7.2 
as the chi square divided by its degrees of freedom rather than the chi square minus its 
degrees of freedom, while also subtracting 1 from the dI in the denominator. This 
formulation imposes a harsher penalty for model complexity than the CFI. Another index 
is the Bentler-Bonnet Index (also known as the Normed Fit Index) that omits the 
model degrees of freedom from Equation 7.2 and defines the respective d as each 
model’s chi square. As such, the BBI imposes no penalty function for model complexity.  
  For the family size-IQ example, the CFI was 0.32, which suggests ill model fit. 

Fit Based on Information Indices 

Another group of fit indices in the relative fit category is based in statistical information 
theory (Burnham & Anderson, 2004). The most well-known indices are the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion (BIC). You will not 
encounter these indices as frequently in the SEM literature because they are not well 
suited to characterizing fit of a single model. However, they are viable when formally 
comparing one model to another model. I consider them later in the chapter.  
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Summary of Global Fit Indices 

In sum, a model that yields a statistically non-significant chi square statistic, a small 
standardized RMR value (say, less than 0.05), a small RMSEA value (say, less than 
0.08), a non-significant test of close fit, and a large CFI value (say, greater than 0.95) is 
likely - but not guaranteed - to be a reasonable fitting model to the data. Meeting these 
standards does not make a model “correct” because (a) the rules of thumb associated with 
most of the fit indices are context dependent, and (b) other models might account for the 
data equally well or better (Hayduk, 2014). Rather, at a global level, a pattern of results 
along the above lines is suggestive that the model is reasonably consistent with the data. 
All of the fit indices have weaknesses and one needs to take these into account when 
evaluating a model. For example, Browne et al. (2002) describe cases where models 
provide relatively good fit to data but yield large chi squares and unfavorable global fit 
indices. McNeish, An, and Hancock (2017) describe scenarios where global fit 
evaluations of different types of measurement models can be misleading. The work of 
Brown et al., McNeish et al., and others underscores that there is more to evaluating the 
viability of a model than just examining global fit indices and global tests of fit. 
  Some methodologists argue that model evaluation should give the greatest weight to 
the chi square test of fit because otherwise one can declare a misspecified model as 
reasonable. The other global fit indices, the argument goes, start with the premise that 
some degree of misfit between model and data is “permissible,” but how much misfit is 
permissible is subject to debate and context dependent. Hayduk et al. (2007) object to the 
use of rules of thumb for the RMSEA, CFI, and SRMR for declaring a model as viable 
arguing that researchers need to be sensitive to any model-data disparities that arise in 
empirical evaluations. Such disparities should be explored and resolved, such as through 
the use of the localized fit indices that I describe below. To be sure, one might conclude 
that one or more disparity is chance induced or substantively trivial, but the point is that 
one usually needs to dig deeper beyond the global fit indices. I return to this issue below.  

LOCALIZED FIT INDICES 

In addition to global fit indices, SEM programs routinely provide feedback about model-
data fit for specific portions of the model. I call these focused indices of model fit or 
localized fit indices. These indices are important because they help pinpoint where ill fit 
is occurring within the broader model. One such statistic is called a modification index. 
A modification index is provided for path coefficients or other model parameters that 
have been fixed at some a priori value, usually zero, i.e., for paths or parameters omitted 
from the model. Consider our original model on family size and IQ that omitted the path 
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with the dashed arrow shown in Figure 7.4. A modification index for the dashed path tells 
us how much the overall chi square value for model fit will likely decrease if the path is 
not omitted (i.e., not fixed at zero) but rather included in the model. When I calculated 
the modification index for the dashed path coefficient using Mplus software (which I 
describe in more detail in Chapter 11), it equaled 31.40. In other words, adding this path 
to the model will decrease its “badness of fit” by approximately 31.40 chi square units. A 
modification index of approximately 4.0 or larger signifies that if the path is added to the 
model, its coefficient likely will be statistically significant (p < 0.05) were the model to 
be re-estimated with the path. In the family size and IQ model, it seems that the original 
model is deficient because it left out this crucial path. A good fitting model will not only 
yield satisfactory overall fit indices, but will also have modification indices that all are 
small. Stated another way, a good fitting model will not omit paths or parameters that 
should have been in the model. Most SEM software reports modification indices for a 
model to help evaluate that model at a localized level.   

Family 
Size (X3)

Time Spent with 
Child (X2)

Child IQ 
(X1)

p23 p12

d2 d1

 

FIGURE 7.4. Illustration of model modification 

  Just as chi square values can be impacted by sample size, such is the case for 
modification indices: The larger the sample size, the larger the (non-zero) modification 
index will be, everything else being equal. With large sample sizes, it is not uncommon to 
observe one or more modification indices larger than 4. Like the chi square statistic, I use 
modification indices greater than 4 as warnings that something in the model might be 
amiss. In these cases, I carefully think about the omitted parameter called to my attention 
by a large modification index and whether adding it to the model makes conceptual 
sense. I also keep in mind that models that have a large number of zero or fixed 
parameters can yield some values larger than 4 just by chance. I show you in Chapter 11 
how to take these considerations into account when applying SEM to RET models.   
 A second localized index of model-data fit is the standardized residual. A 
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standardized residual is the difference between a given covariance in the input data 
matrix and its predicted covariance by the model with this difference divided by the 
estimated standard error of the difference. It is analogous to a statistical test of the 
difference between the predicted and observed variances/covariances for each cell of the 
residual matrix, with the value of the standardized residual representing a z test of this 
difference. If an absolute value of z is larger than 1.96, this means the null hypothesis of a 
zero difference between them is rejected at p < 0.05. This ill fit can usually be traced 
back to the part of the causal model where the two variables reside, often to an omitted 
path or an omitted parameter in the model. As such, standardized residuals can be 
diagnostic of the same model error as modification indices. 
 For the family size-IQ  example, I repeat from Table 7.2 the observed correlations, 
the predicted correlations and the residual matrix that is the difference between the 
predicted and observed correlation matrices: 
 
Observed Matrix              Predicted Matrix              Residual Matrix 
 
1.00    -.30    -.60             1.00    -.30    -.09             0.00    0.00   -0.51  
-.30    1.00    0.30             -.30    1.00    0.30            0.00    0.00    0.00  
-.60    0.30    1.00             -.09    0.30    1.00           -0.51    0.00    0.00  
 
The standardized residual for Y and X1 (corresponding to a correlation disparity of -0.51) 
was -4.70. This value is a z ratio for a z test that compares the predicted and observed 
covariance for Y with X1. (Note that if the covariance difference between Y and X1 is 
statistically significant (and hence non-zero), then by definition the correlation difference 
also must be statistically different). Because the absolute value of 4.70 is greater than 
1.96, the p value for the null hypothesis of no difference between the predicted and 
observed covariance/correlation for Y with X1 is less than 0.05. There is a statistically 
significant difference between the predicted and observed covariance for this particular 
cell of the covariance matrix. In general, a good fitting model will yield small absolute 
standardized residuals for every variance and covariance in the model, less than 1.96 or, 
more roughly, 2.0. Most SEM software reports standardized residuals to assist model 
evaluation at the local level.   
 Standardized residuals also can be impacted by sample size and test multiplicity, 
so these properties must be considered as well. There are technical issues associated with 
the calculation of standardized residuals that I do not want to get side tracked on here. I 
discuss the issues in Chapter 11. For now, the above discussion captures the general spirit 
of these localized fit tests.    
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 A third approach to identifying ill fit at the level of specific parameters is to 
examine the values of the parameters yielded by the SEM software. If the parameters take 
on values that do not make statistical sense (e.g., correlations greater than 1.0, negative 
variances) or do not make substantive sense, then the model is questioned. 

EVALUATION OF PREDICTED PATHS 

Modification indices evaluate a model by exploring whether omitted paths/parameters 
are, in fact, empirically reasonable to exclude. The obverse of this localized fit criterion is 
that the paths that are included in the model are empirically supported by the data, i.e., 
are the paths that one predicts should be statistically significant, in fact, statistically 
significant. This criterion also is used for evaluating models that are just-identified 
because such models are assured perfect fit to the data via global and localized fit indices. 
If your model predicts a path should be statistically significant but it is not, then this 
questions the viability of your model as originally formulated.  

A WEIGHT-OF-THE-EVIDENCE PERSPECTIVE 

In sum, a reasonable model is one that not only is well behaved in terms of global tests 
and fit indices but also in terms of modification indices, standardized residuals, making 
both substantive and statistical sense, and where the hypothesized paths in the model are 
empirically affirmed through significance tests. I think of model evaluation using the 
concept of “weight of evidence” (Grace, 2020). I think about (1) the prior evidence for 
the model, (2) the fit of the model to the data as reflected by an appropriate chi square 
test (if available) and by examination of diverse global fit indices, (3) the fit of the model 
to the data as reflected by localized fit indices, (4) whether the a priori predicted paths of 
the model are statistically significant and non-trivial in magnitude, (5) whether the model 
makes substantive sense, and (6) given viable competing models, whether the model 
performs better than or as well as those competing models. I consider the weight of the 
evidence for the model across these criteria and then form a judgment about model 
viability.  
 Model evaluation is much more than examining if global model-data 
correspondence satisfies a set of rules of thumb. It is often subjective and requires 
evaluation of the model from multiple perspectives. Researchers disagree about how 
much weight to give to different criteria. The global fit indices reflect differences 
between an observed covariance matrix and the model-implied covariance matrix taking 
into account the multifaceted nature of these differences. Each index comes at the matter 
of describing disparities from different perspectives no one of which is “correct.” To me, 
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if conditions are such that the chi square statistic reasonably follows a chi square 
distribution, then a small p value associated with the chi square statistic, say less than 
0.05, suggests the tested model is misspecified and that the misspecification needs to be 
resolved (even if the resolution ultimately is to conclude that the misspecification is 
substantively trivial and ignorable). A large p value (p > 0.05), assuming the test is 
adequately powered, is taken by many researchers to suggest that the model is consistent 
with the data, but this is not enough to conclude favorably for the model. The closeness 
of the sample covariance matrix to the predicted covariance matrix also needs to be 
examined, ideally from different vantage points. The various global fit indices provide 
ways of documenting closeness which may (or may not) be revealing in a given context. 
Examination of local fit indices provide yet additional perspectives.      
 As noted, rules of thumb have been suggested for most of the global fit indices but 
the various rules of thumb are controversial because of their context dependent nature 
(Nye & Drasgow, 2011). West et al. (2023) argue that the rules of thumb can be viewed 
as rough guidelines for overall correspondence between the observed versus model 
implied covariances, but that they should not be reified. McNeish (2021, 2022, 2023) 
builds on the work of Milsap (2007, 2013) to propose context sensitive strategies for 
defining model rejection cutoffs of fit indices using localized Monte Carlo simulations, a 
strategy I discuss in Chapter 28. I provide an R program for the McNeish method on my 
website called Contextual Fit. McNeish’s method is intriguing but it also has 
shortcomings, including its reliance on multivariate normality assumptions and its 
atheoretical incorporation of specification error. More research on his approach is 
needed. In the final analysis, model evaluation is a complex enterprise that requires 
multiple considerations from multiple perspectives.  
 I conclude this section by summarizing the recommendations of Kline (2023) on 
evaluating model fit, which you may find helpful: 
 
1. If you use a simultaneous estimation method, examine the model chi-square with its 
degrees of freedom and p value. If the model fails the chi square (exact-fit) test by 
yielding a p value less than 0.05, then tentatively reject the model. Then, diagnose both 
the magnitude and possible sources of model misfit by inspecting local fit and other 
diagnostics. If there are slight discrepancies between the predicted and observed data that 
appear "inconsequential" or that are theoretically vacuous, rescind rejection but be sure 
you can explain and justify your decision. 

2. If the model passes the exact-fit test, you still have to inspect local fit to ensure model 
fit.  If local fit indicates non-trivial discrepancies, then reject the model. Among the local 
fit indices, examine tests of specific predicted versus obtained covariances and 
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modification indices. 

3. If you report values of approximate fit indexes, then include at a minimum the 
RMSEA, CFI, and SRMR. Do not try to justify retaining the model by depending solely 
on rule of thumb thresholds for these indices. Take a more comprehensive approach. 

4. If you respecify the initial model, explain the rationale for doing so and the diagnostics 
that led you to do so. 

5. Statistical evidence of model fit is not the sole factor in deciding whether to retain a 
model.  The model estimates must make sense and the model should not be “overfit.”  

6. If a model is retained, then you should explain why that model is preferred over viable, 
alternative models that explain the same data as well or nearly as well. If you cannot, then 
view these alternative models as viable. 

7. If no model is retained, then try to figure out why and address it in future research. 

LATENT VARIABLES IN SEM 

A strength of SEM is that it can accommodate latent variables and measurement theories. 
I introduced this idea in Chapter 3 and elaborate it here. Suppose I want to evaluate the 
causal influence of maternal depression on adolescent depression. I obtain three measures 
of maternal depression, (1) the CES-D measure, (2) the Beck measure, and (3) the PHQ-9 
measure, all well-known depression scales. I use the same three measures to assess 
depression in the adolescent child of the mother. Let MD1, MD2, and MD3 represent the 
three depression measures for the mother and AD1, AD2, and AD3 represent the three 
depression measures for the adolescent. Let LMD represent latent maternal depression 
and LAD represent latent adolescent depression. The causal model that I think underlies 
the correlations between the six measures is in Figure 7.5. I signify paths from the latent 
variable to the indicators with Ls to correspond to (unstandardized) factor loadings. Each 
measure has an error term associated with it. As noted in Chapter 3, this is an explicit 
recognition that the measures are not perfect and likely contain measurement error.  
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FIGURE 7.5. Latent variable model 

 The causal path from the latent maternal depression to latent adolescent depression 
is what I am most interested in substantively. The path coefficient that the SEM software 
estimates for this path will take into consideration all of the information available in the 
model and also will make adjustments for the modeled measurement error. Thus, in SEM 
we combine both a measurement theory and a structural theory into one encompassing 
model of simultaneous equations. This is a strength of SEM, but it also raises additional 
complexities. For example, if a measurement theory is misspecified, then the 
misspecification can lead to inaccurate inferences about the properties of the measures, 
such as their reliability and validity. Misspecification also can reverberate to other model 
parts and lead to faulty inferences about structural coefficients in the model.  
 In total, there are six observed measures in the above model, which yield a 6X6 
covariance matrix. My guiding hypothesis is that the patterning of the covariances in this 
matrix is due to the causal dynamics in Figure 7.5. I want to test this hypothesis and, if 
the model is supported by the data, examine the parameter estimates for the model. I test 
the model by comparing the observed covariance matrix with the predicted covariance 
matrix that is generated by a decompositional analysis of each of the covariances. The 
approach to the analysis is much the same as the simplified model in Figure 7.1. First, I 
translate the diagram into a set of linear equations using the same heuristics as before: (a) 
I identify all the endogenous variables and (b) I treat each endogenous variable as an 
outcome with predictors represented by all variables that have an arrow pointing directly 
to it. There are 7 endogenous variables, MD1, MD2, MD3, AD1, AD2, AD3 and LAD. 
LMD is an exogenous variable. Here are the equations for each of endogenous variable, 
using sample notation: 
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MD1 = a1 + L1 LMD + e1 

MD2 = a2 + L2 LMD + e2 

MD3 = a3 + L3 LMD + e3 

AD1 = a4 + L4 LAD + e4 

AD2 = a5 + L5 LAD + e5 

AD3 = a6 + L6 LAD + e6 

LAD = a7 + L7 LMD + e7 

 An unusual feature of each of these equations is that the predictor variables are 
unmeasured latent variables. Statisticians have creatively developed methods for 
estimating the path coefficients and error variances in these equations as well as a 
predicted covariance matrix for the observed measures to compare against the observed 
measure covariance matrix. SEM analysis of this type also yields the various indices of 
model fit describing the correspondence between the predicted and observed covariance 
matrices, namely the chi square test, the RMSEA, the CFI, and so on. As before, we 
compare the correspondence between the predicted and observed covariances using both 
global fit indices and focused fit indices. I illustrate all of this for an RET in Chapter 11. 

One matter that must be addressed before latent variable modeling can be pursued is 
the assignment a metric to the latent variables. On what metric is the latent mother 
depression scaled. Should scores on it range from 0 to 10, 0 to 100, 1 to 5, or what? 
Statisticians have made several suggestions for assigning a metric to a latent variable in 
SEM. The most common approach is to pass the metric of one of the indicators of the 
latent variable to the latent variable. Suppose the C-ESD scale, one of the indicators of 
maternal depression (MD1 in this case), is a measure that I am quite familiar with and 
whose metric is meaningful both to me and other researchers in my field. The CES-D 
ranges from 0 to 60 with most people having low scores on it, near 5 to 10. Higher scores 
indicate greater levels of depression. My desire is to score the maternal latent variable on 
this same metric, but to adjust it for measurement error. The strategy that statisticians use 
to accomplish this is to work with L1 in the above equations, namely the factor loading 
linking the maternal latent depression construct to the observed C-ESD measure, MD1. 
Instead of estimating L1 when evaluating the measurement model, I instead tell my SEM 
software to force L1 to equal 1.0 (i.e., I “fix” it at the value 1.0), so that the equation 
becomes 
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MD1 = a1 + 1.00 LMD + e1 

Note that, based on this assigned coefficient value, for every one unit that LMD changes, 
MD1 changes, on average, by 1.0 unit, i.e., the slope in the linear equation equals 1.0. 
This fixing of the loading for the observed C-ESD to 1.0 puts the two variables on a 
comparable metric. Think of it like currency exchanges. If one Euro equals one US dollar 
and if a company charges a $5 service fee to exchange currencies, then when I change 
dollars to Euros, the equation for how many Euros I get is 

Euros = -5.00 + 1.00 Dollars 

and if I change Euros to dollars, it is  

Dollars = -5.00 + 1.00 Euros 

Dollars and Euros are on the same metric by virtue of the slope of 1.0. A 10 unit increase 
in dollars given to the agency leads to a 10 unit increase in the Euros I receive and vice 
versa. When I force SEM software to set the slope for MD1 on LMD to 1.0, the metric of 
MD1 essentially is “passed” to LMD. This means I can interpret LMD as if it was scored 
like the C-ESD scale but with an adjustment for measurement error. 
 The measure used to define the metric of the latent variable by fixing its loading to 
1.0 is called the reference indicator or marker variable. We usually choose it based on 
how intuitive the metric is and its psychometric properties (reliability, validity). Although 
we lose information about the true value of L1 by passing the metric of the reference 
indicator to the latent variable, we gain that information back, somewhat, in other facets 
of the analysis, as I explain in Chapter 11. With the use of the reference indicator 
strategy, the metric of the maternal depression latent variable is essentially the same as 
that of the reference indicator. However, the variance of LMD will usually be smaller 
than the variance of MD1 because it is corrected for measurement error and absent the 
random noise that influences MD1 (see Kline, 2023, and Chapter 11).  
 Suppose I use this method to set the metric of LMD to that of the CES-D and I do 
the same for the metric of AD1 to set the LAD metric to that of the CES-D for 
adolescents. The regression coefficient for LAD onto LPD will then be as if I regressed 
the CES-D scale for adolescents, adjusted for measurement error, onto the CES-D scale 
for parents, adjusted for measurement error.5  

 
5 Some psychometricians conceptualize the variance of a measure as its metric. In this framework, the latent variable 
and the reference indicator do not strictly share a common metric because the latent variable variance is smaller by 
virtue of the elimination of measurement error variance from it. Nevertheless, it still is reasonable to think of the 
latent variable metric as roughly mapping onto the scaling of the reference indicator and interpreting it accordingly.   
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 There are two other methods that are sometimes used to define the metric of a latent 
variable. I do not delve into them here, but want to at least mention them. One strategy 
does not fix the value of one of the factor loadings, L, but instead fixes the variance of the 
latent variable in question to 1.0, much like a standardized score. This is called the fixed 
factor method. It has advantages in some modeling scenarios but it is not viable when 
the latent variable is endogenous and, hence, it is somewhat limited. This is because the 
variance of a latent endogenous variables depends, in part, on the variances of the 
variables in the model that are specified as determinants of it and this must be taken into 
account accordingly. A third method for defining the metric of a latent variable is called 
effects coding. Effects coding requires that all indicators of a latent variable be on the 
same metric, which often is unrealistic. For details about this method, see Little, Siegers, 
and Card (2006). Most researchers use the reference indictor approach, ideally with 
metrics that are meaningful, and that is what I will do in this book. For additional 
discussions of criteria to consider for choosing reference metrics, see Bollen et al. (2022). 
 In sum, a strength of SEM is that it can model latent variables to  allow us to take 
into account measurement error when estimating causal relationships. This is not true of 
traditional regression methods. I illustrate how to model latent variables for an RET in 
Chapter 11. For now, I merely want to establish that latent variables can be modeled and 
to introduce you to the need to assign metrics to latent variables when doing so.     

THEORY REVISIONS BASED ON DATA 

If I fit an RET model to data I have collected for purposes of program evaluation but I 
obtain poor model fit, what do I do next? There is controversy about how to deal with 
such scenarios. SEM is traditionally viewed as a confirmatory rather than exploratory 
enterprise: A theory is specified a priori, data are collected to test that theory, the theory 
makes predictions about how the data should pattern themselves, and then based on the 
results, the theory is either rejected or declared to be consistent with the data. Faced with 
a poor fitting model, analysts often examine model diagnostics within the data to identify 
the sources of ill fit. The idea is then to modify the model so that the revised theory is 
now consistent with the data. Inferences are then made accordingly. 

Modifying a model based on the same data used to test that model is seen by many 
as turning the SEM enterprise into an exploratory rather than a confirmatory approach. 
Critics argue that this is inappropriate because of its reliance on chance, among other 
things. They argue against any form of post hoc model revision and criticize those who 
engage in it. In the context of program evaluation, if I formulate an RET model that I 
think operates and I find a poor fitting model after an initial SEM analysis, I assure you 
that after spending a substantial sum of the funder’s money and expending considerable 
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effort to conduct the program evaluation, I am not going to walk away from the data and 
say “sorry, I can’t conclude anything because I obtained a poor model-data fit for my a 
priori model.” In program evaluation, a rigid conceptualization of SEM as a purely 
confirmatory enterprise is unrealistic.  
 I discuss in this section issues surrounding (a) adding paths or parameters post hoc 
to poor fitting models in order to improve model-data fit and (b) trimming non-significant 
paths of good fitting models to make them more parsimonious. In the SEM literature, 
forward searching for model revision starts with a poor-fitting model and attempts to 
find a “correct,” well-fitting model, usually by adding paths or parameters to it. 
Backward searching refers to the process of trying to obtain a more parsimonious model 
from an initially well-fitting model, usually by eliminating statistically non-significant 
paths, a process also known as theory trimming. MacCallum (1986) has suggested four 
ideals to increase the likelihood of model re-specifications that better capture the true 
population dynamics while retaining parsimony: (1) carefully think through one’s initial 
model, (2) invoke substantive considerations when making modifications, (3) use large 
sample sizes, and (4) continue forward searching even if a good fitting model is 
suggested by global fit indices. 

Forward Searching 

One of the most common approaches to forward searching is that of altering an ill-fitting 
model by adding parameters based on the inspection of modification indices. When faced 
with a modification index that is larger than 3.84 (or, more roughly, 4.00), a decision 
must be made about whether to add the flagged path/parameter. Obviously, if the 
parameter that is associated with a large modification index makes no conceptual sense, I 
would not include it in my model (but for exceptions, see Chapter XX). SEM software 
has no idea about the substantive content of my variables nor of the theory surrounding 
those variables. It focuses only on the mathematics of the numbers it is provided with. It 
is up to me to introduce common sense when evaluating a modification index and what to 
do about it if it is large. I like to think of a large modification index as identifying a 
potential “point of stress” in the model where the model is having difficulty accounting 
for an association between two variables. The model is asking me to add a path or a 
correlated disturbance between the variables to allow the model to better account for the 
association between them. However, I ultimately must decide the most appropriate way 
to address that point of stress. If the path or correlated disturbance makes conceptual 
sense, I might add it. If it does not, I usually would not.  
 Often there are dependencies in modification indices. Stated another way, there can 
be more than one way to resolve a point of stress in a model. Consider the RET model in 
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Figure 7.6. Suppose this model does not fit the data well. Upon inspection of 
modification indices, I might observe a large modification index for each of three 
parameters, (1) adding a causal path from Outcome 1 to Outcome 2, (2) adding a causal 
path from Outcome 2 to Outcome 1, and (3) adding a correlated disturbance between d2 
and d3. The overall message of these modification indices is that the model cannot 
account well for the association between Outcome 1 and Outcome 2; there is a point of 
stress surrounding the correlation between these two variables and this is evident by the 
modification indices suggesting different ways of reducing that stress. In essence, the 
modification indices tell me that if I add a parameter to more directly link these two 
variables in some way, the model will better account for the association between them. 
However, I must decide as a theorist which of the three modes of stress resolution is most 
appropriate.  

Outcome 1

Mediator

Outcome 2 d3

Treatment 
vs. Control

d1
d2

 

FIGURE 7.6. Model to illustrate modification index dependencies 

 Suppose the mediator in the above model is the motivation to lose weight, outcome 
1 is dieting, and outcome 2 is exercising. In its current form, the model implies that the 
correlation between dieting and exercise occurs for one and only one reason, namely they 
share the mediator of the motivation to lose weight as a common cause. To the extent 
there are other unmeasured common causes of dieting and exercise, and to the extent I 
can build a compelling case for their existence, then correlating the two disturbance terms 
is a viable modification to the model. For example, it might be the case that a person’s 
age impacts both dieting and exercise with younger adults eating more healthy and 
exercising more vigorously than older adults. However, if I did not measure age in my 
study and therefore do not formally include it in my model, then age still will be 
operating as part of d1 and part of d2, causing d1 and d2 to be correlated. If I add a 
correlation parameter between the two disturbances and re-estimate the model, the 
revised model should fit the data better and the other two modification indices likely will 
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reduce to zero or near-zero given modification index dependencies; I resolved the stress 
in fit by introducing correlated disturbances.  
 When making my model modification decision, I also need to explicitly consider 
the viability of the other ways of reducing the targeted “point of stress.” For example, I 
might ask if it is possible that dieting impacts exercise and, hence, whether a path from 
dieting to exercise should be added to the model. Without getting sidetracked into the 
relevant substantive literatures, there is indeed reason to believe that diet has both a 
positive influence on people exercising and a negative influence on people exercising, the 
net result of which is an overall zero effect. I might therefore rule out the possibility of 
adding a causal path from dieting to exercise, although I, of course, need to convince 
skeptics that this is the case. The same can be said for a causal path from exercise to 
dieting. As such, I might decide that the correlated disturbance re-specification is most 
viable as opposed to the other options available to me. Critics of model re-specification 
would argue that if a correlated disturbance between the two outcomes is so compelling, 
why did I not include it in the model in the first place. My response is either (a) that I 
should have included it and that I just failed to think matters through (my bad), or (b) I 
thought it was a possibility but was not sure so I decided to let the data inform me one 
way or the other through the analysis of modification indices post hoc.  
 Scenarios sometimes occur where two fully dependent modification indices both are 
theoretically defensible and that my model re-specification should include both of them. 
This would be the case in Figure 7.6 if I could theoretically justify both the existence of 
unmeasured common causes for the two outcomes (producing correlated disturbances) 
and the existence of a dominant causal path from dieting to exercise. In such cases, I must 
accept the fact that I cannot choose between the two re-specifications and must accept 
result ambiguity. This is because if I introduced both re-specifications, this portion of the 
model would be under-identified.   
 Given the existence of modification index dependencies, many analysts adopt the 
practice of adding one path/parameter at a time based on a large modification index and 
then re-running the SEM analysis after each addition to see if the other large modification 
indices diminish. Analysts often begin the respecification process using the modification 
index that is largest and that makes the most conceptual sense. This strategy has 
shortcomings. One shortcoming is analogous to those that arise with stepwise regression 
where the order in which variables are entered into an equation can affect the search 
process for adding later predictors. Analogously, the order in which parameters with large 
modification indices are addressed can impact evaluations of later omitted paths to 
include or parameters to unconstrain if such constraints have been imposed. MacCallum 
(1986) and others (e.g., Silvia  & MacCallum, 1988; Steiger, 1989) have shown that 
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automated model corrections based on adding paths with the largest modification indices 
larger than 4.0 on successive steps but without regard to substantive meaning can be 
problematic. The bottom line is that there is no simple, rule-based way of re-specifying a 
model. You must bring common sense to bear and ultimately, it is a subjective judgment. 
In the RET examples in Chapters 11 and onward, we will encounter large modification 
indices during the modeling process and I will develop in more depth strategies for 
dealing with and contextualizing them.  

Modification Indices and the Expected Parameter Change Index 

In addition to modification indices, most SEM software reports a statistic associated with 
each modification index called an expected parameter change (EPC). The EPC 
estimates what the value of the parameter would be in the model if we were indeed to add 
it. Software reports both an unstandardized and a fully standardized version of the EPC 
with most researchers focusing on the latter. In the family size and IQ model, I noted that 
the modification index for the path going directly from family size to IQ was 31.40. In 
my analysis of the data, the fully standardized EPC for this path was reported by Mplus 
to equal -0.56. This means that if I were to add a path going directly from family size to 
IQ, the standardized path coefficient for that path would be approximately -0.56 and its p 
value would be < 0.05 (by virtue of the modification index being > 4.0). The rationale for 
providing EPC in addition to the modification index is that the standardized EPC gives us 
a sense of the effect size of the path if you were to add it. If the EPC is small, then even if 
the modification index is > 4.0, we may choose not to add the path because it is trivial in 
magnitude. In the current instance, a standardized path coefficient of -.56 is fairly large, 
which makes for a stronger case for including the path.  

Saris et al. (2009) describe four situations for forward model re-specification when 
using MIs and fully standardized expected parameter changes (S-EPCs) together: 

 
1. When a large MI occurs with a large S-EPC value, one should consider estimating the 
parameter given it makes conceptual sense to do so. 

2. When a large MI occurs with a small S-EPC value, one should keep in mind the effects 
of sample size on MIs (larger sample sizes typically lead to larger MIs, everything else 
being equal) and consider not estimating the parameter if ignoring it is not critical to 
study conclusions.  

3. When a small MI occurs with a large S-EPC value, the decision is ambiguous and 
likely reflects a low power scenario due to a small sample size 
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4. When a small MI occurs with a small S-EPC value, one would not free the parameter 
unless theory demands 

The key question becomes what is a “large” MI and a “large” S-EPC to use as 
criteria. There is no simple answer to these questions as the standards can vary depending 
on the substantive domain and context. Some researchers suggest an absolute correlation 
of 0.10 (for correlated disturbances) and an absolute standardized regression coefficient 
of 0.10 (for path coefficients) as a standard for a large S-EPC. Whitaker (2012) explored 
the viability of a S-EPC cut-off value of 0.20 and found it performed better than the 
exclusive use of modification indices. However, she also found that using both the MI 
and S-EPC did not improve on the simpler S-EPC only cut-off approach using values of 
0.10. We simply do not have good guidance on this matter. 
 Parenthetically, for the case of correlated disturbances, the fully standardized EPC 
value refers to a correlation between the disturbances. For example, if the fully 
standardized EPC for a correlated disturbance is 0.20, this means that if I estimate the 
correlation, it likely will equal or be close to 0.20.  

To Make or Not to Make Model Modifications 

As noted, some theorists caution against making post-hoc modifications of any form 
based on forward selection. In addition to the post hoc character of the enterprise (which, 
as noted in Chapter 6, Bayesians do not necessarily find objectionable), the main 
argument against the practice goes something like this: The statistical theory that drives 
the calculation of confidence intervals and p values in SEM models is applicable to the 
case where a model is a priori specified. The statistical theory used to generate p values 
and confidence intervals does not take into account prior exploratory analyses on the 
same data. For example, the theory does not presume that an initial model “screening” 
step is first performed to identify and apply model modifications. By including such a 
“screening” step, one essentially alters the sampling distribution of the model parameters 
in unknown ways, which, in turn, can undermine the p values and confidence intervals 
that rely on knowledge about the shape of the sampling distribution. Thus, the argument 
goes, one can no longer interpret the p values and confidence interval because the 
screening step has altered the entire modeling enterprise driven by statistical theory. 
Critics of post hoc modifications also worry about overfitting one’s data in which we 
interpret a post hoc chance effect as meaningful when, in fact, it is nothing but random 
noise.  

The main argument in favor of making post hoc model modifications is that without 
them, the model may be misspecified which can undermine the accuracy of p values and 
confidence intervals anyway. A large modification index is suggestive of specification 
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error which, if ignored, can produce bias in parameter estimates throughout the model 
and undermine our inferential tests. Adding (meaningful) paths post hoc helps protect 
against such specification error. A related argument is that it makes no sense to interpret 
the parameters of a model that is clearly wrong. Finally, if I spent a large amount of time, 
money, and effort collecting data on a substantive issue, why should I close my eyes to 
exploring reasons why my a priori model did not adequately account for the data?  
Indeed, I should be intrigued by such a result, much like a detective trying to solve a 
crime who looks for new “leads” about the true state of affairs.  

I personally am sympathetic to the view that we should minimize model 
misspecification when analyzing data and that we should let data speak to us rather than 
narrowly focus only on what our initial theories dictate. At the same time, I also am 
sympathetic to the statistical complications that result from introducing “screening” tests 
and the havoc that doing so can play on statistical inference. As such, when I introduce 
model modifications because of glaring misspecification, I interpret p values and 
confidence intervals with caution and tentativeness. I also express in the Discussion 
section of my report the limitations of post hoc model modifications and, for scientific 
publications, stress the need for replicating the results in future studies.  

Avoiding Specification Error in RETs 

One way to avoid controversies surrounding post hoc model modifications is to make 
sure your model is correctly specified to begin with. When such is the case, the model 
should fit the data well and no modifications should be needed except to deal with chance 
specification error. I have found there are several types of specification error that 
researchers who use RETs often make. In this section, I identify these common 
specification errors with the idea that you should be extra careful to avoid them.   
 Consider the following portion of an RET model that maps the effect of the 
treatment condition onto mediators. Here is a simplified representation using two 
mediators: 
 

Mediator 1

Mediator 2 d2

Treatment 
vs. Control

d1
a

b

 

Specification error in this portion of an RET model often occurs with the omission of 
correlated disturbances between the mediators (the dashed curved arrow). It turns out that 
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the model without correlated disturbances implies that the only reason Mediator 1 and 
Mediator 2 are correlated is because the two mediators share a common cause, namely 
the treatment versus control condition (paths a and b). Such a specification often is 
unrealistic – there typically are a host of unmeasured variables that influence both 
mediators beyond the treatment condition a person is assigned to, such as SES, biological 
sex, age, and/or perhaps ethnicity. These outside disturbances, in essence, reside in both 
d1 and d2 causing the disturbances to be correlated. By not correlating d1 and d2, you 
ignore this fact and will likely underpredict the observed correlation between Mediator 1 
and Mediator 2, which can reverberate through to other parts of the model as well.  
 This form of specification error is mitigated to some extent if your model includes 
correlated baseline covariates, as follows: 
 

Mediator 1

Mediator 2 d2

Treatment 
vs. Control

d1

Baseline 
Mediator 1

Baseline 
Mediator 2

c

d

e

a

b

 
 

In this case, the correlation between Mediator 1 and Mediator 2 is modeled to be a 
function of (a) the common cause of the treatment condition on each mediator plus (b) 
the degree of correlation between the two baseline mediators (parameter c) weighted by 
the strength of the baseline mediator causal effects on the posttest mediators (paths d and 
e). Often the unmeasured “other” variables (SES, biological sex, age, ethnicity) that 
influence posttest Mediator 1 and posttest Mediator 2 also influence the baseline 
measures of the mediators. As such, the impact of these other variables on the correlation 
between the mediators at the posttest are indirectly taken into account via paths c, d and e 
and might render the need for modeling a correlation between d1 and d2 moot. Or 
perhaps not.  

If you do not include baseline measures of the mediators as covariates in your 
model and the only modeled cause of the posttest mediators is the treatment condition, 
then your model is ripe for this form of specification error. A safer practice is to a priori 
include correlated disturbances between mediators in your model to adequately capture 
the correlations between them. Of course, if you do so, you should be able to articulate 
one or more of the unmeasured variables that reside in both d1 and d2 or that are the 
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source of the correlated disturbances in some other way because we generally want our 
model specifications to have theoretical justifications.    

A second form of specification error that sometimes occurs in RETs concerns the 
inclusion/exclusion of the direct effect of the treatment condition variable on the outcome 
independent of the mediators, reflected by the dashed line in the following figure: 

 

Mediator 1

Mediator 2

d2

Treatment 
vs. Control

d1

Outcome

d

ca

b

d3

 
 
One would include this path if one believes the treatment condition affects the 

outcome over and above the mediators that the program targets, in this case Mediator 1 
and Mediator 2. One excludes the path if one believes the included mediators fully 
account for the effects of the program on the outcome, rendering the path coefficient for 
it equal to zero or a trivial value. Baron and Kenny (1987) argue that the path should 
always be included in the model because it then controls for any unmeasured mediators. 
However, there are scenarios where doing so can be counterproductive so we want to be 
circumspect about the decision to include the path. One potential disadvantage of  
including the path is when the strength of path a or path b is strong, i.e., the program has 
a strong effect on the mediator(s). Note that this is a result that we hope to achieve when 
we design programs. In such scenarios, when I regress the outcome onto the mediators 
and the treatment condition, the correlations between the predictors (i.e., between the 
mediators and the treatment condition) will be large because, after all, the program has a 
substantial impact on the mediators and is thus a primary determinant of them. The result 
will be high multi-collinearity between the predictors that can inflate coefficient standard 
errors, reduce statistical power, and inflate margins of error for the regression 
coefficients. Indeed, if the path for the direct effect path is zero or near zero, then coupled 
with high collinearity, the result can be an artifactual suppressor effect that disrupts 
coefficient interpretation. The bottom line is that in RETs, you should include the direct 
effect path if you believe the path is non-zero and meaningful. In my experience, in many 
RETs the path is not needed because it is reasonable to assume that the treatment only 
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affects the outcome through the mediators that the treatment seeks to change.  
If you exclude the path in your initial analyses but it actually belongs in the model, 

you usually will obtain bad model fit diagnostics. You can then revise the model by 
adding the path. Alternatively, if you include the path in your initial analysis and it is 
truly trivial, its path coefficient will be statistically non-significant and near zero. You 
then consider trimming it accordingly.    
   A third form of specification error that often is ignored in RET models are 
correlated disturbances between the mediator and the outcome.   

MediatorBaseline 
Mediator

Treatment 
vs. Control

d1

Outcome
dc

a
b

d2

 
 

A correlation between d1 and d2 is usually required if there are unmeasured 
confounds that are omitted from your model and that impact both the mediator and the 
outcome, thereby inflating (or deflating) the correlation between them. In Chapter 2, I 
stressed the importance of identifying such confounds when planning your study, 
measuring the most important ones, and then including them as covariates in your 
modeling efforts. If you fail to do so adequately, then you will need to consider adding 
correlated disturbances order to obtain unbiased estimates of the true causal coefficient 
for path d in the model. 

 This specification error is insidious because it does not manifest itself in any of the 
standard model fit diagnostics. It simply inflates or deflates your estimate of path d and 
you are none the wiser for it. Given this, it is that much more important that you use the 
strategies I discuss in Chapter 2 for identifying and dealing with unmeasured confounds.  

Another downside of this type of specification error is that if you add the correlation 
between the disturbances as a parameter in your model, the model often will be under-
identified and not estimable. To make the model identified, you need to introduce an 
instrumental variable, which I discussed in depth in Chapter 6.  
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In sum, be aware of the possible need for correlated disturbances between your 
mediators, the need to include or exclude a direct effect of the treatment condition on the 
outcome independent of the mediators, and the need for correlated disturbances between 
your mediators and outcomes. If your model does not fit the data well, these are 
reasonable points of stress to explore for purposes of model revision. If you think these 
typical forms of specification error through when first formulating your model, you likely 
will be able to avoid the need for post hoc modifications.   

Backward Searching 

Another form of post hoc modification is to trim away paths in the model that are 
statistically non-significant and then to re-estimate the more parsimonious model in order 
to simplify matters. The arguments in favor of such trimming usually surround parsimony 
and the avoidance of overfitting. The arguments against trimming are that non-
significance can result from low statistical power and that omitting the path or parameter 
can possibly introduce consequential bias in the retained parameter estimates. Also, if 
there are multiple paths that are non-significant, excluding any one of them may not 
introduce consequential bias in the included paths, but excluding all of them 
simultaneously can produce considerable bias. Many statisticians argue against trimming 
if the variables involved have a good track record in prior research and their inclusion 
makes substantive sense to begin with.  

Concluding Observations on Model Re-specification 

I tend to favor being open to making SEM model modifications after my initial analyses 
in order to avoid interpreting models with specification error in them. It is not uncommon 
when specifying an initial model to have in mind some paths that one is quite confident 
exist and other paths that one is confident do not exist. These beliefs dictate the essence 
of the influence diagram. However, there often are paths or parameters one is less 
confident about and that “may or not” exist in the population. Some theorists error on the 
side of including these paths in the model rather than leaving them out, with the idea that 
one can always ignore non-significant paths when interpreting results. Other theorists 
favor parsimony, simplicity, and the avoidance of overfitting by leaving these paths out 
of the model with the idea that if the paths are meaningful, they will ultimately generate 
large modification indices and can always be added when one looks at model diagnostics. 
Neither approach is correct. Each has pros and cons.  

A common refrain is that when you make model modifications, it is good to 
conduct a replication study to ensure the post hoc modifications manifest themselves in a 
second study. Unfortunately, when you are hired to evaluate a program, this advice is 
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somewhat vacuous because clients usually are not going to want to spend resources on an 
immediate repeat of the program evaluation. Some scientists recommend defining a “set 
aside” sample in the primary study that one can use for replication analyses. For example, 
after conducting the RET, one might randomly divide the sample in half and then fit the 
RET model separately in both samples to determine which results replicate. An argument 
against this strategy is the consequent reduced statistical power and inflated parameter 
instability that occurs by using only half of one’s sample size when modeling data. For a 
discussion of this topic, see Koul, Becchio & Cavallo (2018) and Browne (2000).  

COMPARING MODELS USING SEM 

A final facet of model evaluation I consider is that of comparing models. Sometimes we 
want to compare models to determine if the target model is more consistent with data 
than viable competing models. Model comparisons also are core to selected tests of 
moderation. I consider in this section general SEM methods for comparing models. I first 
address the case of comparing nested models and then I consider comparing what are 
known as equivalent and non-nested models.  

Comparing Nested Models 

Nested models are when the models being compared focus on the same measured 
variables but one of the models is derivable from the other by placing restrictions on the 
other model. The restrictions might be fixing the value of a coefficient in one model but 
estimating that same coefficient in the alternative model; or it might be imposing an 
equality constraint between two coefficients in one model but allowing both coefficients 
to be freely estimated without the constraint in the other model. Stated a bit more 
formally, two models have a nested relationship if the parameter space for one model is a 
subset of the parameter space for the other model.  

Consider the model in Figure 7.7 in which a treatment to reduce physical disability 
due to chronic back pain addressed two mediators, (1) pain catastrophizing, which is the 
tendency for people to describe pain experiences in exaggerated terms and to ruminate on 
them more than the average, and (2) fear-avoidance, which is an exaggerated tendency to 
avoid activities that might cause back pain which, in turn, leads to disability through 
“nonuse” of the back. The degree of physical disability was measured 3 months after 
treatment. I do not show them in the figure but the model included baseline covariates for 
each endogenous variable. Note that this model includes correlated disturbances between 
the  mediators to reflect that they share unmeasured common causes. The total sample 
size is N = 400, 200 males and 200 females.  
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FIGURE 7.7. Example for nested models 

I might want to test if path coefficients a through f are different for males and 
females in order to test model generalizability across biological sex. In essence, I want to 
compare two models, one in which the path coefficients a though f are the same in the 
two groups and another model in which those coefficients are allowed to differ in the two 
groups. In SEM, there is a strategy called multi-group SEM that, in a single analysis, 
computes the fit of the model for the different groups (males and females) and then 
reports the traditional overall global fit indices taking into account how well the model 
fits in both groups simultaneously. To test generalizability, I first fit a multigroup model 
that allows paths a through f to differ in value for males relative to females. I then fit a 
second model where I force the path coefficients for males to equal the path coefficients 
for females. This is known as imposing across-group equality constraints. There is a 
nested relationship between these two models because the second model is derived from 
the first model by imposing constraints on the first model. For the latter model, SEM 
algorithms find the values of the coefficients that best reproduce the covariances for 
males and the covariances for females but under the constraint that the coefficients for the 
two groups must be equal.  

Suppose that the population coefficients for males and females are, in fact, equal. 
The equality constraint should then pose no problems for finding a good model fit, 
because, in reality, the same coefficients apply to both groups. However, if one or more 
of the population coefficients is much larger or smaller in males as opposed to females, a 
model that forces all of the coefficients to be equal will not fit the data well. Thus, to 
evaluate generalizability, I might compare the fit of a model without the across group 
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equality constraints with a model that imposes across group equality constraints. If the fit 
for the two models is comparable, then this suggests that the path coefficients for males 
are not much different than the path coefficients for females. However, if the imposition 
of the equality constraint adversely affects model fit, then this suggests that one or more 
of the path coefficients must differ non-trivially for males versus females.  

Chi Square Difference Test  

One way of testing the relative fit of two models is to (a) estimate the model with the 
equality constraints and obtain a chi square fit index for it, then (b) estimate the model 
without the equality constraints and obtain a chi square fit index for it. The former model 
is called a constrained model because I have “constrained” the paths to be equal across 
groups. The latter model is the unconstrained model because the values of the paths are 
free to vary across groups. The constrained model is nested within the unconstrained 
model (Bollen, 1989) or, using different terminology, the two models are hierarchically 
related. It turns out that for nested models, one can compute a chi square difference test 
to evaluate the following null and alternative hypotheses: 

H0: The difference in population model-data fit for the two models is zero  

H1: The unconstrained model population fit is better than the constrained model fit   

I subtract the sample chi square for the unconstrained model from the sample chi square 
for the constrained model and I also difference their degrees of freedom. I can determine 
the p value for the chi square difference test because it turns out that for a nested model, 
the difference between the chi squares, χ2DIFF, is distributed as a chi square with dfDIFF, 
i.e., the difference in the models’ degrees of freedom. I provide a program for applying 
this difference test on my website (the program is called chi square difference test).  
 There is an important qualification to the above. If you use the robust ML estimator 
based on Huber-White estimation (option MLR in Mplus) instead of traditional 
maximum likelihood estimation (which I generally recommend you do), it turns out that 
the χ2DIFF statistic is not chi square distributed. However, there is a correction you can 
apply so that it is. Specifically, there are two correction factors, one for each model being 
compared. Mplus provides them on its output, labeled as “Scaling Correction Factor for 
MLR.” A similar label is used for the R package lavaan. The formula for the correction 
factors is given in Bryant and Satorra (2012) as well as how to execute the chi square 
difference test with them. On my website, I provide a program for the approach, called 
Scaled chi square difference test. Because I decided to use MLR for the physical 
disability example, I need to use the scaled difference test here.  
 When I fit the model in the two groups with the equality constraint, the chi square 
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for the constrained model was 15.32, df = 13 and the scaling correction factor was 1.01. 
For the unconstrained model that permitted path coefficients to vary across biological 
sex, the chi square was 9.01, df = 8 and the scaling correction factor was 0.99. The scaled 
chi square difference using the program on my website was 6.29, df = 5, p < 0.28. The 
difference in fit between the two models was statistically non-significant, which is 
consistent with the proposition that the results are generalizable across males and 
females. Had the null hypothesis been rejected, I would conclude that the difference in fit 
between the two models is not zero, which suggests that at least one of the path 
coefficients is not generalizable across males and females. I discuss in Chapter XX how 
to program Mplus to do these runs and how to isolate which path coefficients are 
responsible for the lack of generalizability. A weakness of this test is that generalizability 
assertions are based on obtaining a statistically non-significant result. If the difference 
test is underpowered, then this biases conclusions towards that of declaring 
generalizability.  

Comparing Models using a Close Difference Approach 

MacCallum, Browne and Cai (2006; see also MacCallum, Lee & Browne, 2010) describe 
a method for nested model comparisons using RMSEA statistics rather than chi square 
statistics. MacCallum et al. argue that the premise of competing models having exactly 
the same fit as specified in the null hypothesis of the above chi square difference test is 
unrealistic and will almost always be false; no two nested models in practice will ever 
provide the exact same fit to the data. It is more realistic, they argue, to work from a null 
hypothesis of a small difference between population models rather than exact model fit 
equivalence. Stated another way, even though two population models may not provide 
exactly the same fit to data, the degree of discrepancy might be so small that the models 
can be viewed as being functionally equivalent. As such, according to MacCallum et al., 
the null hypothesis should be stated so that it takes a functional equivalence perspective 
rather than a strict equivalence perspective.  

Given nested models A and B, MacCallum et al. (2006) propose a null hypothesis 
of the form 

H0: εA -  εB  ≤  d 

where d is a non-negative value that represents the difference in two population 
RMSEAs. The value of d represents an effect size index that defines a standard for 
declaring the population difference in fit between the two models as being trivial to the 
point that we can treat the models as being functionally equivalent. In this case, εA is a 
population RMSEA for the constrained model and εB is a population RMSEA of the 
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unconstrained model. The alternative hypothesis is  

H1: εA -  εB  >  d 

For example, if d equals 0.01, this means that if the population difference between the 
population RMSEAs specified in H0 is less than 0.01, the constrained and unconstrained 
models will be deemed as being functionally equivalent. MacCallum et al. (2006) and 
Preacher, Cai and MacCallum (2007) describe methods for testing the above null and 
alternative hypotheses in a hypothesis testing framework. I provide a program (called 
close fit difference test) on my website for performing the test.  
 A challenge for applying the close difference approach is specifying a priori a 
meaningful close fit criterion in RMSEA units. In general, it turns out that an RMSEA 
difference of 0.01 when the values of the RMSEA are, say, 0.04 and 0.03 implies a 
different amount of fit disparity at a localized level than a difference of 0.06 and 0.05 
which, in turn, reflects a different disparity than when the RMSEA values are 0.08 and 
0.07 (see Liu & Bentler, 2011, for elaboration). Given this, it is not sufficient to merely 
specify a criterion value for d, such as 0.01. Rather, one must specify specific values for 
εA and εB in the null and alternative hypotheses to define the effect size that is the cutoff 
for a small difference. This is a weakness of the approach because the RMSEA index for 
a given model is not very intuitive, making it difficult to a priori specify values for εA and 
εB (see Maydeu-Olivares, 2017; Shi, Maydeu-Olivares, DiStefano, 2018). As well, the 
RMSEA has been found to be influenced by incidental parameters that should have little 
bearing on lack of model fit, such as the magnitude of factor loadings in a measurement 
model and model size (Saris, Satorra, & van der Veld, 2009; Chen, Curran, Bollen, 
Kirby, & Paxton, 2008; Savalei, 2012; Shi, Lee, & Maydeu-Olivares, 2018). These 
considerations detract from the use of the MacCallum et al. (2006) strategy.  
 When invoking the RMSEA close fit difference test, researchers typically resort to 
the use of the rule of thumbs for population RMSEA differences. For example, it is not 
uncommon to use an RMSEA difference of 0.01 or 0.05 as a basis for applying the close 
difference test; but the question remains as to what values to use for the separate 
RMSEAs of εA and εB for this difference. It turns out that, holding the hypothesized 
population RMSEA difference constant, the larger the values of εA and εB (e.g., 0.08 and 
0.07 versus 0.05 and 0.04), the larger will be the critical value associated with the 
RMSEA difference test for the same data. So, a larger effect size criterion is associated 
with lower values of εA and εB. Note that your choice of values for εA and εB is not what 
you think the actual values of the population RMSEAs are for the models you are testing. 
Rather, they are chosen to help you define what you think is an appropriate effect size 
standard to use to declare to models as functionally equivalent or functionally different.  
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 The close fit difference test is typically applied to traditional maximum likelihood 
estimation. For the physical disability example, I used MLR for the chi square difference 
test between the constrained and unconstrained models that forced the path coefficients to 
be equal across males and females versus not imposing such an equality constraint (see 
the previous section for the chi square difference test). I found the scaled chi square 
difference to be 6.29, with the two model degrees of freedom of 13 and 8.  If I (somewhat 
arbitrarily) define εA as 0.05 and εB as 0.04 and apply the program on my website, the 
resulting p value for the test of close fit difference was p < 0.86. This means that I cannot 
reject the null hypothesis and is consistent with functional equivalence of the two models. 
If the null hypothesis had been rejected, I would conclude that the model coefficients, as 
a collective, differ for males and females using a close difference standard of 0.01 
RMSEA units.  

As with the original chi square difference test, the results turned out to be  
consistent with coefficient generalizability. Note that this test also biases conclusions 
towards generalizability across groups if statistical power is low. Indeed, it is even more 
sample size demanding than the chi square test of fit difference in terms of statistical 
power.  
 Other forms of the RMSEA difference test have been proposed (Savalei, Brace & 
Fouladi, 2022), but in my judgment these tests require further evaluation as to their 
practical and substantive utility in the face of typical analytic scenarios that have non-
normal and missing data that use robust estimation. MacCallum et al. (2006) provide a 
thoughtful discussion of factors to consider in choosing values of define εA and εB. 

Comparing Models using the Comparative Fit Index 

The CFI traditionally compares a model of interest with the independence model. Given 
nested models, you can alter the formula for the CFI to compare any two models of 
interest, not just the target model against the independence model. Let dUNCONSTRAINED = 
the χ2 value for the unconstrained model minus its degrees of freedom and dCONSTRAINED = 
the χ2 value for the constrained model minus its degrees of freedom. Then   

CFI  =  (dCONSTRAINED – dUNCONSTRAINED ) / dCONSTRAINED  

  If the CFI index is greater than one, it is set to one. The CFI reflects the 
improvement in fit of the unconstrained model relative to that of the constrained model 
(the numerator in the above equation) indexed against the lack of fit of the constrained 
model (the denominator). For the physical disability example, the adapted CFI is 

CFI = ((15.32-13)-(9.01-8))/(15.32-13) = 1.31/2.32 = 0.56 
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The unconstrained model improves fit by about 56% relative to the constrained model 
after adjusting for model complexity as reflected by the models’ degrees of freedom. If I 
apply an adapted Tucker-Lewis Index to the data, the TLI was 0.29 and the Bentler-
Bonnet Index was 0.41. Obviously, when comparing two viable models, the rule of 
thumb of a CFI > 0.95 for declaring a meaningful difference is not applicable. Also, there 
are no formal standard errors for the CFI, TLI, or BBI from which to compute p values. 
The results are purely descriptive.  
 In my opinion, the CFI, TLI and BBI indices can be misleading when used in this 
way. If an unconstrained model reduces the chi square from a constrained chi square of 
16 to an unconstrained chi square of 8, the change of 8 units seems more to me than if the 
reduction is from 2 to 1. Yet, both cases reflect 0.50 improvement in the chi squares 
when calculated using the traditional formula for improvement rates, as discussed earlier. 
For the physical disability example, the chi square minus the degrees of freedom for the 
constrained model was 2.32 and for the constrained model it was 1.01. I personally would 
judge the differences in these indices to be small despite obtaining the 56% improvement 
reported earlier. 

Comparing Models using Information Theory Indices 

A final strategy I consider for comparing models in SEM is to use indices that have their 
basis in information theory (Burnham & Anderson, 2004; Raftery, 1995). The two most 
popular indices are the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC). Both indices make use of a construct known as a log 
likelihood, which reflects the likelihood that the observed sample data could result if the 
model form and the population parameters (e.g., the path coefficients) took on the values 
derived from the SEM maximum likelihood fit function defined earlier. Log likelihoods 
are not probabilities per se. Rather, they are complex functions of probability densities 
and yield indices that are difficult to interpret in and of themselves. To give you an idea 
of their complexity and non-intuitive nature, if I assume multivariate normality for the 
variables in a model (represented by a vector I call X), the log likelihood of the maximum 
likelihood estimator for a given model equals (Bollen, Harden, Ray & Zavisca, 2014):      

1 1LL = K -  ln(| ) -   (X - )  X
2 2

µ µ−∑ ∑ −T 1| ' ('' ')     

where LL is the log likelihood for the model, ∑' is the predicted covariance matrix from 
the model, μ' are the predicted means from the model, T is the matrix operation of a 
transpose, and K is constant that has no effect on the values of the parameters that 
maximize the log likelihood. Log likelihoods typically are negative in value and the 
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larger they are (i.e., the closer the negative number is to zero), the higher is the likelihood 
that the data are compatible with the tested model.6 Both the AIC and BIC work with log 
likelihoods, as I now illustrate.  
 The Akaike Information Criterion. The AIC takes different forms in SEM software 
but the differences between them usually are not consequential for comparing models. In 
Mplus, the AIC is reported for most SEM models and is defined by the formula  

AIC = (-2) (LL) + 2r                [7.3] 

where LL is the log likelihood associated with the model in question and r is the number 
of estimable parameters in the model. By multiplying the log likelihood by -2, the AIC 
becomes a positive number, with larger numbers indicating worse fit to the data. The AIC 
also includes what is often referred to as a penalty term for lack of parsimony, namely 2r. 
If the model has many parameters that must be estimated, then the AIC will be larger, 
everything else being equal. With the AIC, model parsimony is rewarded.7           
 There are many variations of the AIC. For example, some researchers use the above 
formula but with a small sample bias correction incorporated into it. This is sometimes 
referred to as AICc. The nuances of the different versions of the AIC are described in 
Burnham and Anderson (2004). Do not be surprised if for some software you observe 
AIC indices that are different in magnitude from those calculated in Mplus, the software I 
feature in this book. The important idea for all of them is that we can compare different 
models using the respective AICs and then choose models that have “better” (i.e., lower) 
AICs when compared to other models.  
  Sometimes we compare more than two models, i.e., we might compare three, four 
or five models. I provide examples of this in future chapters. When comparing more than 
two models, it is common to first identify the model with the lowest AIC value (which is 
the best fitting model of all the models being considered). One then subtracts this value 
from each AIC for the other models. For the best fitting model, the difference will be zero 
and for all other models, it will be positive in value, with the larger the disparity, the 
worse the fit of the target model relative to the best fitting model. Here is a tabled 
example of the AIC results for five models where the AIC column presents the computed 
AIC for the models and the Diff column subtracts the lowest observed AIC (202 for 
Model 2) from each model AIC: 
 

 
6  The log-likelihood for H0 reported on the Mplus output is used as the value of -2 LL.  
7 Technically, the 2r term is not envisioned as a penalty for lack of parsimony but instead is part of the mathematical 
theory underlying the derivation of AIC. Also, choosing the value of -2 to multiply the LL by is not arbitrary. This 
value has a clear rationale, which is described in Burnham and Anderson (2004).  
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Model   AIC        Diff           
 
     1   204   2      
     2   202   0      
     3  206   4      
     4   206   4      
     5   214         12      
  
The larger the value in the D column, the worse the model fit, with model 2 being the 
favored model based on the above table.  
 General rules of thumb have been proposed to interpret the magnitude of the AIC 
differences between models (see Burnham & Anderson, 2004). The most common rules 
of thumb are as follows: 

1. If the disparity in AICs is < 2, then the two models have about the same support   

2. If the disparity in AICs is > 2 and < 4, then the better fitting model has positive support 
relative to the model it is compared with   

3. If the disparity in AICs is > 4 and < 10, then the better fitting model has strong support 
relative to the model it is compared with   

4. If the disparity in AICs is > 10, then the better fitting model has very strong support 
relative to the model it is compared with   

One must be careful when applying rules of thumb like this because they may not apply 
in all contexts. Indeed, some analysts object to their invocation arguing that they can 
result in the same rigid and counterproductive use of a criterion like “p < 0.05” that 
plagues null hypothesis testing frameworks. Using the above criteria, model 2 is favored 
relative to all the other models.    
 Another standard for comparing any two models using the AIC is to examine what 
is called the evidence ratio. Let D = the AIC for the worse fitting model of the two 
models being compared minus the AIC for the better fitting model of the two models 
(and let e be the traditional Neperian constant). The evidence ratio is defined as  
 
ER = 1 / e(-D / 2) 
 
where ER stands for “evidence ratio.” It indicates how much more likely the better fitting 
model is (given the data) than the worse fitting model (given the data). For example, if 
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the AIC for the better fitting model is 200 and for the worse fitting model it is 202, then 
the evidence ratio is  

1 / e -(202-200) / 2) = 2.72  

The better fitting model has 2.72 times more support than the model it is being compared 
with.  
 Finally, some researchers normalize AIC differences relative to all models being 
compared so that they sum to 1. These are called Akaike weights and indicate the 
“weight of evidence” in favor of a model relative to all models in the comparison set. 
Akaike weights are distinct from evidence ratios because Akaike weights are impacted by 
the particular set of models being compared when the number of models is greater than 
two. Let me first describe how Akaike weights are calculated and then I will make them 
more concrete with an example.  
 To calculate the Akaike weight, each model being considered is assigned an index 
of its likelihood relative to that of the best fitting model using the value from the 
denominator of the evidence ratio,  e(-D/2) as the index. Let T = the sum of the e(-D/2) values 
across all the models being considered. Then the Akaike weight for a given model is 
defined as  

e(-D/2) /  T 

The weight ranges from 0 to 1.00, with higher values favoring the model in question. 
Suppose I fit five different models to a set of data. Here is a table with the AICs, the 
differences between the model AIC versus the model with the lowest AIC, and the 
Akaike weights (w): 
 
 
Model   AIC    D          e(-D/2)  w = e(-D/2)/T 
 
     1   204   2     0.3678     0.2242 
     2   202   0     1.0000     0.6094 
     3  206   4     0.1353     0.0824 
     4   206   4     0.1353     0.0824 
     5   214   12     0.0024     0.0015 
 
  Sum             T = 1.6408     1.0000 
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The sum of the weights across all five models is 1.00. The weights represent a continuous 
measure of relative strength of evidence for each model. Each weight can be crudely 
interpreted as the probability that the model is the best model among the set. In the 
present case, the data support Model 2.  
 The basic idea when evaluating models is to examine multiple criteria, including the 
magnitude of the difference in AICs, the evidence ratios, the Akaike weights, and the 
substantive meaning/logical coherence of the models in order to choose the best one.  
 The Bayesian Information Criterion. In this section, I describe a second index used 
for comparing models that also relies heavily on log likelihoods. I focus on the BIC used 
in Mplus known as the Schwartz BIC, which is formally defined as  

BIC = (-2) (LL) + ln(N) r                      [7.4] 

where r = the number of estimable parameters in the model, N = the sample size, and LL 
= the model log likelihood. Like the AIC, the smaller the BIC, the better the model fit, 
everything else being equal. Also like the AIC, there is a penalty function for lack of 
parsimony, but the penalty is different than that for the AIC. The penalty is somewhat 
harsher than that for the AIC.  
 Like the AIC, it is not uncommon for the model with the smallest BIC to be used as 
a reference point for comparing models, with a common practice being to calculate the 
difference between each model in the model set and the model with the best BIC. For the 
best fitting model, this difference will, of course, be zero. 
 To evaluate models in terms of BIC differences, general rules of thumb are (see 
Raftery, 1995):  

1. If the BIC disparity < 2.2, then the better fitting model and the model it is compared 
with have about the same support   

2. If the BIC disparity > 2.2 and < 6, then the better fitting model has positive support 
relative to the model it is compared with   

3. If the BIC disparity > 6 and < 10, then the better fitting model has strong support 
relative to the model it is compared with   

4. If the BIC disparity > 10 then the better fitting model has very strong support relative 
to the model it is compared with   

For similar but slightly different standards, see Wasserman (1997). 
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 One also can calculate what is called a Bayes Factor (BF) for each model relative 
to the best fitting model. It is defined as  

BF = e(D’/2) 

where D’ is the BIC difference between the target model and the best fitting model. The 
Bayes factor is the probability that the model with the lowest BIC is true (given the data) 
divided by the probability the model in question is true (given the data). For example, a 
BF = 10 means it is 10 times more likely the model with the minimum BIC is true given 
the data than the model in question is true given the data.  
  Finally, a relative model weight, analogous to the Akaike weight, can be computed 
by normalizing model BFs relative to all models in the comparison set so that they sum to 
1. Let D = the difference in the BIC for the model in question minus the value of the BIC 
for the best fitting model, T = the sum of the index  e(-D/2) across each model. The relative 
weight for a model is 

e(-D/2) / T 

The weight ranges from 0 to 1.00, with higher values favoring the model. Again, the sum 
of the weights across models is 1.00. 
 As with the AIC, the basic idea when evaluating models is to examine multiple 
criteria, including the magnitude of the difference in BICs, the Bayes factors, the relative 
weights, and the substantive meaning/logical coherence of the models, in order to choose 
the best one.  
 You will encounter variants of the BIC, but the fundamental logic in applying them 
is the same. For example, like the AICc, there is a sample size adjusted BIC that is similar 
to Schwartz’ BIC, but it applies a somewhat milder penalty function (Sclove, 1987).  
 Which Method is Better, AIC or BIC? A hotly debated topic in statistics is which 
approach to model comparison is better, one based on AICs or one based on BICs. There 
are advocates on both sides of the matter and I dare not venture into this controversy 
here. The BIC tends to favor simpler models more so than the AIC. This can be both a 
strength and a weakness. Interested readers are referred to Burnham and Anderson 
(2004), Yang (2005), and Kuha (2004). Kuha argues for the use of both indices. An issue 
with both approaches is that researchers can be lulled into thinking that the best fitting 
model within a set of models is the true model. This is not necessarily the case. 
Researchers can choose the best of a set of wrong models, which is not our goal.  
 The BIC in Structural Equation Models. In structural equation modeling, the BIC 
has been conceptualized and implemented in multiple ways, one of which is the Schwartz 
BIC reported in Mplus. One difference between different formulations of the BIC in SEM 
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is whether the BIC uses only the log-likelihood of the hypothesized model or whether it 
takes into account the log-likelihood of a saturated model. A saturated model adds 
parameters to the tested model to the point that the covariance and mean structure of the 
data are perfectly reproduced – at the cost of increasing the number of estimated 
parameters. When the BIC is focused on just the hypothesized model, -2LL is used in the 
calculation of BIC. When the saturated model also is included, the model chi square 
statistic is used in place of -2LL. Preacher and Merkel (2012) and Bollen et al. (2014) 
provide the relevant statistical details for this assertion. Thus, a common instantiation of a 
BIC that takes into account the fitted model and a saturated model is 

BIC = Tml  +  ln(N) r               [7.5]  

where Tml is the model chi square and r is the number of estimated parameters in the 
model. As before, the smaller the value of the BIC, the better the model fit. Bollen et al. 
(2014) use a slightly different formulation defined as 

BICs = Tml – (df) (ln(N))              [7.6] 

where df = the degrees of freedom associated with the chi square.8  In this formulation, a 
value of BICs that is greater than zero supports the saturated model over the hypothesized 
model, with larger positive values indicating increasing support for the saturated model. 
A negative BICs supports the hypothesized model over the saturated model, with more 
negative values reflecting stronger support for the hypothesized model. Positive values of 
BICs are common in practice because the only reason that a hypothesized model will 
outperform a saturated model is the lack of parsimony associated with the saturated 
model. As with the traditional BIC, we still prefer the model with the lowest BICs value 
among the models being compared and we still can invoke the Raftery guidelines when 
comparing models, as appropriate. The BICs just has a different statistical basis.   
 An alternative to the BICs is Haughton’s BIC or HBIC. It is defined as  

HBIC = Tml – (df) (ln(N/(2π))            [7.7] 

The HBIC slightly modifies the penalty function from Equation 7.6, the logic for which is 
described by Haughton (1988; Haughton et al., 1997; see also Bollen et al., 2014). Two 
other alternatives are the IBIC (called the information matrix based BIC) and the 
SPBIC (called the scaled prior BIC), both of which incorporate features of the estimated 

 
8 The degrees of freedom in Equation 7.5 is inversely related to the number of parameters estimated in Equation 7.6. 
The change in sign for the penalty term may appear confusing, but the essential dynamics of the BIC are preserved. 
See Bollen et al. (2014) for details.  
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information matrix into the penalty function. Simulation studies tend to favor the use of 
HBIC and SPBIC, with the former having the advantage that it is easy to compute from 
standard SEM output (Bollen et al., 2014). On my website, I provide a program that 
allows you to calculate HBIC from standard SEM output. 
 In sum, there is considerable variability in the type of BICs reported by SEM 
software. In addition to a Schwartz BIC, most SEM software also reports a variant of the 
BIC called the sample size adjusted BIC (Enders & Tofighi, 2008; Tofighi & Enders, 
2007). Aside from these indices, there are a host of additional possible indices, the major 
ones of which I have discussed above. It is sometimes confusing as to which BIC to use 
when comparing models. The Schwartz BIC and the HBIC work well in many contexts 
and I tend to rely on them heavily. I will address this matter more in future chapters as we 
encounter different modeling scenarios.        
 Sampling Error and Model Selection Uncertainty. Suppose two models are 
compared using BICs for data based on a random sample from a population. One almost 
certainly would obtain different values of the BIC disparity between the two models if a 
different random sample of the same size was selected from the population. Some 
methodologists have argued that such sample to sample fluctuations in BICs (and AICs) 
should be taken into account when choosing among models (Preacher & Merkel, 2012). 
The fluctuations typically will be greater for smaller as opposed to larger sample sizes. 
Preacher and Merkel (2012) develop a method for estimating confidence intervals for a 
BIC in structural equation modeling contexts. They use a slightly different formulation of 
the BIC than those described above, but their approach retains the core properties of all 
BIC indices, namely lower values imply more support for a model and models with more 
estimated parameters are penalized to a greater extent than models with fewer estimated 
parameters. The confidence intervals yielded by the Preacher and Merkel approach can 
then be taken into account when making modeling choices, such as noting whether the 
intervals for two models overlap.9 Merkle, You and Preacher (2016) describe more 
formal methods for comparing AIC and BIC differences as well as a test by Vuong 
(1989), which I describe in Appendix B.  

Concluding Comments on the Different Methods for Nested Model Comparisons 

In sum, there are multiple strategies for comparing two or more nested models, each with 
strengths and weaknesses. Both the chi square difference test and the close fit difference 
test emphasize statistical significance testing. As such, it is  important that you have 
sufficient statistical power to detect meaningful model differences. I discuss relevant 

 
9 When 95% confidence intervals of individual parameters do not overlap, a significance test of their difference  will 
indeed produce a p value < 0.05. However, this test strategy is too conservative and must be used with caution.  
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power analysis perspectives in Chapter 28. The close fit test uses a close fit standard in 
the form of RMSEA differences but RMSEAs are difficult to interpret and it can be 
challenging to specify substantively meaningful standards in RMSEA terms. The CFI 
approach has the weakness of being purely descriptive. It also can be misleading as a rate 
index. The BIC and AIC operate outside null hypothesis testing frameworks which some 
methodologists view as a strength. However, many researchers fail to recognize that 
model comparisons using these statistics can be influenced by sampling error/uncertainty, 
a problem I address in more detail below. 
 The practice of comparing multiple models and then focusing on the best fitting 
model of the set brngs with it some noteworthy cautions. Once data have been used to 
select a model, the estimated standard errors for the parameters of that model may no 
longer be strictly valid without additional corrections (Berk et al. 2013). This is because 
model selection is stochastic; under repeated sampling, different models might be 
selected based on random variation in the data. This variability should then be 
incorporated into the calculation of standard errors (see Berk et al. 2013). 
 As I discuss in later chapters on moderation, my own preference is not to work with 
general omnibus tests of model differences as described in this chapter, but instead I 
prefer to focus on model differences on a per path or per parameter basis. In the physical 
disability example, I would examine each separate path coefficient for males and females, 
document the magnitude of the difference between males and females for each path 
coefficient (including reporting a margin of error for the difference), and evaluate those 
differences on a pairwise basis with controls for multiplicity. I illustrate this approach in 
future chapters.  

Equivalent Models and Non-Nested Models 

When comparing models, statisticians distinguish between equivalent models, nested 
models, and non-nested models. Equivalent models are when two different models yield 
exactly the same predicted covariances and fit statistics for a data set and also share the 
same number of degrees of freedom. As a simplistic bivariate example, the model that X 
causes Y is an “equivalent model” to the model that Y causes X because each yields the 
same predicted covariance matrix, each has an equivalent number of degrees of freedom, 
and the fit statistics are the same for each model.  
 Sometimes models might not be equivalent but sub-portions of them are. In RETs, 
the problem of equivalent sub-models usually presents itself when describing causal 
relations among mediators or between mediators and outcomes. Consider two possible 
sub-models of an RET in Figure 7.8. that focus on the subportion of a model that maps 
the causal relationships between three mediators. Figure 7.8a and 7.8b represent 
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equivalent submodels because if analyzed in isolation, both have the same number of 
degrees of freedom and both produce the same predicted covariances among the three 
variables. Bentler and Satorra (2010) outline a strategy for determining empirically if two 
models/submodels are equivalent, nested, or non-nested. I describe this method in 
Appendix B. It is important in RETs that researchers be aware of the possibility of 
substantively viable equivalent sub-models and to acknowledge their presence when 
discussing RET results (Hayduk, 2014). Sometimes we can rule out an equivalent model 
based on logic. Bad weather causes car accidents and predicts a correlation between these 
two variables. An equivalent model is that car accidents cause bad weather, a model that 
also predicts a correlation between the two variables. However, the latter model is clearly 
illogical. Important to keep in mind here is that just because a theory "fits" the data, that 
does not make the model right. In cases where equivalent models are both logically 
plausible, it sometimes is possible to design studies to empirically discriminate them, but 
this topic is beyond the scope of this book. 

(a) 

Mediator 1 Mediator 2 Mediator 3
 

 
 

(b) 

Mediator 1

Mediator 2

Mediator 3
 

 

FIGURE 7.8. Example of equivalent models 

 If two models are not equivalent, they can be either nested or non-nested. As noted, 
comparing non-nested models is more complicated than comparing nested models. A test 
that often can be used when comparing two models (whether they are nested or non-
nested) is known as the Vuong test (Voung, 1989) or the Vuong closeness test as 
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implemented by Merkle  et al. (2016). It tests the null hypothesis that the two models are 
equally close to the true data generating process against the alternative that one model is 
closer. I describe this test in Appendix B and also provide a program for it on my 
webpage.  

CONCLUDING COMMENTS 

SEM is a powerful method for testing a wide range of models of interest in the social 
sciences. It is particularly well suited to the analysis of RETs, as I show in future 
chapters. The approach translates a theory, often represented by an influence diagram, 
into a system of equations and then parameter estimates for each equation are derived. 
The overall fit of the model to the data, considered multivariately, is evaluated using 
global fit indices, which are supplemented by localized fit indices. The approach has been 
adapted to work with latent variables so that SEM has the ability to address measurement 
error during parameter estimation as it integrates structural models with measurement 
models. As with most complex, integrative frameworks, there are many issues that need 
to be taken into account and we will encounter them as we apply the approach to the 
analysis of RETs.  
 To preview the use of SEM with RETs, consider an RET where I compare two 
variants of programs to increase adherence to medical regimens for people living with 
chronic cancer. Each program addresses the same three facets, namely (1) teaching 
people effective strategies to cope with the side effects of the cancer medications they 
take, (2) teaching people strategies to strengthen social support for protocol adherence, 
and (3) increasing perceptions of the importance of adhering to the protocol. One 
program uses passive learning to address each mediator such that participants read 
engaging and informative articles on each topic. The second program uses the same 
methods but augmented with active learning strategies, such as role playing, writing 
essays, and participants explaining materials to other participants. With the addition of a 
control group, the RET has three conditions, (a) the education group, (b) the education 
plus skills group, and (c) the control group.  

Figure 7.9 presents the conceptual logic model for the RET. The figure includes a 
path directly from the treatment condition to the adherence outcome to reflect the fact the 
programs may impact adherence through mediators not specifically targeted, such as 
program satisfaction (see Chapter 2). The adherence outcome was measured as the 
percent of protocol compliance over a one-month period. It ranged from 0 to 100 and was 
measured 3 months after program completion. The mediators were measured 1 month 
post-completion. A staff rating of the quality of the patient’s social support (SS) was 
based on a structured interview by the staff member. Scores ranged from 0 to 10 (0 = no 
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support, 3 = slight support, 6 = moderate support, 9 = strong support). The staff member 
could make finer gradations across the 0 to 10 metric. Staff received training about how 
to use the scale, which had concrete behavioral anchors for each major scale category. A 
comparable 0 to 10 staff rating was used for the quality of side effect coping strategies 
(CS), and a 0 to 10 self-report of adherence importance (AI) was obtained from each 
individual as well (0 = not at all important, 3 = slightly important, 6 = moderately 
important, 9 = very important). The treatment conditions are represented by dummy 
variables, one for the education group, DE, and one for the education plus skills group, 
DES. The control condition is the reference group. Normally, there would be covariates to 
control for confounds, but I omit them to keep exposition more manageable.  

Post-test 
Adherence

Coping Skills

Social Support

Perceived Adherence 
Importance

Treatment 
Conditions

d4

d1

d3

d2

 

FIGURE 7.9. Logic model for adherence intervention 

In the model, there are four endogenous variables and one exogenous variable. 
Given four endogenous variables, the core of the model is defined by four equations, one 
per endogenous variable. Each equation uses the endogenous variable as the outcome and 
each variable that has an arrow pointing directly to it as a predictor. The equations are: 

Adherence = a1 + b1 CS + b2 SS + b3 AI + b4 DE + b5 DES  + d4    [7.8] 

CS = a2 + b6 DE + b7 DES + d1          [7.9] 

SS = a3 + b8 DE + b9 DES + d2          [7.10] 
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AI = a4 + b10 DE + b11 DES + d3          [7.11] 

There are no latent variables in this model, nor are there correlated disturbances. 
There are no causal relationships among the mediators. The logic model presumes that 
the three mediators, CS, SS, and AI, each influence adherence. The RET explicitly 
evaluates these assumptions and provides feedback to program designers about where the 
assumptions may fail. The programs are designed to impact CS, SS, and AI. The RET 
will inform us if the programs do so and, if not, which mediator(s) the programs failed to 
change. The RET also will inform us if the addition of active learning to the more 
traditional passive learning strategies creates added value to the above. This is far 
superior to conducting outcome only evaluations of  program effects on adherence.  

Once the RET data are collected, we calculate the correlations and covariances 
among the five variables. We hypothesize that the patterning of the observed 5X5 
covariance and correlation matrices occurs because of the causal dynamics depicted in 
Figure 7.9. Using decompositional analysis, the model predicts the observed covariances 
should pattern themselves in specific ways. We calculate the actual values of the 
predicted covariances by the model using a robust maximum likelihood criterion via an 
iterative estimation process. We then evaluate if the observed covariances values do, in 
fact, pattern themselves in the ways predicted by the model. Specifically, we first 
evaluate global fit indices that reflect the correspondence between the predicted and 
observed covariances. These include the chi square index of fit, the standardized RMR, 
the RMSEA, the p value for close fit, and the CFI. We also examine localized indices of 
fit, including modification indices and standardized residuals.  

Given reasonable support for the model using the weight-of-the-evidence approach, 
we proceed to examine and interpret the different path coefficients in the model to 
provide perspectives on the questions and issues inherent to RETs. For example, I might 
want to know if the program meaningfully affected each of the mediators and, if not, 
which mediators it failed to affect. This provides me with feedback about program facets 
that need to be strengthened. The statistical significance and magnitude of the path 
coefficients from the treatment conditions to the mediators are informative in this respect. 
I also want to know if the mediators I have targeted in my program are, in fact, relevant 
to the outcome. If a mediator is not, then I can consider streamlining the program by 
removing activities targeting that mediator. The statistical significance and magnitude of 
the path coefficients from the mediators to the outcomes are informative in this respect. 
There are many other facets of the SEM analysis that I can bring to bear to evaluate the 
program and I will outline these in future chapters.  
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APPENDIX A: SRMR DETAILS  

Before elaborating on the SRMR, I note two points relevant to the underlying math. First, 
a correlation coefficient is often conceptualized as a covariance that has been 
standardized. The formula for a covariance between X and Y, using sample notation is 

covXY = rXY sX sY 

where rXY is the correlation and sX and sY are the standard deviations of X and Y, 
respectively. If I divide both sides of the equation by the product of sX sY, I obtain 

covr
s s

XY
XY

X Y

=  

which is the covariance “standardized” by the two standard deviations. The standardized 
RMR uses standardized covariances of this form, hence its focus is, in part, on 
correlations. However, it does not just use covariances in its calculations. It also uses the 
diagonal of the covariance matrix, which contains the variable variances. These also are 
standardized per the above, so they equal 1.0, and will always be perfectly reproduced by 
the predicted standardized variances because the latter also equal 1.0. The main message 
is that the SRMR focuses on both standardized covariances and standardized variances. 
 The second point I want to make is that there are many ways of calculating the 
mean disparity between predicted and observed covariances or correlations. Suppose I 
have the following two  predicted and observed correlations: 
 
Observed  Predicted  Difference 

   0.30      0.15      0.15 
   0.15      0.30     -0.15 
 
One strategy is to sum the differences and divide by the number of differences, which in 
this case would be (0.15 + -0.15)/2 = 0. This mean is misleading because based on it, it 
appears there is perfect prediction when, in fact, there is not. The positive disparity 
canceled the negative disparity, yielding a mean of zero. We need to rid ourselves of the 
sign of the disparity. One way to do so is to use the absolute value of the disparity in the 
calculations. Another strategy is to square the disparities, average them, and then 
unsquare the average by taking the square root of it in to return to the original metric. The 
SRMR (and the CRMR) use this latter strategy. The result is a mean disparity, but it is a 
special type of mean; it is the square root of the mean of the squared residuals, hence 
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the term “standardized root mean squared residual.” When a mean disparity is calculated 
in this way, it tends to give more weight to the larger disparities than if we were to 
calculate the arithmetic mean of the absolute disparities. 
 With this as background, the traditional definition of the SRMR in a population is 
 

211 ( ' )SRMR = 
( )( )
ij ij

ii jji jt
σ σ
σ σ≤

−∑  

where σij is the population covariance between variables i and j (or variance if i = j), σ ' ij 
is the predicted population covariance (or variance) under the fitted model, and t =  
k(k+1)/2 or the number of nonredundant population variances and covariances, where k 
is the number of observed variables in the model. Note the term beneath the summation 
signifies the inclusion of both variances and the covariances. The formula basically 
executes a square root of the mean of the squared disparities, standardized. 
 For the correlation root mean squared residual, the population formula is 

1
21 CRMR = (ρ ρ ' )ij ij

i jt k <

−
− ∑  

where ρ is the population correlation and ρ is the predicted population correlation under 
the fitted model. Note that the diagonal elements are excluded in this case. 
 The above is the traditional definition of the SRMR, but it becomes more 
complicated when a model has predicted and observed means in it, not just predicted and 
observed covariances. The equation needs to be modified to accommodate this case and 
the modification is described in Asparouhov and Muthén  (2018). The mean residuals in 
the modified equation are standardized but they can take on any value and, consequently, 
can produce large SRMR values. They are important to take into account when fitting 
growth curve models or multi-group SEM models with mean structures. The traditional 
rules of thumb for what constitutes a reasonable value of the SRMR may not apply 
because most of those rules have been identified without mean structures as part of the 
model. As well, any SEM analysis in Mplus with missing data makes use of structural 
means, so the mean residuals are incorporated into SRMR in such cases. See Asparouhov 
and Muthén  (2018) for discussion of how SRMR is modified by Mplus in different 
analytic scenarios. The method of Maydeu-Olivares (2017a) for obtaining unbiased 
estimates of SRMR and confidence intervals for them does not include models with mean 
structures. The definition of SRMR varies across SEM software, which also complicates 
specification of rules of thumb for asserting reasonable model fit based on it.  
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APPENDIX B: COMPARING NON-NESTED MODELS 

There are many forms of non-nested models. In SEM, non-nested model comparisons 
typically compare two models that have the same variables and the same observations in 
them, but this is not required. I restrict my discussion to the former case because the latter 
case introduces complexities that are beyond the scope of this book. In this Appendix, I 
first describe how to valuate if two models are nested, non-nested, or equivalent. I then 
consider the Vuong test and a BIC test for comparing non-nested models. 

Testing for Nesting and Model Equivalence  

Bentler and Satorra (2010) propose a 4 step method to evaluate nesting and equivalence 
structures for two models, M1 and M2. If the two models have different degrees of 
freedom (df), let M1 be the model with the larger degrees of freedom. For nested models, 
this means M1 is the more restrictive model and M2 is the less restrictive model. Here are 
the steps: 
 
Step 1. Conduct a standard SEM analysis of M1 using SEM software. Note the degrees of 
freedom for the model (dfM1), the predicted covariance matrix for the model (SigmaM1) 
for the model, and the predicted means in a mean structure model.  
 
Step 2. Conduct an SEM analysis of M2 using the same estimation method as in Step 1 
(e.g., maximum likelihood) but instead of using the raw data as the data to be analyzed, 
input SigmaM1 from Step 1 as the covariance matrix to be analyzed. Note the degrees of 
freedom for the model (dfM2) and the minimum of the fit function, FminM2. Because 
FminM2 is the minimum fit function using the predicted covariance matrix of M1 as data 
input, if the models are equivalent, the value of FminM2 should be zero or deviate from it 
by a small amount due to rounding error and numerical approximations. Thus, we set an 
error criterion, called ε, to be a small number like 0.00001.  
  
Step 3. Compute the difference in the degrees of freedom for the two models, dfDIFF = 
dfM1 – dfM2. 
 
Step 4. (a) If dfDIFF > 0 and FminM2 < ε, the models are nested 
            (b) If dfDIFF = 0 and FminM2 < ε, the models are equivalent 
            (c) If FminM2 ≥ ε, M1 is not nested in nor equivalent to M2  
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Mplus has automated the Bentler and Satorra method and extended it to a wide 
range of variable types, including continuous variables, count variables and categorical 
variables (see Asparouhov & Muthén, 2019b). For those already familiar with the Mplus 
programming language, I illustrate here the relevant Mplus syntax and output with two 
examples. If you do not know Mplus syntax, you will when you finish this book so you 
can then revisit this Appendix to evaluate model nesting as needed (Mplus programming 
is introduced in Chapter 11 and I also have resources for it on my website). For those 
who do not know Mplus syntax, you can skip to the section below called The Vuong Test 
and Tests of BIC Differences. 

I first illustrate a case where the models are nested. They are shown in Figure B.1. 
Model M1 posits that the treatment condition (T) impacts mediator 1 which, in turn, 
impacts a second mediator, which, in turn influences Y. Model M2 has these same 
dynamics but also includes a direct effect of mediator 1 on Y over and above its effect on 
Y through mediator 2. M1 is the more restricted model because, relative to M2, it omits a 
direct path from mediator 1 to Y. The mediators and Y are continuous whereas T is 
binary. 

 
     (M1)        (M2) 

Outcome

d1

Mediator 1

Mediator 2

T

d2

d3

Outcome

d1

Mediator 1

Mediator 2

T

d2

d3

 

  FIGURE B.1. Example 1 for Model Nesting Test 

Here is the Step 1 Mplus code for evaluating if the models are nested: 
 

1. TITLE: Step 1 model (M1) 
2. DATA: file = maindata.dat; 
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3. VARIABLE: 
4.   NAMES ARE t med1 med2 y ; 
5. ANALYSIS: CONV=0.000001; 
6. MODEL: 
7.     med1 on t ; 
8.     med2 on t med1 ; 
9.     y on med2 ; 
10. OUTPUT: ; 
11. SAVEDATA: NESTED=step2.dat; 
 

I number the lines for purposes of referencing here but the numbers do not appear in the 
Mplus code per se. Line 1 provides an arbitrary title for the analysis. Line 2 tells Mplus 
where to find the data file (it looks in the same folder that the input code is stored in), 
Lines 3 and 4 give names to the variables in the order in which they are input from the 
mainddata.dat file. Line 5 tells Mplus the convergence criterion to use in the analysis and 
Lines 6 to 9 define the M1 model using the ON statement from Mplus programming (see 
Chapter 11). Line 10 tells Mplus to give the default output. Line 11 tells Mplus to save 
the data for purposes of an evaluation of nesting and names the saved data file step2.dat. 
It will be saved in the same folder that the syntax input file is in.  
 After executing this program, you next execute the following Step 2 program:  
 
1. TITLE: Step 2 model (M2) 
2. DATA: file = maindata.dat; 
3. VARIABLE: 
4.   NAMES ARE t med1 med2 y ; 
5. ANALYSIS: NESTED=step2.dat; 
6. MODEL: 
7.   med1 on t ; 
8.   med2 on t med1 ; 
9.   y on med2 med1; 
10. OUTPUT: ; 
 

This program has the same basic structure as the Step 1 program except the M2 model is 
specified on the MODEL lines (Lines 6 to 10), the SAVEDATA line is omitted, and the 
analysis line (Line 5) requests a nesting analysis and specifies the data file saved in the 
Step 1 program as input for the M1 information.  

Here is the result published by Mplus in the output: 
 

Nested Model Check 
 
          Result                            Nested 
          Fit Function Value            0.00000000 

 
Mplus indicates the models are nested and provides the value of FminM2 from the Bentler 
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and Satorra method. Given this result, I can use the methods described in the main text to 
compare the two models, such as the chi square difference test, and so on. 
 As another example, consider the two models in Figure B.2. 

 
 

     (M1)        (M2) 

Outcome

d1
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  FIGURE B.2. Example 2 for Model Nesting Test 

Here is the Step 1 Mplus code for evaluating if the models are nested: 
 
TITLE: Step 1 model (M1) 
DATA: file = maindata.dat; 
VARIABLE: 
 NAMES ARE med1 med2 med3 y t ; 
ANALYSIS: CONV=0.000001; 
MODEL: 
  med1 ON med2 ;  
  med2 ON t ; 
  med3 ON med2 ; 
  y ON med1 med2 med3 ; 
  med1 ;  med2 ;  med3 ;  y ; 
OUTPUT: ; 
SAVEDATA: NESTED=step2.dat; 

Here is the Step 2 code: 
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TITLE: Step 2 model (M2) 
DATA: file = maindata.dat; 
VARIABLE: 
 NAMES ARE med1 med2 y ; 
ANALYSIS: NESTED=step2.dat; 
MODEL: 
  med1 ON t ;  
  med2 ON med1 med3 t ; 
  med3 ON t ; 
  y ON med1 med2 med3 ; 
  med1 ; med2 ; med3 ; y ;OUTPUT: ; 

Here is the Mplus result: 

Nested Model Check 

          Result                        Not Nested 
          Fit Function Value            0.00484059 

The models are not nested. If I want to formally compare them using statistical inference, 
I cannot use the traditional chi square difference test discussed in the main text. To 
accomplish such tests, I turn to the Vuong procedure described below. 
 Sometimes it is straightforward to identify the nesting status of two models and one 
can do so via a quick study of the model influence diagrams. The more experienced you 
get with SEM, the easier it becomes. However, for complex models even experienced 
SEMers may have difficulty determining the nesting status of two models. I recommend 
you use the Mplus NESTED method to evaluate the nesting and equivalence status of your 
models if you are going to make omnibus comparisons of them. Asparouhov and Muthén 
(2019b) discuss how to extend the approach to models with categorical/binary outcomes 
and mediators. 

The Vuong Test and Confidence Intervals for BIC Differences  

In some cases, it is possible to conduct inferential tests to compare non-nested models, 
but not always. Statistical methods for doing so have been outlined by Merkle, You and 
Preacher (2016) and implemented in an R library by Merkle and You called nonest2. One 
of the tests in this library is based on Vuong (1989) and the other is based on confidence 
intervals for BIC differences between the two models. For SEM models, the models 
being compared must focus on the same observed variables and the same individuals. 
Multivariate normality is assumed as well as maximum likelihood estimation. The 
underlying statistical theory is complex and I do not elaborate it here (see Merkel et al. 
2016 for details and a discussion of how to extend the method beyond maximum 
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likelihood modeling). I provide access to the tests on my website under the Programs tab. 
 In order two apply the tests to the two non-nested models, the models must have the 
property of being distinguishable; two models are indistinguishable if they provide the 
same fit to a population of interest, but not necessarily to an observed sample from that 
population (Merkel et al., 2016).10 The Vuong and BIC difference tests apply only to 
cases where the non-nested models are distinguishable. If you are unsure of whether two 
models are distinguishable, the nonnest2 package provides a test of distinguishability 
which can inform whether you move forward with the tests. The basic sequence of 
testing, adapted from Merkel et al. (2016), is as follows 

1. Use the Mplus nested program to determine if the models are equivalent, nested, or 
non-nested. 

2. If the models are nested, you can use a strategy of your choice from those in the main 
text to evaluate model differences (but see my additional discussion below). 

3. If the models are not nested, test for model distinguishability using the test provided by 
nonnest2. 

4. If the models are not distinguishable, then you cannot currently choose between them 
on empirical grounds. If they are distinguishable, then apply either the Vuong test or the 
BIC difference test to determine if the data favor one model over the other.    
 I applied the nonnest2 program to the data I collected for the two non-nested models 
in Figure B.2. Here is the output for the Vuong test: 
 
Variance test  
  H0: Model 1 and Model 2 are indistinguishable  
  H1: Model 1 and Model 2 are distinguishable  
    w2 = 0.041,   p = 6.34e-05 
 
Non-nested likelihood ratio test  
  H0: Model fits are equal for the focal population  
  H1A: Model 1 fits better than Model 2  
    z = -2.858,   p = 0.998 
  H1B: Model 2 fits better than Model 1  
    z = -2.858,   p = 0.00213 

 
The test for distinguishability (labeled as the Variance test) was statistically 

significant (p < 0.001) indicating that the null hypothesis that the two models are 

 
10 This is not the same as model equivalence because model equivalence is when the models yield the same fit in the 
population of interest as well as samples selected from the population.  
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indistinguishable could be confidently rejected. The Vuong test (labeled Non-nested 
likelihood ratio test) favored Model 2 over Model 1 (p = 0.002).  

Here are the results for the difference in the AICs and the BICs for the two models: 
 

Model 1  
 AIC: 5601.326  
 BIC: 5660.330  
 
Model 2  
 AIC: 5579.416  
 BIC: 5646.850  
 
95% Confidence Interval of AIC difference (AICdiff = AIC1 - AIC2)  
  4.143 < AICdiff < 39.676 
 
95% Confidence Interval of BIC difference (BICdiff = BIC1 - BIC2)  
  -4.286 < BICdiff < 31.246 
 
The confidence interval for the difference in BIC values contains the value of zero so the 
conclusion is that there is not sufficient evidence that Model 2 is better than Model 1. 
However, the difference in AIC values was statistically significant. The BIC result 
contradicts the Vuong test as well as the AIC confidence interval result. The penalty 
function for model complexity is a little larger for the BIC index than the AIC index and 
this likely explains the disparity in the two sets of results. In this case, I would probably 
conclude there is a difference between the models but the non-significant BIC difference 
would give me some pause.  
 The Vuong test (but not the BIC difference test) can be used to test fit differences 
between nested models but adjustments to the calculation of the test statistics are 
required. The nonnest2 program gives you the option for such applications. The reason 
some researchers prefer it to the more traditional chi square difference test is because 
model fit is defined using the Kullback-Leibler distance between each model thereby not 
requiring that either model have good fit by and of itself. The traditional chi square 
difference test, by contrast, technically requires that the chi square for the 
unconstrained/unrestricted model be good fitting which sometimes is not the case. In 
other words, the traditional test can be misleading and yield incorrect p values when it 
subtracts a chi square for a bad fitting model from a chi square for another bad fitting 
model when the models are nested. This dynamic does not apply to the Vuong test.  
 


