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INTRODUCTION 

In this chapter, I review key statistical concepts that I make use of in future chapters. I first 
address non-linear regression followed by a brief introduction to outlier resistant regression 
methods. I then discuss issues surrounding contrast multiplicity, the reporting of margins 
of error, sensitivity analyses, the problem of endogeneity, centering, and profile analysis. 
The coverage is eclectic, so you can read sections in any order based on your interests.  

NON-LINEAR REGRESSION 

When Barron and Kenny (1987) wrote their classic article on mediation and moderation, 
they framed their discussion using the statistical methods of linear regression. The 
assumption of linear relationships between variables dominates the social sciences; but are 
linear relationships really so ubiquitous? A 2021 Google Scholar search of “non-linear 
relationships in the social sciences” yielded over half a million “hits” and included articles 
on non-linear relationships between variables like depression and alcohol use, personality 
and the receipt of mentoring, arousal and brain function, dose-response associations, threat 
and repression, reward sensitivity and body mass index, attitudes and behavior, tourism 
development and economic growth, extraversion and job performance, and cognitive 
decline and aging, to name but a few. Non-linear relationships between continuous 
variables clearly have a place in social science research, but they have tended to take a back 
seat in mediation frameworks and analysis.  

Default use of linear functions in RETs can lead program evaluators astray. As one 
example, suppose individuals rate their concern for the environment on a 1 (low) to 5 (high) 
metric. It might be found that there is not much difference between people with scores of 
1 and those with scores of 4 in terms of their purchase of environmentally friendly products. 
However, there might be a substantial difference in such purchases between consumers 
with concern scores of 5 as compared with concern scores of 4 or lower (van Doorn, 
Verhoef & Bijmolt, 2007). Suppose a program seeks to increase concern for the 
environment as a way of impacting environment friendly purchases and produces change 
in the concern mediator from a mean score of 3.0 to a mean score of 4.0. This change likely 
will be unaccompanied by concomitant change in purchase behaviors because it is below 
the “purchase threshold.” The (erroneous) conclusion might be that environmental concern 
is not a worthy program target. However, the non-linear function, if it exists, suggests that 
if we could just change environmental concern a little bit more by moving the posttest 
mean above the threshold of 4, then the program might indeed make a meaningful 
difference. Such knowledge could be the difference between abandoning the program 
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versus strategizing how to create that extra nudge to get people across the threshold.  
Another example is the link between test anxiety and test performance of students. 

The relationship between these variables is an inverted U (Speilberger & Vagg, 1995): 
Increasing levels of test anxiety at the low end of the test anxiety dimension promotes better 
test performance because students then study harder and attend to questions more carefully 
when taking the test. At some point, however, test anxiety becomes too much and it 
interferes with test performance by negatively impacting the ability to study and to think 
clearly. A correlation between test anxiety and test performance ignores this dynamic and 
will yield a value near zero, leading one to conclude that addressing test anxiety will not 
test performance. Such a conclusion is erroneous.  

We need to be careful about thinking linear in a non-linear world. In the current 
section, I first review concepts key to understanding non-linear dynamics. I then discuss 
exploratory methods for determining if non-linearity is present in data. Finally, I review 
methods often used to model non-linear relationships. In future chapters, I expand these 
methods and illustrate how to execute such analyses in RETs. Learning this material helps 
protect you against being misled when evaluating programs because you have incorrectly 
assumed the operation of linear relationships.  

Functions and Mapping Relationships 

The concept of a function is central to statistical modeling. A simple analogy is to think of 
a device that you put something into and get something back based on your input. You 
might press a key that inputs the number 5 into the device and out comes the number 15. 
You might press another key that inputs the number 3 and out comes the number 9. The 
result in this case represents the function “take the input value and triple it.”  A general 
notation for functions is to use the letter f, as follows: 

f(X) = 3X 

which indicates the function X is to take an input value for X and triple it (often f is used 
in place of f). All functions have what are called a domain and a range. The domain is the 
set of possible input values and the range is the set of possible output values. Functions 
can apply to more than a single input. For example, the function f (X,Z) = X-Z has two 
inputs, X and Z, and an output that is the difference between them. If X = 5 and Z = 2, the 
function f (X,Z) yields the output 3. When one “maps” a function between Y and X, one 
seeks to specify what function applied to values of X produce the Y values.  

There are many types of functions that describe relationships between variables. A 
key challenge of modeling data is to determine the function that best describes variable 
relationships. Sometimes we have strong theory to guide our choice of functions, but other 
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times we must explore the data to determine the function that best characterizes it. As 
noted, a common function in the social sciences is the linear function, which consists of an 
intercept and a slope, shown here using sample notation and no disturbance term: 

Y = a + b X 

X is a variable and a and b are the intercept and the slope, respectively. In the modeling 
literature, the intercept and slope are called adjustable constants whose values are 
determined by the modeler, often based on data, so as to produce meaningful predicted 
values of Y. In some functions, adjustable constants have important substantive 
interpretation. This is the case for b, the regression coefficient, which tells us how changes 
in X are associated with changes in Y. Other adjustable constants, such as the intercept, 
might be of less interest but serve a necessary role, such as adjusting for scale metrics. In 
traditional OLS regression, Y and X are measured variables and the values of a and b are 
defined to minimize the sum of the squared difference between predicted and observed Y.  

In the linear model, a one unit change in X produces change in Y equal to the value 
of b. If X is the number of years of education, Y is annual income in dollars, and the value 
of b is $3,000, then for every one unit that X increases, Y is predicted to increase $3,000. 
This is true no matter if the change in education is from 7 to 8 years, from 12 to 13 years, 
or from 16 to 17 years; the change in Y is always $3,000. This constant rate of change is 
not true for non-linear relationships, as illustrated in Figure 6.1. At low values of X, small 
changes in X result in little change in Y, but at high values of X, small changes in X yield 
large changes in Y. The impact of X differs depending on where on X a change occurs. If 
X is motivation to achieve academically and Y is diligence in completing homework and 
studying for exams, changing motivation at the low end of the motivation dimension will 
have little effect on diligence; around an X score of 3, changes in motivation start to matter.  

There are many different types of functions other than linear. Alternative functions 
that are common in the social sciences include logarithmic functions, exponential 
functions, power functions, polynomial functions, and sigmoid functions, among others. 

Instantaneous Change 

A key to understanding mathematical representations of non-linearity is the concept of 
instantaneous change. The slope in a linear model is, in essence, a rate of change in Y 
given a unit increase in X. If I describe the change in Y between any two points as 

 ΔY = Y2 – Y1 

and the change in X between those points as  
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FIGURE 6.1. A curvilinear relationship 

ΔX = X2 – X1 

then the rate of change in Y relative to the change in X is the ratio of these differences, 
namely ΔY / ΔX. Suppose I want to measure the speed of a car driving between two towns, 
A and B, that are 120 miles apart. Let Y be the distance traveled by the car. When the car 
is in Town A and about to begin its journey, the car has traveled 0 miles, so Y1 = 0. When 
the car reaches Town B, it has traveled 120 miles, so Y2 = 120. Now let X be the amount 
of time the car spends traveling. Before the car leaves Town A, X1 = 0 hours. Suppose 
when the car reaches Town B, the car has been on the road for 2 hours. This means that X2 
= 2 hours. Using the logic from above, the rate of change in Y as a function of X is 

Rate of change = (Y2  - Y1)  /  (X2  - X1) =  ΔY / ΔX  = (120 – 0) / (2-0) = 60    

or 60 miles per hour. A one unit change in time (X, as measured in hours) is associated 
with a 60 unit change in distance (Y, as measures in miles). 

The value of 60 miles per hour represents the average speed of the car during the 
entire trip. However, it probably is the case that the car did not travel at a speed of exactly 
60 miles per hour during the entire trip. At times, it probably was driven faster and at other 
times slower. Suppose I want to know how fast the car was going 15 minutes into the trip. 
One way of determining this is to define values for X1 and Y1 at 14 minutes and 59 seconds 
into the trip and then to define X2 and Y2 values at 15 minutes and one second into the 
trip. I could then apply the equation for determining rates of change to this more narrowly 
defined time frame. Although the result would give us a sense of how fast the car was being  
driven 15 minutes into the trip, it would not tell us how fast the car was being driven at 
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exactly 15 minutes into the trip. I want to know at the very instant of 15 minutes into the 
trip, how fast the car was going, i.e., what was its rate of change at that particular instant. 
It is this concept of instantaneous change that a derivative in calculus refers to: The velocity 
the car is traveling at an exact point in time captures the notion of a derivative.  

For a non-linear relationship such as that in Figure 6.1, it is possible to calculate the 
instantaneous rate of change in Y at any given value of X. The derivative is the 
(instantaneous) slope of Y on X at that given point on X. Derivatives are calculated using 
a method called differentiation. For some modeling problems, calculating a derivative 
using differentiation is straightforward. For other problems, it can be quite complex. For 
linear models, the instantaneous rate of change in Y at some point on the X continuum is 
the same as the instantaneous rate of change in Y at any other point on the X continuum. 
By contrast, for the non-linear relationship in Figure 6.1, the instantaneous rate of change 
depends on where on the X continuum the change is occurring. The derivative 
(instantaneous rate of change) when X = 1 is 0.04, whereas when X = 8, the derivative is 
1.98. The rate of change in Figure 6.1 is lower when X is low as opposed to when X is 
high. One way to characterize a non-linear relationship between X and Y is in terms of the 
instantaneous rate of change at different points on the X axis.  

Smoothers and Smoothed Scatterplots: Exploratory Analyses  

Often, we are unsure if non-linearity exists between two variables so we perform 
exploratory analyses prior to formal modeling to gain insights into the possible existence 
of non-linear relationships. One way to do so is with smoothed scatterplots. A smoothed 
scatterplot plots X-Y data using a scatterplot but plots the conditional mean of Y (or some 
other summary statistic, such as a median) rather than raw Y scores as a function of the 
values of X. Essentially, we remove the “noise” of individual scores that vary about a 
conditional mean and concentrate on the Y means per se at each value of X. There are 
many types of smoothed scatterplots. I use a crude approach to illustrate the logic, but then 
discuss more elegant approaches (Wilcox, 2017). 

Suppose I am interested in the relationship between support for climate change 
policies and knowledge of the short-term negative consequences of failing to act on climate 
change. Most people are aware of the long-term negative consequences of climate change 
but they are less aware of the short-term consequences. A program might be devised to 
increase awareness of the short-term negative consequences. Knowledge of short-term 
negative consequences (STNC) is measured on a multi-item scale listing 15 negative 
consequences in the form of disagree-agree statements. Each item was rated as either -2 = 
strongly disagree, -1 = moderately disagree, 0 = neither agree nor disagree, 1 = moderately 
agree, and 2 = strongly disagree. The responses were averaged across items, with higher 
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scores indicating greater awareness of STNC. Favorability towards climate change policies 
was measured on a multi-item scale listing 10 climate change policies, each of which was 
rated on a 5-point unfavorable to favorable scale, -2 = strongly unfavorable, -1 = 
moderately unfavorable, 0 = neither unfavorable nor favorable, 1 = moderately favorable, 
and 2 = strongly favorable. The responses were averaged across items, with higher scores 
indicating greater favorability towards the policies, overall. The program used social media 
to outreach to a large number of people, 1,000 in the treatment condition and 1,000 in the 
control condition.  

Figure 6.2 presents a traditional scatterplot between the two variables. Non-linearity 
in the relationship is not readily apparent. By contrast, Figure 6.3 presents a smoothed plot 
of conditional means for favorability as a function of values of STNCs. To generate this 
plot, I divided the sample into 50 ordered groups from the lowest to highest scores on the 
short term negative consequences of climate change (n = 40 per group), a process called 
binning. Specifically, I ordered people from lowest to highest and then placed the lowest 
40 scorers in bin 1, the next 40 lowest scorers into bin 2, and so on until I had the highest 
40 scorers in the 50th bin. I then calculated the mean STNC and the mean policy favorability 
values for each bin and plotted these means in a scatterplot with a smoother line that shows 
non-linearity on the plot (for the technical mechanics of generating smoothers, see below).1 
In Figure 6.3, a non-linear trend is apparent. Smoothers are useful because they give 
insights into how mean Y values change across values of X.  

 

FIGURE 6.2. Traditional scatterplot between conscientiousness and productivity 

 
1 I bin the X values because there are too few Y observations at any given X value to obtain a stable Y mean. If there 
are many values of Y for each value of X, binning is unnecessary.  
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FIGURE 6.3. Smoothed scatterplot 

The binning method I used for the continuous mediator was crude. More formal 
smoothing methods are available. As an example, I can create a smooth line by identifying 
different points on the X dimension to plot. Suppose the first point is an X score of 1. I 
identify a span of scores that are somewhat below X =1 and somewhat above X = 1. The 
size of the span is also called the bandwidth. I calculate the mean of the Y scores within 
the span using an algorithm that empirically weights the Y scores in the span, with values 
closer to the point of interest receiving greater weight. This process is repeated for each 
target point, with the bandwidths defined so that Y scores in one span are not in another 
span. The resulting adjacent mean scores across the X are then connected by a line. Spans 
are specified by the analyst prior to analysis. The choice of the size of spans can affect the 
results. As a general rule, the smaller the span, the better the smoother will characterize the 
data but at the cost of a more jagged, less-pleasing smooth that is subject to random noise. 
Smoothers also can be misleading when there is sparse data within the spans, which often 
occurs at variable extremes. It is useful to examine smooths under different span scenarios. 
Sometimes smoother plots include the plotted raw data (a traditional scatter plot) with the 
smoother imposed on the plot; other times, only the smoother is shown.  

A running interval smoother extends traditional smoothing to any conditional 
measure of location. For example, instead of examining how the mean of Y varies across 
the X values, one can examine how the median or trimmed mean of Y varies across the X 
values. This is useful when dealing with variables that likely are outlier influenced. 
Smoothers also exist for the case where the outcome variable is binary, in which case the 
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mean of Y is a probability. The span of a running interval smoother is defined using an 
analog to a standard deviation based on a normalized median absolute deviation 
(traditionally called MADN). The span is defined as a fraction of MADN, often 0.20, 0.50, 
or 0.80 (see Wilcox, 2017). On my website, I provide two programs that allow you to 
compute smoothers for your data, one of which is a running interval smoother. 

There are many types of smoothers and ways of generating the smooth. As examples, 
a cubic spline smoother splits the X variable into different segments or spans and then fits 
a localized cubic polynomial regression equation predicting Y from X, X2 and X3 within 
each segment, generates predicted scores from each equation and then connects the 
successive predicted scores with a line. During the covid pandemic, a seven day moving 
average smoother for covid-related deaths often was reported in the media: For a given 
day across a time series of multiple days, the plotted data point was the mean of the number 
of deaths in the prior seven days to remove “noise” associated with day-to-day fluctuations. 
Other smoothers include b splines, which use basis functions (see Chapter X) and p 
splines, which are a form of b splines but with penalty functions for overfitting data.    

An important consideration when working with smoothers is the fact that the function 
relating two variables can change in the presence of covariates. The smoother in Figure 6.3 
was bivariate with no covariates. However, a non-linear relationship can become linear or 
a linear relationship can become non-linear when other variables are held constant. A 
method that allows one to take covariates into account is known as a partial residual plot, 
an example of which is shown in Figure 6.4. The outcome Y is predicted from X and three 
covariates. I seek to explore if the effect of X on Y is non-linear holding constant the three 
covariates. X is the extent to which individuals have strong coping skills for dealing with 
stress and Y is anxiety, which should be inversely related to one another. The horizontal 
axis on the plot represents the raw X scores on coping skills. The Y axis is (a) the regression 
coefficient in the four variable regression equation for the target predictor (which takes into 
account the covariates because the coefficient is a partial coefficient) times the person’s 
score on X plus (b) the person’s residual score from the full model (see Fox, 1991, for the 
logic of this composite score as well as the documents on my Webpage for preliminary 
analyses for Chapters 11 and 12). The plot shows a best fitting linear function for these 
component plus residual scores using a dashed line, as well as a smoother (the solid line) 
that captures the observed empirical relationship between the variables holding constant 
the covariates. If the smoother and best-fitting line diverge substantially, a non-linear 
function is suggested, with the form of the function indicated by the smoother. In Figure 
6.4, the data are consistent with a linear function linking X to Y holding constant the other 
predictors. My website also provides a program for component plus residual plots. I 
routinely examine such smoothers for most relationships in my RET models.  
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FIGURE 6.4: Partial residual plot 

 In sum, smoothers using conditional means, medians, or quantiles are a useful way 
of seeing data trends, often in ways that are easier to visualize than traditional scatterplots. 
One reason researchers construct scatterplots is to evaluate linearity assumptions. 
However, non-linearity can be difficult to see visually in a traditional scatterplot, especially 
if the variables have coarse metrics and there are many data points. Smoothers plot a 
"curve" that best fits the data and that curve can take any form. If a relationship is linear, 
you will observe a straight line smoother. When this occurs, linear regression is reasonable. 
If you observe a non-linear smoother, then you need to think about (a) does the non-
linearity make sense and (b) if you model it, are you just going to overfit the data and make 
life complicated unnecessarily. If you believe the non-linearity is meaningful, then you 
need to use appropriate methods to model it, such as polynomial regression or spline 
regression, which I now discuss.  

Power Polynomials 

A popular strategy for modeling non-linear relationships in the social sciences is to use 
polynomial functions. The general form of a polynomial function is  

f (X) = a + b X1 + c X2 + d X3 + … 

where X continues to be raised to the next highest integer value and each term has a 
potentially unique adjustable constant (slope). Polynomials can model data with many 
“wiggles and turns,” but the more wiggles and turns there are, the greater the number of 
power terms are required to model it. Note that when only a single term for X is used with 
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a power of 1, the polynomial model reduces to a linear model. The intercept a is an 
adjustable constant as are the multipliers, b, c, and d. Adding one term to the linear model 
(i.e., adding the term c X2) allows the model to accommodate a curve with one bend. A 
polynomial model with three terms (a + b X1 + c X2 + d X3) will accommodate a curve 
with two bends. A polynomial model with four terms will accommodate a curve with three 
bends. In general, to accommodate k bends, you need k+1 terms. To show the flexibility of 
the approach, Figure 6.5 presents a curve generated by a seven-term polynomial.  

 

FIGURE 6.5. Polynomial function with seven terms 

When we use polynomial regression to determine the appropriate non-linear function 
to use for our data, the most common strategy is to first evaluate the highest order equation 
that one thinks is viable (perhaps based on theory or by examining a smoother in 
preliminary analyses) and determine if the coefficient for the highest order term is 
statistically significant. If the coefficient is not statistically significant, then we do not need 
a model with that many bends (k-1) to describe the data. We then test a model with one 
fewer polynomials and determine if the coefficient for its highest order term is statistically 
significant. This elimination process continues until the first significant higher order term 
is observed. The highest order term might be X1, indicating no curvature is present.  

Suppose I think quartic regression (that raises X to the fourth) might apply. I 
multiply X by itself to create X2, multiply X2 times X to create X3, and multiply X3 times 
X to create X4. I then sequentially test the following equations, examining the statistical 
significance of the last term in each one: 
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Y = α  +  β1 X +  β2 X2 +  β3 X3 +  β4 X4 +  ε 

Y = α  +  β1 X +  β2 X2 +  β3 X3 +  ε 

Y = α  +  β1 X +  β2 X2  +  ε 

Y = α  +  β1 X +  ε   

I choose as my final model the equation that has the highest order polynomial that is 
statistically significant, assuming it makes conceptual sense.  

Quadratic Regression 

Suppose the most appropriate model the form of quadratic regression. In this section, I 
discuss how to interpret such a model. Quadratic regression has the form  
 
 Y = α  +  β1 X +  β2 X2  +  ε             [6.1] 

It can accommodate data that have a single bend. A quadratic function with a “full” bend 
(a parabola) is shown in the left panel of Figure 6.6. When one uses the quadratic model to 
fit data, the full curve does not have to be accommodated; any segment of it can be used 
relative to the data. The right panel of Figure 6.6 shows the same quadratic curve where 
only a segment of it has been used to describe the relationship between X and Y. In this 
sense, the quadratic model is quite general and can approximate a wide range of curves that 
have some degree of bend in them. However, one must be aware that if extended far enough 
across a range of X, the curve will eventually “reverse course” towards a non-monotonic 
functional form; one must be careful about generalizing outside the range of the studied X 
values. When you fit a quadratic regression model to data, the regression software 
automatically determines the segment of the curve that best fits the data under the 
constraint of maintaining a quadratic function.  

To illustrate quadratic regression, consider the case where a program to improve work 
productivity seeks to improve worker conscientiousness as a means of doing so. Worker 
productivity is the outcome and worker conscientiousness is a mediator. Suppose worker 
productivity (Y) is measured on a 5-point scale based on the average of three supervisors’ 
ratings for each worker using the metric 1 = very much below average productivity, 2 = 
moderately below average productivity, 3 = average productivity, 4 = moderately above 
average productivity, and 5 = very much above average productivity. Averaging across 
supervisors yields a many-valued  metric with decimals. Conscientiousness is measured by 
having three supervisors rate each worker on a multi-item scale in which each item has a 
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metric of 0 = strongly disagree, 1 = moderately disagree, 2 = slightly disagree, 3 = neither 
agree nor disagree, 4 = slightly agree, 5 = moderately agree, and 6 = strongly agree. Items 
consist of statements like “is diligent,” “is industrious,” “is attentive,” and so on. The items 
are averaged and scored so that higher scores imply higher conscientiousness, again with 
many values ranging between 0 and 6.  

 

 

FIGURE 6.6. A “full” bend and a segment of a bend 

Suppose I determine that the best fitting model is quadratic in form. I multiply the 
conscientiousness score (which I refer to as M because it is a mediator) by itself to create 
M2. I then regress Y onto M and M2 plus any relevant covariates (all covariates are mean 
centered, including dummy variable covariates; see below). Here are the results for the core 
terms in the equation: 

Y = 1.680 + 0.946 M + -.099 M2              [6.2] 

The simplest way to see the implied relationship between M and Y is to calculate predicted 
Y means at different M values across a range of M scores using Equation 6.2; then plot the 
predicted Y means against the M values. For example, the predicted worker productivity 
mean when conscientiousness is 0 is 

Y = 1.680 + 0.946 (0) + -.099 (0)2 = 1.680 

When worker conscientiousness is equal to 0.5, the predicted mean productivity is  

Y = 1.680 + 0.946 (0.5) + -.099 (0.5)2 = 2.128 

Figure 6.7 plots the conscientiousness scores at intervals of 0.5 and their associated 
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predicted mean productivity. Productivity increases as conscientiousness increases up to a 
point. Near a conscientiousness score of 4, the curve flattens, perhaps because highly 
conscientious workers start to obsess over details and lose sight of the larger work goals. 
On my website, I provide a program that produces such plots given a quadratic equation as 
input in conjunction with a target range of X scores.  

 

FIGURE 6.7. Plot of conscientiousness scores and their predicted means 

The coefficient for the first order term, b1, and the second order term, b2, in a quadratic 
model are subject to meaningful interpretation. Some researchers interpret b1 as reflecting 
the linear component of the curve and b2 as reflecting the non-linear part of the curve, but 
this characterization can be somewhat misleading. The b1 coefficient associated with M 
(conscientiousness) is the instantaneous change (derivative) when M has a score of zero on 
its metric. Stated more informally, when we are in the vicinity of a score of zero on M, the 
rate of change between M and Y, reflected by b1, is 0.946 units. For example, if 
conscientiousness changes by some small amount when M is 0, say to 0.05, then Y should 
change by (0.946)(0.05) units. Technically, the interpretation of b1 is as an instantaneous 
rate of change reflecting the effect of M on Y when M is 0.  

The coefficient for the squared M (b2) tells us for every unit that M increases, how 
much the instantaneous slope for M changes as we move up the M continuum away from 
M = 0. It can be shown that the amount of change in b1 that occurs given a unit change in 
M equals 2b2. The value of b2 in our example is -0.099. When we move up the M metric 
from a score of 0 to a score of 1, the (instantaneous) rate of change at M=1 will be 0.946 
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(the rate when M=0) plus (2)(-0.099) = 0.748. This means that the curve or instantaneous 
rate of change flattens somewhat, from 0.946 to 0.748. When we move yet further across 
the metric, say from a score of 1 to 2, the rate of instantaneous change will further shift 
from 0.75 to 0.75 + (2)(-0.099) = 0.55, reflecting a further flattening of the curve. A 
formula for calculating the value of an instantaneous rate of change at a given M is 

b at M = b1 + (2)(b2)(M)              [6.3] 

For example, when conscientiousness equals 1, the instantaneous rate of change is  

0.946 + (2)(-0.099)(1) = 0.748 

When conscientiousness equals 4, the instantaneous rate of change is  

0.946 + (2)(-0.099)(4) = 0.154 

You can see the flattening of the curve as M increases in Figure 6.7 as you move up the M 
continuum and you also can see in the Figure that in the “4 range” of M, the curve is 
relatively flat, which is consistent with the instantaneous rate of change being only 0.154. 
When characterizing a quadratic curve, I often report the instantaneous rate of change at 
substantively interesting values of the predictor, as discussed in Chapter 15.  
 In sum, the quadratic regression analysis indicates that the relationship between 
conscientiousness and worker productivity is non-linear and described by a single bend 
curve. At low levels of conscientiousness, increases in conscientiousness increase worker 
productivity. For example, when conscientiousness equals a value of 1, the instantaneous 
rate of change in worker productivity as a function of conscientiousness is 0.748. At high 
levels of conscientiousness, increases in conscientiousness have little impact on worker 
productivity. For example, when conscientiousness equals a value of 4, the instantaneous 
rate of change in worker productivity as a function of conscientiousness is 0.154. Had I fit 
a linear model to the data, I would not have uncovered this non-linear dynamic. Rather, I 
would have concluded that the impact of conscientiousness on worker productivity is the 
same at any point on the conscientiousness continuum.  

Cubic Regression 

Cubic regression works with first, second, and third order polynomials and has the form  

Y = α  +  β1 X +  β2 X2  +  β3 X3  +  ε            [6.4] 

Cubic regression can accommodate relationships that have two bends. A cubic function 
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with two “full” bends is shown in the left panel of Figure 6.8. Like the quadratic model, 
the cubic model can focus on segments of the full curve and can capture a range of two-
bend data, per the right panel of Figure 6.8. However, if extended far enough across a range 
of X values, the curve eventually takes forms like that shown in the left panel; again, one 
must be careful about generalizing outside the bulk of the operative multivariate cloud.  

 

FIGURE 6.8. Plot of conscientiousness scores and their predicted means 

To illustrate cubic regression, suppose a program to improve worker productivity 
seeks to improve job satisfaction with the idea it will increase productivity. Satisfaction is 
a mediator and is measured on a multi-item -2 to +2 scale where negative values indicate 
increasing levels of dissatisfaction and positive numbers indicate increasing levels of 
satisfaction. Work productivity is measured using the same approach as the previous 
conscientiousness example. To apply the cubic model, I multiply the job satisfaction 
mediator by itself to obtain M2 and I multiply M2 times job satisfaction to obtain M3. I then 
regress the outcome onto the cubic polynomial model (plus any mean-centered covariates). 
Suppose I obtain the following results for the cubic part of the equation:   

Y = 3.110 + 1.361 M + -0.074 M2 +  -0.113 M3 

As with the quadratic regression example, I use this equation to calculate the predicted 
mean value of productivity across the values of dissatisfaction from -2 to +2 with 
increments of 0.5. For example, to calculate the predicted mean worker productivity when 
job satisfaction equals -2, I obtain 
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Y = 3.110 + 1.361 (-2) + -0.074 (-22) +  -0.113 (-23) = 0.996 

Figure 6.9 shows the plot. There is a slight flattening of the curve at both the lower and 
upper ends of satisfaction, more so at the upper end. I provide on my website a program to 
plot predicted means for a cubic function  

 

FIGURE 6.9. Plot of satisfaction scores and their predicted means 

 The coefficient for M (which I refer to as b1) is an estimate of the instantaneous rate 
of change when M equals zero. It was 1.361. The formula for calculating the instantaneous 
rate of change at any given M value is  

b at M = b1 + (2)(b2)(M) + (3)(b3)(M2)            [6.5] 

For example, the instantaneous rate of change when satisfaction is -2.0 is 

1.361 + (2)(-0.074)(-2.0) +  (3)(-0.113)(-2.02) = 0.301 

and when it is 2.0, the instantaneous rate of change is 

1.361 + (2)(-0.074)(2.0) +  (3)(-0.113)(2.02) = 0.291 

Note that the instantaneous effect of job satisfaction on productivity weakens at the lowest 
levels of job satisfaction levels (rate of change = 0.301) and also at the highest levels of 
job satisfaction (rate of change = 0.291) as compared to when job satisfaction is at its 
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midpoint (rate of change = 1.361).   
 In sum, the cubic regression analysis indicates the relationship between satisfaction 
and productivity is non-linear and described by a two-bend curve. At both low and high 
levels of satisfaction, changes in satisfaction have lower impact on worker productivity 
than changes at moderate levels of satisfaction. Had I fit a linear model to the data, I would 
not have uncovered this dynamic. Rather, I would have concluded satisfaction impacts 
worker productivity the same at all points on the satisfaction continuum. In Chapter 15, I 
describe in depth how to apply quadratic and cubic regression to mediation models in the 
context of RETs. 

Overfitting and Collinearity 

When working with non-linear regression, one must be careful about overfitting. There is 
no question that with enough creativity and enough polynomials and functions, one can 
generate reasonably good fitting models to sample data. The issue is whether those models 
make conceptual sense and whether they accurately reflect what is operating in the 
population the sample is drawn from rather than some random trend in the sample data. 
For the data in Figure 6.9, does the flattening of the curve at the upper end make conceptual 
sense?  If it does not, I should not model it.  
 Figure 6.10 presents the same data as Figure 6.9 but now with a best-fitting regression 
line drawn through it. Note that a linear model captures reasonably well the broad trend in 
the data. Some might decide that it is better to work with the simpler linear model if the 
deviations from it are not substantively important.  

A final issue I should mention is that of multi-collinearity. A misconception many 
researchers have is that the high correlation between M, M2 and M3 and yet higher order 
polynomials is problematic because their high intercorrelations introduce collinearity 
problems. This generally is not the case, at least for traditional polynomial regression. 
Indeed, if you transform M (e.g., by mean centering it) and then form the power terms, the 
correlation between M and M2 and M3 will change, sometimes approaching 0. Despite this, 
the squared R, the coefficient for the highest order power term and its significance test 
remain unchanged. I  consider this issue in more depth later in this chapter, but the only 
time a high correlation between M, M2 and M3 becomes problematic is when the correlation 
among them is so high (r > 0.95) that it interferes with computer algorithms that require 
matrix inversion. If this error happens, simply mean center M. The correlation between M, 
M2 and M3 likely will decrease substantially, removing the estimation issue.  
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FIGURE 6.10. Plot of satisfaction and productivity with fitted line 

Spline Regression 

Another approach to modeling non-linearity is known as spline regression, also called 
piecewise regression. I might use it if polynomial regression cannot yield a proper curve 
to account for the data because parabolas eventually bend upward or downward at the 
extremes. In spline regression, we divide the curve into segments in a way that the within 
segment data have linear relationships. We then describe the linear slopes within each 
segment. Figure 6.11 uses the job satisfaction and work performance example but with 
different data that better illustrates the dynamics of spline regression. After inspecting the 
plot, I might decide to split the curve into three segments. Segment 1 is workers with 
satisfaction scores equal to or less than -1; segment 2 is workers with scores greater than    
-1 but less than 1; segment 3 is workers with satisfaction scores equal to or greater than 1. 
Note that the slopes for the first and third segments are effectively zero. However, the slope 
of the middle segment is decidedly nonzero (it equals 0.99, as I demonstrate below). A nice 
property of spline regression is that we stay within the confines of the familiar linear model; 
we are always interpreting slopes and slope differences across curve segments.  

The points on the satisfaction measure that define the segments are called spline 
knots, or more simply, knots. Spline regression is implemented by creating dummy 
variables to represent the different segments. D1 is scored 1 if the individual is in the first 
segment, otherwise 0. D2 is scored 1 if the individual is in the second segment, otherwise 
0. D3 is scored 1 if the individual is in the third segment, otherwise 0. One then selects k-1 
of the k dummy variables, with the left out dummy variable representing the reference 
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group. We then construct product terms between the k-1 dummy variables and satisfaction 
(which I designate as M because it is a mediator) and estimate the equation: 

 

   FIGURE 6.11. Data with three linear segments 

Y = α  +  β1 M +  β2 D2  +  β3 D3  +  β4 D2 M  +  β5 D3 M  +  ε 

In this case, I use the first segment as the reference group because I exclude D1. It turns out 
that β1 will equal the slope for the first segment (the reference group). β4 will equal the 
difference between the slope for the second segment and the slope for the first segment. β5 
will equal the difference between the slope for the third segment and the slope for the first 
segment. The intercept for the first segment is α. The difference between the slopes for the 
different segments (i.e., β4 and β5) are of interest because in a strictly linear relationship, 
the differences will equal 0 because the slope should never change as one moves from one 
“segment” to the next. The values of β4 and β5 tell us the how much the slope shifts as one 
changes segments. Here are the results for the equation: 

Y = 2.098  +  0.059 M +  0.917 D2  +  2.036 D3  +  0.933 D2 M  +  -0.003 D3 M  +  ε 

 The slope or regression coefficient for the first segment is b1 = 0.059. The slope is 
near zero, which is consistent with the data pattern in Figure 6.11. The significance test for 
the coefficient evaluates the null hypothesis that the slope is zero. The difference between 
the slope/coefficient for the second segment and the first segment is b4 = 0.933. The 
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significance test for b4 evaluates the null hypothesis that the slopes for the first and second 
segments are equal in the population. In this case, the coefficient was statistically 
significant (p < 0.05). The difference between the slope/coefficient for the third segment 
and the first segment is b5 = -0.003. The significance test for b5 evaluates the null 
hypothesis that the slopes for the first and third segments are equal in the population. By 
simple algebra, it can be shown that the slope for segment 2 is 

b for segment 2 = b1 + b4 = 0.059 + .933 = 0.992          [6.6] 

and the slope for segment 3 is 

b for segment 3 = b1 + b5 = 0.059 + (-0.003) = 0.056         [6.7] 

If I want to test the difference between the slopes for segments 3 and 2, I re-run the analysis, 
changing the reference group. For example, to make segment 3 the reference group, I use   

Y = α  +  β1 M +  β2 D1  +  β3 D2  +  β4 D1 M  +  β5 D2 M  +  ε 

The estimate and significance test for β5 isolates the slope difference for segments 2 and 3.  
To summarize, the relationship between job satisfaction and productivity is 

curvilinear. The curvilinearity can be characterized with reference to three segments on the 
satisfaction dimension. When job satisfaction is equal to or less than -1 (i.e., at the low end 
of the satisfaction dimension) the estimated effect of satisfaction on productivity is 0.059; 
changes in satisfaction in this portion of the curve do not appreciably affect productivity. 
When job satisfaction is greater than -1 but less than 1, the estimated effect of satisfaction 
on productivity is 0.992, indicating that a one unit change in satisfaction produces a 0.992 
increase in mean productivity. When job satisfaction is equal to or greater than 1 (i.e., at 
the high end of the satisfaction dimension) there appears to be a ceiling effect such that the 
estimated effect of satisfaction on productivity is again non-significant, b = 0.056.  

One can include covariates in spline regression models, per standard regression 
methods, without affecting interpretation except for adding the phrase that the covariates 
are “held constant.”  Covariate control is generalized across all segments, but one can 
introduce product terms to make the covariates segment specific, if desired. 

An important issue in applications of spline regression is the number of knots to use 
and the choice of the values of the knots. Spline regression results can be sensitive to where 
knots are placed, so their choice is important. Decisions about the values of the knots can 
be made a priori based on theory or post hoc either after examining the data or using 
specialized search algorithms (Muggeo, 2003). When using post hoc approaches for 
identifying knot values, the statistical theory for testing regression coefficients becomes 
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complex, sometimes resulting in bias towards the occurrence of Type I errors (Muggeo, 
2008). One strategy for dealing with this scenario is to use conservative alphas.  

As noted, the logic of spline regression has been extended beyond the use of linear 
models within segments (see Wilcox, 2017, and de Boor, 2001). For an introduction to 
spline regression, see Marsh and Cormier (2001). On my website, I provide a program for 
conducting spline regression. In addition to polynomial regression, it is another tool you 
can use to analyze curvilinear relationships between variables. I make use of spline 
regression in future chapters. 

Traditional Non-Linear Modeling 

The final approach I discuss for non-linear modeling uses classic non-linear regression 
methods. Consider a non-linear model that uses an exponential function when relating two 
variables, Y and X, using the following equation: 

Y = (a)(ebX)                  [6.8] 

where a and b are adjustable constants and e is Naperian’s constant, which forms the basis 
of natural logs and equals 2.71828.2 Figure 6.12 presents two examples of curves that 
conform to this model, where X is on a 0 to 4 metric and Y is on a 0 to 15 metric. The 
curve on the left has a positive b and the curve on the right has a negative b.  

 

   FIGURE 6.12. Curves based on an exponential function 

 
2 Like pi, Naperian’s constant is an irrational number that cannot be written as a fraction and has an infinite number 
of decimal places. It is called Naperian in honor of John Napier, who introduced the concept of logarithms.  
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 There are two mathematical properties to keep in mind for Equation 6.8:  First, any 
number raised to the power of zero equals 1. So, e0 is 1.0. Second, although X can take on 
positive, zero, or negative values, Y cannot be 0 or negative because the function on the 
right hand side of Equation 6.8 does not produce negative values no matter what values of 
X are used. If the Y metric takes on non-positive values, I can linearly transform Y by 
adding a constant to it so it is not negative, or I can modify Equation 6.8 with an adjustable 
constant, c, to accommodate the original Y metric, like Y = c + (a)(ebX). 
 It turns out that for the exponential model in Equation 6.8,  a is the predicted value 
of Y when X equals zero. This is because when X = 0, the right most expression becomes 
e(b)(0) which is e0 which must equal 1. When X = 0, Equation 6.8 thus reduces to (a)(1) = a. 
eb in Equation 6.8 is an index of the (multiplicative) change in Y associated with a one unit 
increase in X. If X increases by one unit, Y changes by a multiplicative factor of eb. As 
examples, if b = 0.695, then e0.695 = 2.00, and for every one unit X increases, Y doubles (is 
multiplied by 2.0). If b = -0.695, then e-0.695 = 0.50, and for every one unit X increases, Y 
is halved (is multiplied by 0.50). If b = 0, then e0 = 1.00, and for every one unit X increases, 
Y remains the same (is multiplied by 1.00).  
 To analyze data, I input the Y and X values for individuals into a non-linear regression 
program and I indicate the model to be fit to the data is Y = (a)ebX. The a and b parameters 
are identified as constants that I ask the program to estimate, much like we estimate a slope 
and an intercept in traditional linear regression. The program then uses the equation and 
derives estimates of a and b that minimize the sum of the squared differences between the 
predicted and observed Ys; or we might use some other fit or “loss” function other than 
ordinary least squares. Given a good fitting model, I plot the resulting curve and interpret 
it along with the adjustable constants, as appropriate. (To plot the curve, you can use the 
program multiple curve plot on my website).  
 These models often are of interest when characterizing decay curves for program 
effects after a program has finished. If Y is anxiety and X is time since a program to reduce 
anxiety is completed, the curve on the left of Figure 6.12 might characterize how anxiety 
increases over time as program effects decay and anxiety reverts to its pre-program levels. 
If Y is job performance and X is time since a program to increase performance has been 
completed, the curve on the right of Figure 6.12 might characterize how performance 
decreases over time as it reverts back towards its lower, pre-program levels.  
 One can use the non-linear model to specify how a k unit change in X at different 
points on the X continuum translates into changes in the predicted Y using the non-linear 
model. This requires substituting a value for X into the estimated equation to calculate a 
predicted Y and then comparing this with the predicted Y when a value of X + k is used. 
For example, if for Equation 6.8 the parameter estimates for a and b are 1.0 and 0.695, 
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respectively for characterizing the decay curve for anxiety, the predicted value of Y when 
X is 1 month post program completion is  

Y1  =  (a)ebX  = (1.0) e(0.695)(1) = 2.00 

The predicted value of Y when X is 2 months post program completion is  

Y2  =  (a)ebX  = (1.0) e(0.695)(2) = 4.01 

So, when X changes from 1 to 2, Y is predicted to increase by 4.01 – 2.00 = 2.01 units.  
Classic non-linear modeling of this form opens the possibility of using a wide range of 
functions linking two or more variables. This includes exponential functions, power 
functions and trigonometric functions, to name but a few. For an introduction to the 
different functions and their use in the social sciences, see Jaccard and Jacoby (2000).  
 Some researchers evaluate non-linear models using transformations in conjunction 
with traditional additive regression, but there are problems with this strategy. See the 
document Transformations and Non-linear Modeling on my website for details.  

OUTLIER RESISTANT ROBUST REGRESSION 

As noted in Chapter 5, a concern when conducting regression analysis is the existence of a 
few aberrant scores that distort basic trends in the data. Analyses of income, for example, 
are notoriously outlier susceptible if the data include a few extremely wealthy individuals. 
Such also is the case for variables like reaction times and the frequency of risk behaviors 
(drug use, alcohol use, unprotected sex). When we analyze data in RETs, we want to protect 
against aberrant scores distorting conclusions about causal effects.  

In regression modeling, distinctions are made between outliers and leverage. Outliers 
refer to how far a predicted outcome value for a case is from the fitted regression line, i.e., 
it is the magnitude of the error score, Y – Ŷ. Leverage refers to how unusual a person’s 
multivariate predictor profile is. Fox (1991) notes that in OLS regression, the impact of a 
case on regression coefficients is a multiplicative function of that case’s residual and 
leverage. If a case’s leverage is small, the impact of having large outlier status lessens. If a 
case’s outlierness is small, the impact of having large leverage status lessens.  

A problem with many traditional outlier analyses is that the outliers often influence 
the statistics that are intended to detect them. This is true of the Mahalanobis D2 statistic 
(or a component of it, the “hat” index), which is unfortunately widely used in SEM and 
regression-based outlier analyses. These methods also have difficulties with outlier 
masking, a phenomenon where no single outlier case is problematic but where multiple 
cases with outlier status considered collectively disrupt  estimation and characterizations 
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of fundamental data trends. Rousseuw and van Zomeren (1990) describe an 
outlier/leverage approach that uses robust regression to simultaneously analyze outliers and 
leverage and that also reasonably deals with masking.  

The Rousseuw and van Zomeren approach uses a robust regression method known as 
least median squares regression to calculate residuals which are then standardized using a 
robust algorithm. These standardized residuals are used to identify outliers. Leverage 
indices for the predictor variables are calculated using a robust minimum volume ellipsoid 
(MVE) method. The standardized residual values are plotted against the leverages, with 
vertical and horizontal lines to indicate cut points for each. A cutoff value of 2.5 is used 
for the residuals. For leverages, the cutoff value is the square root of a chi square quantile 
whose cumulative distribution function is 0.975 with df equal to the number of predictors. 
Figure 6.13 presents an example plot from an analysis predicting social phobia from a set 
of mediators and covariates. Cases above or below the horizontal lines are outliers. Cases 
to the right of the vertical line of the plot have large leverages. Cases with large leverages 
but that are not outliers are not necessarily problematic. Similarly, outlier cases that do not 
have large leverages are not necessarily problematic. Cases that are both outliers and that 
have large leverages are of concern. These cases appear in the upper and lower boxes on 
the right of the plot. In the present case, there are none. I suggest routinely applying this 
method to gain a sense of leverage and outliers for relevant linear equations in your model. 
I provide a program called robust outlier analysis for conducting the analysis on my 
website and I illustrate use of the approach in RETs in Chapter 11.  

 

FIGURE 6.13. Regression outlier/leverage analysis 
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If problematic cases are identified by the above method, the question becomes how 
to deal with them. One strategy is to drop the offending cases from the upper and lower 
right quadrants, re-do the regression analysis, and then determine if the coefficients and 
inferential tests are meaningfully affected. If not, one simply reports the full-data results. 
If the results are affected, then a corrective should be pursued. Wilcox (1998) shows that 
dropping cases based purely on outlier status on the outcome can  undermine the accuracy 
of standard errors, p values, and confidence intervals for the regression coefficients. Wilcox 
notes that eliminating cases based only on leverages typically does not have such effects. 
As such, one must be cautious about using discarded-case regression based on post hoc 
identified outliers. One reasonable corrective is to apply an outlier resistant regression 
method instead of using traditional regression. Wilcox (2021) describes over a dozen such 
methods, each with strengths and weaknesses. In this book, I make use of three of them, 
quantile regression, trimmed mean regression, and MM regression. I consider each, in turn.  

Quantile Regression  

Quantile regression is analogous to traditional regression that examines mean outcome 
values as a linear function of predictors. However, quantile regression can analyze outlier 
resistant medians (the 0.50 quantile of a distribution) rather than means. As such, it is a 
form of outlier-resistant regression. In fact, quantile regression can be used to analyze any 
quantile (e.g., the 90th quantile, the 10th quantile) to determine how predictors affect the 
upper and/or lower sections of an outcome distribution not just the center of it as reflected 
by a mean or median.3 For example, the 10th quantile is the value in a distribution that 10% 
of the scores are less than. If my outcome is annual income, instead of analyzing how the 
median income differs as a function of participating or not participating in a program to 
raise income (using a treatment versus control dummy-variable predictor in a quantile 
regression), I can instead determine how the cut-off value for the lower 10% of the income 
distribution differs for the treatment versus control groups using q = 0.10. I might find that 
the program raises the quantile value defining the lower end of the distribution even though 
it does not affect the median income or quantile values for the upper levels of the income 
distribution. For example, the median income for both the treatment and control conditions 
might be $25,000. However, the 10th quantile might be $12,000 in the treatment condition 
but $10,000 in the control condition. I often use quantile regression to evaluate group 
differences at q=0.20, q = 0.50, and q = 0.80 to gain fuller perspectives on program effects 
on the outcome distribution, not just the center of the distribution.  

Quantile regression is robust to outliers but not to large leverages. For this reason, it 
is not uncommon for researchers to conduct leverage analyses of the predictor space and 

 
3 Quantiles use the notation q = 0.50 , where the entry to the right is the quantile of interest, in proportion form.  
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to apply quantile regression after cases with high leverages have been removed. Wilcox 
(2021) makes the case for two robust leverage detection methods, one that uses a minimum 
generalized variance method and the other that uses a projection-type method. The 
underlying mathematics are described in Wilcox (2021). Another robust strategy for 
identifying high leverages that works reasonably well is the MHMCD75 method (Leys et 
al., 2018; Rousseeuw, & Leroy ,1987). I illustrate the methods in future chapters and 
provide programs for them on my website.  

The interpretation of coefficients in quantile regression follows the same logic as 
traditional multiple regression except instead of means, the coefficient is interpreted with 
respect to the values of the targeted quantile. Dummy variables, product terms, and 
polynomials all are interpreted in ways analogous to multiple regression. If I perform a 
quantile analysis using q = 0.50 and my predictor is a dummy variable for program 
condition scored 0 = control and 1 = treatment, then the coefficient for the predictor is the 
estimated outcome median difference between treatment and control individuals. If my 
predictor is the number of years of education, then the coefficient for it indicates how much 
the predicted median of the outcome changes for every one unit increase in education.  

Quantile regression assumes continuous outcomes. In RCTs, we sometimes only have 
coarse, discrete measures of continuous constructs, say, with 5 to 7 categories. This can 
produce degenerate solutions in quantile regression. One way of dealing with such 
demands is to smooth the outcome measure by adding some “jitter” to it (Machado & 
Santos Silva, 2005). Jittering adds a very small amount of random perturbance to each 
score – not enough to affect substantive results but enough to allow the statistical 
algorithms to estimate the parameters of interest. I discuss jittering in more detail in the 
supplement Quantile Regression on my website under the resources tab for Chapter 6.  

For discussions of quantile regression more generally, see Hao and Naiman (2007), 
Koenker (2005), and Wilcox (2021). For further applications of quantile regression 
concepts to the analysis of intervention effects in RETs, see Chapters 8 and 11.   

When estimating the effects of a variable on an outcome in the presence of covariates 
or multiple predictors, statisticians distinguish between conditional quantile regression 
and unconditional quantile regression, also called marginal quantile regression 
(Angrist & Pischke, 2009; Firpo, Fortin & Lemieux, 2009; Porter, 2015). The two 
approaches address different questions and I develop the distinctions between them shortly. 
In my opinion, conditional quantile regression tends to be more useful for randomized 
experimental designs for reasons I develop in Chapter 8 and the documents cited on the 
Resources tab for that chapter, but this is not a hard and fast rule. 

I find it helpful to think of quantile regression as informing us about the estimated 
effects of predictors on an outcome distribution. If an intervention to improve annual 
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income raises the 0.10 quantile value of income from $15,000 in the control group to 
$17,000 in the intervention group, this means that those who are at the 0.10 quantile in a 
world where the intervention has occurred tend to be economically better off than those at 
that same quantile in a world where the intervention has not occurred. The key to 
interpretation is that the program has changed what it means to be in the 0.10 quantile of a 
distribution. For example, I can say that those who are in the bottom 10 percent of the 
outcome distribution, whoever they may be, are, as a collective, better off in a world in 
which they have experienced the intervention than a world in which they have not. 

The phrase “whoever they may be” takes on special meaning in conditional quantile 
regression. Suppose my outcome is the natural log of wages that young adults are paid and 
I plan to control for years of education as a covariate when I analyze the relationship 
between a program mediator, M, and wages.4 Here is a density plot of the outcome 
distribution of log wages in the sample data with the scores of two individuals, A and B, 
demarcated to reflect their standing or place in the distribution:  

 
 

 
 
Note that Person A is in the lower portion of the wage distribution and Person B is in 

the upper portion. Now suppose when analyzing log wages, I conditionalize this 
distribution on the number of years of education and that Person A has 5 years of education 
and Person B has 15 years of education.  Here is the scatterplot between log wages and 
education with the population distribution of wages shown in red when education equals 5 
years and again for 15 years: 

 
4 I address in Chapter 8 why a log transform is used. My example here is from the Cross Validated website.  
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The solid lines on the plot represent the linear function between the number of years 

of education and the median log wages (the lower line where q = 0.50) and for the 90th 
quantile of log wages (the upper line where q = 0.90). In both cases, the values of the 
quantile increase as the number of years of education increases as reflected by the slopes 
of the lines. This is not surprising because education influences wages and it is because of 
this influence that I want to statistically control for education when analyzing the mediator-
outcome relationship, i.e., education is a potential confound. I also show on the plot the 
locations of the data points for Person A and for Person B. Note that for the conditional 
distribution of log wages when years of education equals 5, Person A has a high wage 
relative to other people with 5 years of education per the red curve reflecting the 
distribution. Indeed, Person A’s income is close to the 90th quantile of that distribution. 
Even though Person A has a relatively low wage in the unconditional wage distribution 
shown earlier and Person B has a relatively high wage in that distribution, for the 
distribution conditionalized on education, Person A and Person B are in roughly the same 
relative positions of the conditional distributions, near their respective 90th quantiles. This 
point is fundamental: Conditional quantile regression focuses analysis on the conditional 
distributions defined by the predictors in one’s regression model. It documents the 
relationship between variables across the conditional distributions of the outcome for 
different predictor values. As such, interpretation of the coefficients should be framed in 
terms of the different subgroups that are defined by the predictors, i.e., in terms of  
conditional effects.      

Some researchers prefer instead to parameterize quantile regression in ways that 
focus on the unconditional distribution of the outcome when predicting quantile values 
from one or more predictors. For example, I might want to estimate the effect on the median 
wage for the unconditional distribution for a predictor, say M, when it takes on the value 
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of m relative to when it takes on the value m+1. Or, I might want to estimate the effect on 
the 10th quantile in the unconditional wage distribution of M taking on a score of m+1 
relative to a score of m. This is what unconditional quantile regression does (see Firpo et 
al., 2009). It seeks to document the change in the unconditional distribution of the outcome 
that occurs at a given quantile (e.g., the median) given a one unit change in a predictor. The 
challenge is to accomplish this estimation while controlling for the potentially spurious 
causal influence on the outcome of the other predictors in the equation but without resort 
to traditional controls vis-à-vis conditional quantile regression.  

On my website, I provide a computer program that performs both conditional and 
unconditional quantile regression. It can be used to estimate the effects of an intervention 
on a mediator, the effects of an intervention on the outcome, and the effects of a mediator 
on the outcome, all framing effects in terms of different quantiles rather than in terms of 
means and mean differences (see the document titled Quantile Regression Applied to RETs 
on the resources tab for Chapter 8). The conditional quantile regression program on my 
website uses algorithms described by Koenker (2005) and unconditional quantile 
regression uses algorithms from Firpo et al. (2009). In Chapter 8, I introduce the concept 
of quantile treatment effects (QTEs) and provide programs on my website to estimate these 
for both conditional and unconditional regression models.   

Trimmed Mean Regression  

Another type of robust regression is called trimmed mean regression. Instead of 
analyzing outcome means or medians in the regression analysis, trimmed mean regression 
analyzes trimmed means of the outcome and how they vary as a function of predictors. 
Trimmed means are calculated by trimming away or eliminating an a priori specified 
percent of the cases at the upper and lower ends of a distribution and then calculating the 
mean on the remaining cases. Because outliers typically occur in the distribution extremes, 
trimming the extremes often eliminates outliers. Sometimes I use 10% trimming and other 
times I use 20% trimming. Technically, when using trimmed means one does not make 
inferences about population means; one makes inferences about trimmed means.  

Some researchers believe that trimming extremes of a distribution is throwing away 
data but it is not. Trimming uses all of the data to order cases from lowest to highest so that 
the lowest and highest, say, 10% of scores can be trimmed. In this sense, it uses all of the 
data. It is no different than calculating a median by identifying the single score in a 
distribution that 50% of the cases are above and 50% below. Indeed, the median is a 50% 
trimmed mean. A 0% trimmed mean is the traditional mean.  

Social scientists often are interested in studying extreme groups, such as highly 
depressed individuals or heavy drug users. Some analysts complain that trimmed means 
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discard such groups, thereby undermining the utility of trimmed means. Actually, when 
scientists study extreme groups, they usually define the groups (e.g., heavy heroin users) 
as the population of interest and invoke specialized sampling methods to select such 
individuals for study. They perform statistical analyses on the extreme groups and may 
compare them with the general population. Trimming does not preclude such strategies.  

Given trimming, specialized methods are required to estimate standard errors, p 
values, and confidence intervals; one does not simply trim the data and then apply standard 
analytics to that data. Like quantile regression, trimmed mean regression accommodates 
outliers but does not protect against aberrant leverages. The leverage adjustment strategy 
for quantile regression can be applied to trimmed mean regression as well. For a discussion 
of trimmed means and trimmed mean regression, see Wilcox (2021) and Koenker and 
Portnoy (1987). I provide a program for trimmed mean regression on my website. It also 
can be used to estimate effects of an intervention on an outcome, the effects of an 
intervention on mediators, and the effects of mediators on outcomes. I describe how in 
Chapter 8. 

MM Regression  

The third robust regression method I sometimes use is MM regression. This method 
focuses on central tendency indices that adjust for outliers but in ways that are distinct from 
medians and trimmed means. Trimmed means require a researcher to state a priori how 
much data to trim. Medians, as noted, are 50% trimmed means, again with the amount of 
trimming defined a priori. With M measures of central tendency, one empirically identifies 
extreme scores and then either eliminates or downweights those scores when computing 
average scores. The extreme scores that are downweighted might occur only in one tail of 
the distribution. Or, the number of downweighted extreme scores in one end of the 
distribution may differ from the number of downweighted outliers in the other end. Or, no 
scores may be flagged as requiring downweighting. Such subtleties are not taken into 
account with regression analyses focused on trimmed means.  

MM regression was originally developed by Yohai (1987). Recent extensions of the 
method combine the strengths of a robust regression strategy known as M regression, 
which has good efficiency properties, with those of another robust regression method called 
S regression, which has high finite breakdown points. MM regression merges the two 
approaches. Notable are the extensions of MM regression by Koller and Stahel (2011, 
2017) and Koller (2012). There are three stages to these newer MM methods. In the first 
stage, a robust, high breakdown estimator is computed through S estimation. In the second 
stage, a robust M-estimate is computed using the residuals from the first S-estimate 
regression. In the third stage, the final M-estimation regression parameters are derived. 
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Developments by Koller (2012) make the approach amenable to models that include 
categorical predictors, something that has proved challenging for many robust regression 
methods. The adapted MM estimation method tends to work best with sample sizes of 100 
or more and when the ratio k/N (where k is the number of predictors and N is the sample 
size), is 0.06 or less (see Kohler, 2012, for ways of handling scenarios with ratios larger 
than 0.05). For technical details, see Wilcox (2017) and Koller (2012) as well as Adedia et 
al. (2016) and Appiah et al. (2016). The interpretation of coefficients in MM regression are 
the same as for traditional regression, except characterizations are in terms of M measures 
of central tendency rather than means. I provide a computer program on my website for 
calculating MM regression. It also can be used to estimate the effects of an intervention on 
an outcome, the effects of an intervention on mediators, and the effects of mediators on 
outcomes. I discuss these possibilities further in Chapter 8. 

 In sum, you will encounter scenarios in RETs where outliers and leverages will be 
of concern. These scenarios can sometimes be addressed using quantile regression, 
trimmed mean regression, and/or MM regression. These methods are not available in 
traditional SEM software. However, one can still use them to analyze mediation and 
moderation dynamics in RETs, as I show in future chapters.  

THE PROBLEM OF MULTIPLE SIGNIFICANCE TESTS 

RETs are complex and their analysis invariably involves many tests of statistical 
significance. We not only test the effects of the program on multiple mediators but we also 
test the effects of multiple mediators on one or more outcomes. When conducting so many 
significance tests, one worries that some of the results might be statistically significant just 
by chance, i.e., that we will falsely conclude an effect exists due to a p value being less 
than 0.05 when, in fact, no effect exists. If I test for the effects of the program on each of 
five mediators, might one or more of those tests be statistically significant just by chance?    
 The above question addresses whether I have made a Type I error during significance 
testing, i.e., rejected the null hypothesis when it should not have been rejected. We typically 
control for such errors by setting our alpha level to 0.05 for a given significance test. Type 
I errors can still happen, but, in theory, they should happen rarely, only 5% of the time. 
The problem with conducting multiple significance tests is that the Type I error rate can 
inflate across the tests. Consider a coin flipping analogy. If I flip a coin, there are two 
possible outcomes that can occur, one of which is a “head” and the other a “tail.” For the 
sake of exposition, treat obtaining a head as an “error.” The likelihood of observing a 
“head” or an “error” on a given coin toss is 1/2 = 0.50. If I flip a coin twice, there are four 
possible outcomes that can occur, (1) a “head” on the first flip followed by a “head” on the 
second flip, (2) a “head” on the first flip followed by a “tail” on the second flip,  (3) a “tail” 
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on the first flip followed by a “head” on the second flip,  and (4) a “tail” on the first flip 
followed by a “tail” on the second flip. Note that a “head” occurs on three of the four flips, 
so the  probability of a “head” occurring on at least one of the two flips is 3/4 = 0.75. Even 
though the probability of a “head” is 0.50 on a given flip, the probability of observing at 
least one “head” across two flips is 0.75. A similar inflation process operates for Type I 
errors with multiple significance tests.  

The most common approach to controlling Type I error rates across multiple contrasts 
is to use a method that forces the probability of making at least one Type I error across the 
contrasts to remain at the per comparison alpha level of 0.05. Some methodologists feel 
that controls for inflated error rates should be invoked whenever multiple contrasts are 
performed. However, doing so comes at a cost; the controls reduce statistical power, with 
the result possibly being an unacceptably high rate of Type II errors, i.e., declaring effects 
as non-significant that should be declared significant. If Type II errors are important, the 
reduced power imposed by controlling for inflated Type I errors may be unacceptable.  

One way of balancing Type I and Type II errors is to define different “families” of 
contrasts and to control for multiple contrasts within a family but not across families. A 
family of contrasts is a subgroup of contrasts grouped together based on theoretical and/or 
practical criteria. A difficulty with this strategy is specifying the criteria for grouping 
contrasts into families, as I elaborate below. In statistics, we refer to the error rate across 
contrasts within a family as the familywise error rate (FWE). It is the FWE that 
researchers often want to keep at 0.05. 

Although some researchers argue for the importance of using FWE corrections, there 
also are researchers who question the practice (Gelman, Hill & Yajima, 2012; O’Keefe, 
2003). Critics of such adjustments argue that familywise correction methods are too 
extreme in that they assume one false alarm across multiple contrasts is a worst-case 
scenario, even more important than missing potentially important effects within the family 
due to low statistical power. Critics also emphasize ambiguities associated with defining 
families within which to invoke the controls. If contrasts are grouped according to 
“theoretical coherence” exactly what defines theoretical coherence? Ambiguities are 
illustrated by McDonald (2014) who describes a study by García-Arenzana et al. (2014). 
García-Arenzana et al. tested hypotheses about the associations of 24 different dietary 
variables with mammographic density, a risk factor for breast cancer. Table 6.1 presents 
the results for their tests in terms of p values. How should researchers group these foods 
into families for purposes of controlling family-wise error rates? Should it be based on 
types of foods?  Or, should all of the contrasts just be treated as one large family? What 
categorization scheme for food type should be used? Should one use a categorization 
scheme that is functionally driven (via cancer mechanisms) or one that uses conventional 
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food typologies (e.g., meats, vegetables)? García-Arenzana et al. (2014) also tested the 
association of 13 non-dietary variables to mammographic density, such as age, education 
and SES. Should these be included in the consideration of families? What if a year later 
García-Arenzana et al. conduct another study examining the role of 30 dietary variables in 
a different set of research participants? Should these tests be included in their family of 
tests by reanalyzing the original data taking into account the larger families?   

 
Table 6.1: Multiple contrasts 

 
Total calories  p < 0.001 Butter                p < 0.212    Potatoes              p < 0.569 
Olive oil          p < 0.008 Vegetables        p < 0.216    Bread                  p < 0.594 
Whole milk     p <  0.039 Skimmed milk  p < 0.222    Fats                     p < 0.696 
White meat     p <  0.041 Red meat           p < 0.251    Sweets                p < 0.762 
Proteins          p <  0.042 Fruit                  p < 0.262    Dairy products    p < 0.940 
Nuts                p < 0.060 Eggs                  p < 0.275    Semi-skim milk  p < 0.942 
Cereals/pasta  p < 0.074 Legumes           p < 0.341    Total meat           p < 0.975 
White fish       p < 0.205 Carbohydrates  p <  0.384    Processed meat   p < 0.986 

 
The problem is that there are no straightforward guidelines for defining families. 

Having said that, there are some traditions that have evolved in the social sciences. For 
ANOVA-based factorial designs, the tradition is to define families by factors, their 
interactions, and the type of contrast performed. For an AXB design, one family is the 
pairwise contrasts for the main effect of factor A, another family is the pairwise contrasts 
for the main effect of factor B, a third family is the simple main effects for factor A at the 
different levels of factor B, and a fourth family is the interaction contrasts. In multiple 
regression, each continuous predictor is traditionally viewed as its own family, hence, there 
are no controls for FWE for them. This is analogous to what we do in ANOVA when we 
examine omnibus F tests for each main effect and interaction effect separately with no 
controls for FWE across those omnibus tests. In my opinion, tradition is not necessarily a 
good reason to do things and it is surprising  how little has been written about why the 
particular traditions I note here are reasonable.  

Bayesians argue that one’s confidence in an effect should be determined by the 
broader theoretical context surrounding that effect as well as the prior evidence that 
supports contrast results rather than whether additional contrasts are conducted that have 
little or no bearing on the effect (Dienes, 2011). For traditional correction methods, two 
investigators analyzing the same data for the same effect can reach different conclusions 
about the effect depending on what other contrasts they decide to conduct and how they 
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define their contrast families, a feature Bayesians find unsatisfactory. Bayesians tend to 
argue against invoking familywise error rate controls, emphasizing instead prior odds, 
likelihood ratios, and posterior odds. For details, see Dienes (2011).  

Methods of Controlling Familywise Error Rates 

One strategy for controlling familywise error rates is to use a two-step procedure (1) 
perform an omnibus test (e.g., an overall F test for a factor in an ANOVA) and (2) if the 
omnibus test is statistically significant, pursue individual contrasts using a follow-up 
procedure. If the omnibus test is not statistically significant, then do not pursue the 
individual contrasts and declare them all statistically non-significant. This represents what 
is called a “two-step” strategy. Most of the popular methods for controlling familywise 
error rates (e.g., a Tukey hsd test for means, a Bonferroni test) do not require this two-step 
process because their underlying statistical theory does not presume the use of an omnibus 
test. In general, most two-step approaches do a poor job at controlling familywise error 
rates (see Jaccard, 1998, for why this is the case). In general, there are better methods than 
the two-step-omnibus-test-first strategy for controlling FWE rates.  

An alternative strategy uses the well-known Bonferroni method. For this approach, 
you set the critical alpha level at, say, 0.05 and then divide this value by the number of 
contrasts, k, in your family. For example, if k = 5, then the critical alpha for each contrast 
is 0.05/5 = 0.01. For a result to be declared statistically significant in this case, the p value 
for the contrasts must be less than 0.01 rather than 0.05. Note that this is analogous to 
taking the original alpha level (0.05) and splitting it up among the contrasts. In the 
Bonferroni method, you split the alpha level into equal parts and assign the (same) split-up 
alpha value to each contrast. It turns out, this is a very conservative approach and often has 
too adverse an effect on statistical power.  

Modifications to the Bonferroni method have been proposed that offer better 
statistical power but that maintain the FWE rate at the desired level. The Holm modified 
Bonferroni method is a good alternative. It also splits up the overall alpha level among the 
contrasts, but the allocation scheme is different than the Bonferroni method. The Holm 
method is a “step down” procedure and involves ordering the observed p values in the 
family from lowest (smaller p values) to highest (larger p values). For k contrasts, the most 
significant result is compared against a critical alpha of alpha divided by k, namely the 
same as the traditional Bonferroni critical alpha. The next most significant result (Step 2) 
is compared against a critical alpha of alpha/(k-1). The next most significant result (Step 
3) is compared against a critical alpha of alpha/(k-2). And so on, until the first instance of 
a non-rejected null hypothesis occurs. At that point, all subsequent contrasts are declared 
statistically non-significant.  
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Another method that has gained popularity is the False Discovery Rate (FDR). With 
the FDR method, we no longer focus on the probability of making at least one Type I error 
across the contrasts. Rather, we specify a priori the proportion of falsely rejected contrasts 
across the multiple contrasts that are deemed tolerable. For example, if I set the FDR at 
0.05, I am declaring it is tolerable to have 5% of the contrasts be false rejections of the null 
hypothesis. This is not the same as maintaining the probability of at least one Type I error 
at 0.05 across multiple contrasts. The FDR method tends to have more statistical power 
than the modified Bonferroni methods, so many researchers prefer it when the number of 
contrasts in a family is large and the sample size is on the small side. However, it is still 
prone to large numbers of Type II errors. The use of a 0.05 tolerance-for-error rate maps 
crudely onto the traditional use of a 0.05 alpha level, but it can be adjusted upward or 
downward depending on context. See Keselman, Cribbie & Holland (1999) for the 
underlying logic and how to apply the method.  

On my website, I provide programs that apply both the Holm modified Bonferroni 
method and the FDR method to multiple contrasts.  

In small sample RETs, one typically regresses each endogenous variable in the model 
onto all predictors (plus covariates) that have causal arrows pointing directly to them. The 
result often is a large number of coefficients in linear equations which in the minds of many 
raises issues of familywise error corrections for multiplicity. As noted, such corrections are 
controversial more generally but they are especially so in pilot studies where the focus 
often is on identifying promising leads in one’s data. The better performing methods for 
multiplicity corrections (the Holm modified Bonferroni method and the False Discovery 
Rate) are sample size demanding and typically dramatically increase Type II errors in small 
scale pilot studies to the point the methods often are untenable. Their application too often 
leads to missing important effects. In these scenarios, I tend to favor the Bayesian 
perspective whereby the judged truth value of a result/proposition (i.e., its posterior 
probability) should be based on the weight of the prior support for the proposition (i.e., the 
prior probability) and the likelihood ratio for the result given the proposition is true. To 
repeat, iIt does not matter, according to Bayesians, if one has conducted a different 
statistical analysis on some other outcome or predictor or mediator that has no bearing on 
the result of interest. What matters is the prior evidence for the effect and the theoretical 
coherence of the result. In the next section, I discuss a strategy for dealing with the problem 
of multiplicity more generally that strikes a compromise between the opposing 
perspectives.  

A Tentative Approach 

My own approach to multiple contrasts in RETs is to begrudgingly define families 
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consistent with tradition unless I have a compelling reason not to. I do the best I can to 
justify the theoretical grouping of contrasts into families given substantive criteria and 
theory, but I admit the task is not easy nor is it unambiguous. I then pursue contrasts both 
with and without familywise or FDR controls to determine if conclusions change as a 
function of doing so. I prefer using either the Holm modified Bonferroni method or the 
FDR method. If my conclusions are the same both with and without the corrections, then I 
can move forward with my conclusions with more confidence. If the conclusions change 
depending on whether the controls are invoked, then I approach my conclusions with 
theoretical tentativeness, but usually favoring the point of view of Bayesians. If my RET 
is a small N pilot study, then I am more prone to avoid strong Type I error controls at the 
expense of Type II errors so as not to miss interesting effects worthy of pursuing in a larger 
study.    

MARGINS OF ERROR 

All of us are familiar with national political polls that routinely provide margins of error 
(MOEs) for the statistics they report. We might read a result like “the percent of people 
favoring Policy X is 65%” and in a footnote see that the MOE for the percent is “plus or 
minus 5%.”  The margin of error is useful because it gives us a sense of how reliable an 
estimate is. If for the above poll, the margin of error was plus or minus 30%, then we would 
not give the estimate yielded by that poll much credibility. By contrast, if the MOE is only 
1%, we feel better about making conclusions from the reported percentage. One would 
think that MOEs would be widely reported in the social sciences. If I tell you that the 
estimated correlation between two variables is 0.40, wouldn’t it be useful to know the MOE 
for it? If the margin of error is ±0.01 correlation units, you would give more credibility to 
the estimate than if the margin of error is ±0.30. If I tell you the estimated sex difference 
in annual salaries of male and female assistant professors at major universities is $5,000, 
would not you think differently about that estimate if the MOE is ±$100 than if it is 
±$4,500?  In my opinion, MOEs should be reported for most all statistics.  

MOEs are intended to give readers a sense of the amount of error or “noise” that 
could be associated with an estimate. There are two approaches to parameterizing MOEs, 
one that makes use of confidence intervals and another that makes use of credible intervals 
in Bayesian modeling. I consider the confidence interval approach first.  

Margins of Error and Confidence Intervals 

For using confidence intervals as a MOE, the most common practice is to determine the 
absolute distance between the sample parameter estimate and both the upper and lower 
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limit of the 95% confidence interval for it. The MOE is the larger of these two absolute 
values. If the mean difference in a sample of the annual salary for male and female 
professors is $5,000 with a 95% CI of $3,000 to $7,000, the lower limit difference is $3,000 
– $5,000 = -$2,000 and the upper limit difference is $7,000 - $5,000 = $2,000. The absolute 
value of both of these is 2,000, so the margin of error is plus or minus $2,000. Based on 
this result, I would report the average salary disparity as $5,000 ±$2,000. For elaboration, 
see Cumming (2007, 2009, 2012, 2013, 2014).  

Confidence intervals use estimated standard errors in their computation, with 
standard errors reflecting how much parameter estimates vary from one random sample to 
another. When I conduct a study, I essentially use one random sample of the many possible 
random samples from the population I could have selected. Knowledge of how much 
parameter estimates vary across different random samples of a given size helps me 
appreciate how much I can trust my particular sample estimate. In the statistical theory of 
confidence intervals, the phrase “95% confident” has a technical meaning. Specifically, if 
I conducted a large number of replications of a study where I sampled the same number of 
individuals (N) from the population and calculated the confidence interval for the 
parameter of interest using standard methods in each replication, then in 95% of the 
replications, the calculated interval would contain the population value. If the true 
population mean difference in income for males and females is $4,000, then if I conduct a 
large number of replications with the same sample size, I will find that in 95% of the 
replications, the confidence interval will contain the value of $4,000.  

Using a MOE format to report confidence intervals has some complications. One 
complication is that the confidence limits are not always equidistant from the sample 
estimate. For example, the confidence interval for a correlation coefficient often is not 
symmetric. Suppose I conduct a study and the observed correlation is 0.30 with an upper 
95% confidence limit of 0.46 (yielding a 0.16 upper margin of error) and a lower 95% 
confidence limit of 0.11 (yielding a -0.19 lower margin of error). What is the margin of 
error I would report given the values for the upper and lower MOE differ? Some 
researchers report both the lower and upper MOEs and others report the larger of the 
absolute value of the two, as long as the values are not too disparate.  

Simultaneous Confidence Intervals 

As noted for familywise error rates, when more than one comparison is performed, 
researchers often correct for the fact that the Type I error rate inflates across the multiple 
contrasts. An analogous concept applies to confidence intervals. For a single comparison, 
when we calculate a 95% confidence interval, we are 95% certain the true population 
parameter is contained within the interval in a repeated sampling sense. For multiple 
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comparisons, if we rely on the 95% confidence interval for each comparison, then the 
percentage of times that the set of confidence intervals for the various contrasts will all 
include their respective true population parameters will be less than 95%. To compensate 
for this fact, specialized adjustments are applied that yield what are called simultaneous 
confidence intervals. Such intervals ensure that the true population parameters are 
contained within the group of multiple intervals the desired percentage of times (95%).  
 Simultaneous confidence intervals come with disadvantages. They typically are 
wider than traditional intervals, making them less informative. Some methodologists feel 
that the adjustments come at too great a cost by creating intervals so wide that they are 
unhelpful. Critics also emphasize ambiguities associated with defining contrast families 
for invoking adjustments, much like the case for familywise error rates.  

The simplest strategy for calculating simultaneous confidence intervals is to apply 
Bonferroni corrections by defining the confidence percent based on a Bonferroni corrected 
alpha level. For example, if I have five contrasts and use the traditional 0.05 alpha level, 
the Bonferroni corrected alpha level is 0.05/5 = 0.01, so I would calculate 99% confidence 
intervals for each contrast. The problem with this approach is that it is too conservative. 
One cannot straightforwardly apply the modified Bonferroni methods because of their step-
like quality (but see Serlin, 1993). If sample sizes are large, then the use of Bonferroni-
based simultaneous confidence intervals may not be problematic because even the 
simultaneous confidence intervals will be narrow. If sample sizes are more modest, the use 
of simultaneous confidence intervals might be too drastic. Like Bayesians (see Dienes, 
2011), my own predilection is to use traditional as opposed to simultaneous confidence 
intervals, but I am cognizant of the controversy of doing so and acknowledge this in the 
limitations section of my Discussion sections.  

Controversies Surrounding Confidence Intervals 

Although the reporting of confidence intervals is widely recommended (Wilkinson et al., 
1999), there exists some controversy about the merits and interpretation of them (e.g., 
Gilliland & Melfi, 2010; Mayo, 1981; Mayo & Cox, 2006; Miller & Ulrich, 2016; Morey, 
Hoekstra, Rouder & Wagenmakers, 2016; Morey, Hoekstra, Rouder, Lee, & 
Wagenmakers, 2016; Perezgonzalez, 2017). I review the arguments against their use in this 
section, then I consider an alternative approach based on credible intervals in the next 
section, and, finally, I make practice recommendations. 

One complaint you will encounter about confidence intervals is that once a 
confidence interval has been derived from sample data (called a realized confidence 
interval), it does not make sense, critics contend, to state the probability the interval 
contains the parameter is 0.95. This is because the true parameter value either is or is not 
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in the interval. Critics also feel one should qualify statements of confidence to reflect the 
repeated replications nature of the confidence interval; in any given study, we have 
calculated only one of many possible confidence intervals from different possible random 
samples. Given this, we can only speak of the behavior of those intervals as a collective; 
that 95% of them contain the population parameter. Gilliland and Melfi (2010) offer the 
following example to argue for the use of confidence intervals relative to such criticisms: 

Consider a person so skilled that he/she can pitch a horseshoe blind-folded 
and with ear plugs and make ringers 95% of the time. After pitching the shoe 
one time, the person does not know whether a ringer was made or not. Yet, 
he/she is so confident that he/she is willing to bet at about 19:1 odds that a 
ringer was made. Rarely in the practice of statistics is it possible to determine 
with certainty whether an interval estimate does or does not contain the 
parameter value, i.e., whether a “ringer was or was not made.” It is the 
process that generated the interval estimate and the documentation of that 
process that allows the user and decision-maker to have confidence in the 
interval, i.e., that a “ringer was made.” 

 
Cumming (2007) suggests thinking about confidence intervals in terms of plausible 

values that a population parameter can take on, with the sample result for the parameter 
being the most likely of those plausible values. In the male-female income disparity 
example, the sample mean was $5,000 and the confidence interval was $3,000 to $7,000. 
Cumming would state that the income disparity is plausibly somewhere between $3,000 
and $7,000, with the most plausible value being $5,000. The more that values within the 
95% confidence interval deviate from $5,000, the less plausible they are as characterizing 
the true population difference. Cummings (2007) shows that it is about seven times more 
likely that values near the center of the 95% confidence interval will equal the population 
parameter than values near the upper or lower limit of the interval. Note that Cummings 
shifts the frame of reference for confidence intervals to one of plausible values, which 
avoids having to refer to confidence intervals in repeated sampling terms. In essence, we 
judge values outside the confidence interval to be implausible and values within the interval 
to be plausible, albeit with differing levels of plausibility depending on their location in the 
interval. Cumming and Finch (2005) encourage researchers to think about confidence 
interval limits as the largest error of estimation we are likely to make. 

Numerous methodologists suggest researchers think about confidence intervals in 
terms of margins of error (Cumming & Finch, 2005; Gilliland & Melfi, 2010), but others 
question the practice. Morey et al. (2016) describe scenarios where practices that 
incorporate confidence intervals can lead researchers to underappreciate sampling error 
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dynamics. Mayo (1981), however, argue that such scenarios are exceptions and do not 
undermine the general utility of confidence intervals. The fact that small levels of fraud 
occur in a system of care for the elderly does not mean that the entire system should be 
abandoned; we just need to be cognizant of the small amounts of fraud.  

I personally believe that confidence intervals provide useful information about 
sampling error and “noise in the system” and that framing them as margins of error is 
intuitively appealing. Although there are technical matters one can quibble about, I think 
the framing strategies suggested by Cumming and Finch (2005) are not unreasonable. 

Credible Intervals  

There is an alternative approach to defining margins of error that uses the concept of 
credible intervals grounded in Bayesian statistics. Bayesian approaches seek to identify a 
range of likely values that a parameter can have based on a probability distribution of 
possible parameter values. A 95% credible interval is one in which there is a 0.95 
probability that the true parameter is in that range. Unlike confidence intervals, credible 
intervals do not use the idea of replications and the percent of times that the true parameter 
is contained in the interval across those replications. Rather, credible intervals focus on a 
range of possible parameter values and the probability that each one is the true parameter 
value given the data. In traditional statistics, the population parameter is thought of as fixed 
– it is what it is - and it does not have a probability distribution associated with it. The 
confidence interval is random because its values depend upon the particular random sample 
that is selected from the population. By contrast, Bayesian frameworks treat the parameter 
itself as random in the sense that it has a probability distribution associated with the 
different possible values of it.5 
 In Bayesian statistics, researchers specify a prior probability distribution before 
data are collected that specifies possible values a parameter can take and the likelihood that 
each of those values is true. A prior distribution can be uninformative (also called diffuse) 
in that a researcher may have little or only vague prior information about the likely value 
of the population parameter. By contrast, an informative prior is one where we have 
useful information prior to data collection that helps us specify the probability of different 
values of the population parameter. For example, when estimating the mean of a set of 
scores for a population, we might have information from prior research about the value of 
the mean, we might consult prior meta-analyses that suggest certain values, or we might 
invoke common sense to specify likely values the mean takes on. Informativeness is a 
matter of degree, i.e., the prior distribution can be uninformative, weakly informative, 

 
5 In some respects, Cunning’s reinterpretation of confidence intervals as plausible values is a form of Bayesian 
thinking, but Bayesians would argue that it is too crude relative to just using Bayesian statistics in the first place.  
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moderately informative, or strongly informative.  
Once a prior parameter distribution is specified by a researcher, data are collected and 

the prior distribution about the parameter is revised in light of the collected data. The 
revised distribution is called a posterior distribution. The credible interval is calculated 
on the posterior distribution and is the range of values that contain 95% of the probability 
density of the probability distribution. When the prior distribution is uninformative, the 
size and values of the credible interval is often very similar to the size and values of a 
confidence interval. However, when the prior distribution is informative, the credible 
interval can be narrower than the confidence interval depending on how informative the 
prior distribution is. An advantage of credible intervals is that they do not have to be 
symmetric, they do not rely on asymptotic theory, and they do not rely on a normally 
distributed sampling distribution. Mplus uses an approach to credible intervals based on 
what is known as the highest posterior density (HPD) interval (Box & Tiao, 1973). An 
alternative is to use what are known as equal tail probability intervals, which also is 
available in Mplus. I discuss Bayesian modeling of RETs in Chapter XX.  

Recommendations for Margins of Error  

Neither of the two approaches to defining margins of error is necessarily better than the 
other. They simply reflect different ways of thinking about population parameters. A 
Bayesian would be critical of the confidence interval approach by saying "So what if 95 
out of 100 studies yield a confidence interval that includes the true value? I don't care about 
studies I did not conduct. I care about this particular study. I want to know a range of values 
that the parameter can feasibility be equal to. A confidence interval advocate would be 
critical of Bayesians by saying "So what if 95% of the parameter probability is included in 
your range. I do not care about the values in your distribution that are wrong. I care about 
the one true value. And by the way, I don’t trust the accuracy of your prior distribution.” 

I make use of both approaches in this book, although audiences tend to be more 
familiar with confidence intervals. Both approaches have strengths and weaknesses. 

SENSITIVITY ANALYSES 

As apparent from the material covered in this chapter, there often are different analytic 
methods that can be applied to the same statistical question with each method making 
different assumptions (e.g., Huber-White estimation vs. bootstrapping; confidence vs. 
credible intervals; controlling for multiplicity vs. not controlling for multiplicity). 
Arguments often can be made for each of the approaches. When this occurs, statisticians 
sometimes apply each viable method and compare conclusions to determine if conclusions 
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are method dependent. If so, one moves forward with conclusions more tentatively than if 
conclusions replicate across methods. This approach is often referred to as sensitivity 
analysis (Thabane et al., 2013). Some methodologists think of sensitivity analysis more 
broadly. They might, for example, think about the robustness of conclusions across 
different ways of defining variables and different ways of measuring them. 
 The term sensitivity analysis also is used to refer to narrowly defined statistical 
methods that help researchers rule out alternative explanations. A classic example is for 
omitted variable bias in regression modeling. Consider the three causal models in Figure 
6.14 that characterize the causal relationship between a mediator, M, and an outcome, Y. 
In Model A, M and Y are associated for one reason, namely the causal influence of M on 
Y. In this case, it makes sense to estimate the strength of the causal effect by documenting 
the strength of the association between M and Y. In Model B, there are two sources of the 
association between M and Y. One is the causal impact of M on Y; the second is the 
common influence of a confounder, C, on both M and Y. In this case, C can inflate (or 
deflate) the association between M and Y over and above the causal impact of M on Y. If 
we ignore C in the analysis, then we make a faulty inference of the causal impact of M on 
Y because we attribute the association between M and Y as exclusively due to the causal 
impact of M on Y. Model C represents a scenario where there is no causal impact of M on 
Y, but there is an association between them because of the common cause of C. In this 
case, if we ignore C, we might infer a causal relationship between M and Y because M and 
Y are associated, but the inference would be wrong. The association is completely spurious.  

 M

(a)

Y M

(b)

C

Y M

(c)

C

Y  

FIGURE 6.14. Example of confound bias 

As discussed in Chapter 2, when we plan an RET, we try to identify relevant 
confounds of mediator-outcome relationships, measure those confounds, and then control 
for them when analyzing data. However, it is possible that unmeasured confounds remain 
the produce bias. To be sure, if the strength of such paths are weak, then the bias they 
induce will be minimal. However, if the paths are strong, the bias can be consequential. 
 Critics are generally quick to point out the possible presence of unmeasured 



                                                                                                                 Advanced Topics 45 

 
 

confounds when evaluating the M-Y link, at which point I usually ask them to identify 
what those omitted confounds are. To me, it is not enough for critics to make an abstract 
criticism without standing behind it with specifics. Independent of this, it is possible to 
conduct a sensitivity analysis to determine how strong the paths from C to M and C to Y 
would have to be to undermine the causal characterizations I assert based on the data. For 
example, it is possible to calculate the percent of variance in M and Y that the unmeasured 
Cs would have to account for in order for the causal coefficient between M and Y to be 
rendered statistically non-significant or to be judged as being completely spurious. It also 
is possible to calculate the percent of variance in M and Y that the unmeasured Cs would 
have to account for in order for the observed causal coefficient between M and Y to be, 
say, halved in magnitude. These analyses also are referred to as sensitivity analyses.  
 As an example, I might find that in order for the observed effect of M on Y to be 
reduced to statistical non-significance, the unmeasured Cs would have to account for 60% 
of the variance in both M and Y, reflecting correlations of 0.78. I might conclude that it is  
unlikely such a scenario is viable. With such a result in hand, I might challenge my critics 
to name the unmeasured variables that would have such strong effects on both M and Y. It 
is unlikely they could do so if I have done a good job of anticipating confounds when I 
planned the RET, measured them, and controlled for them. On my website, I provide a 
program (Omitted confounds) that allows you to perform sensitivity analyses of this type.  

ENDOGENEITY 

The problem of endogeneity usually is discussed in three contexts, (1) omitted variable 
bias, (2) the biasing effects of measurement error, and (3) assuming one way causation 
when, in fact, reciprocal causation exists. My focus here is on the latter. 
 Sometimes we find ourselves in situations where we have cross sectional data but 
where reciprocal causality dynamics likely have taken place. As I discussed in Chapter 1, 
a cause always must proceed an effect. Sometimes the time interval between cause and 
effect is short, perhaps milliseconds and other times it can be quite long. In research on 
parenting and drug use, it is commonly believed that there is a reciprocal causal relationship 
between adolescent drug use and the quality of the relationship between parents and the 
adolescent. For example, at time 1, the relationship between parents and an adolescent 
might deteriorate, leading the adolescent to experiment with drugs at time 2. As drug use 
continues from time 2 forward, it might cause the parent-adolescent relationship to further 
deteriorate at time 3. The worsening parent-adolescent relationship at time 3 then leads to 
increased adolescent drug use at time 4. The causal chain that captures this dynamic is  

PRt1 → DUt2 → PRt3 → DUt4 
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where PR represents the quality of the parent-adolescent relationship at time t, DU 
represents drug use at time t, and the numerical subscript attached to t represents later time 
points as the numbers increase in value. In a cross-sectional analysis, we are unable to 
assess these processes at this fine-grained level. Our measures of DU and PR probably 
reflect the case where these processes have played themselves out, with the following 
causal representation capturing what has transpired across time at a more global level: 
 

DU PR
 

 
When we correlate PR and DU to determine the causal impact of parent-adolescent 
relationships on drug use, the correlation will overestimate the causal influence because it 
not only includes the effect of PR on DU but it also includes the effect of DU on PR. If we 
want to estimate just the effect of PR on DU independent of the reverse causality dynamic, 
we need to correct misspecification that assumes the causal influence is unidirectional. 
 The obvious solution to the dilemma is to apply a model to the data that includes both 
causal relationships. The problem with this approach for cross-sectional data is that such a 
model is under-identified, i.e., we have two unknowns to estimate (the two coefficients in 
the reciprocal causal relationship), but only one known (the correlation/covariance between 
DU and PR). The model can’t be estimated because there are an infinite number of 
solutions for values of the path coefficients.6 One analytic strategy is to introduce 
instrumental variables (also called instruments) into the analysis. Suppose I want to 
estimate the effect of X on Y but I also want to take into account possible reciprocal 
causality. An instrumental variable is a variable that has a direct impact on X but not on 
Y, per Figure 6.15. In this Figure, Z is said to be an instrument for X. The key property of 
Z is that it influences X but there is no causal path that goes directly from Z to Y. To be 
sure, Z can influence Y (and, hence, be correlated with it), but it must do so exclusively 
through X. Z also is assumed to be uncorrelated with the two disturbances. 
 

YXZ

d1 d2  

FIGURE 6.15. Example of an instrumental variable 

 
6 Informally, the correlation between DU and PR should equal the product of the values of the path coefficients in 
the reciprocal relationship. If, for example, r = 0.50, there are an infinite number of pairs of values that reproduce it.   
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Suppose my primary interest is in estimating the effect of X on Y, with the effect of 
Z on X being of little substantive concern. For example, I might believe that depression 
and heavy alcohol use are reciprocally related but I only want to determine the strength of 
the path for the effect of depression on alcohol use. In this case, I only need an instrument 
for depression, the determinant of interest. By bringing Z into the model, I can accomplish 
my estimation goal as long as the dynamics of Figure 6.15 hold. To obtain the estimate of 
this path, I would use an SEM program (such as Mplus, which I introduce in Chapter 11) 
but with the following model: 

YXZ1

d1 d2

 

In this model, the unestimated causal effect of Y on X is now part of the correlated 
disturbances plus whatever uncontrolled confounds for X and Y are operating. The path 
coefficient from X to Y will be the coefficient of interest to me. 

When working with reciprocal causation where we explicitly seek to estimate both 
causal paths in the reciprocal effect, it turns out we need two instrumental variables, one 
for X and one for Y. The relevant model is shown in Figure 6.16. The model removes the 
under-identification problem and allows us to estimate the two coefficients of interest (see 
Angrist & Pischke, 2009, for details). Some theorists argue one should include correlated 
disturbances when estimating the model in Figure 6.16 (see the dashed curved arrow). This 
would be the case if you felt there were unmeasured confounds influencing both X and Y. 
If you decide to correlate the disturbances, make sure you can justify this by specifying 
what the unmeasured confounds are. Also, Z1 and Z2 typically are allowed to be correlated.  

YXZ1

d1 d2

Z2

 

FIGURE 6.16. Example with two instrumental variables 
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 For both Figure 6.15 and Figure 6.16, the instrumental variables themselves do not 
have to be of substantive interest.  However, I need them in my model to be able to estimate 
the causal paths of interest in the X-Y relationship. When I design a study where I want to 
estimate causal coefficients in a reciprocal causal relationship cross-sectionally, a key part 
of my thinking is to identify instrumental variables I can measure so that I potentially can 
tease out or adjust for reciprocal causal dynamics during statistical modeling. One way I 
think about instrumental variables to help me identify them is that the instrument, Z, 
initiates a causal chain by affecting the variable X; X, in turn, influences the variable Y. 
 There are many analytic methods that can be used to estimate model coefficients 
when instrumental variables are involved. In traditional SEM software, specialized 
maximum likelihood methods are invoked by default so the analysis is straightforward. In 
purely regression contexts outside of SEM, a method called two stage least squares 
regression is common as is a method called the generalized method of moments (GMM). 
These latter approaches work well for continuous outcomes, but require more complex 
strategies with binary X and or Y variables.  
 Modeling with instrumental variables works best when the instrumental variables 
have strong relationships with the variable they are assumed to influence directly. If these 
relationships are weak, then the instrumental variables are said to be weak instruments 
and their use can actually make estimation worse. Given this, several formal tests or 
diagnostics have been proposed to identify weak instruments. If the instruments are weak, 
then one should abandon the instrument. One crude diagnostic is if the path coefficient 
linking the instrumental variable to the variable it directly influences is statistically 
significant. Angrist and Pischke (2009) suggest that the critical ratio associated with the 
significance test of the coefficient should be 3 or larger. Other tests include the Wu-
Hausman test and the Sargan test (see Woolridge, 2010 for details). I consider these tests 
in more detail in Chapter 8. 
 In RETs, there are several potential sources of instrumental variables. If a treatment, 
T, affects a mediator, M, but does not have a direct effect on the outcome, Y, over and 
above the mediator and the other covariates for Y, then T is an instrument for the M to Y 
causal relationship. In such a case, one can model a causal path between M and Y and 
correlate the disturbances for M and Y to control for unmeasured confounds. Another 
strategy is to take advantage of longitudinal data. If a mediator measured at baseline 
influences the mediator measured at the posttest but the baseline mediator does not have a 
direct effect on the outcome over and above other covariates in the system, then the baseline 
M often can serve as an instrument for the MPOST to YPOST causal relationship. One can 
then model a causal path between MPOST and YPOST and correlate the disturbances for M 
and Y to control for unmeasured confounds. For cautions when using lagged variables as 
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instruments, see Wang and Bellemare (2020).   
 Instrumental variable analysis often inflates standard errors and can be sample size 
demanding. Coupled with the problem of weak instruments, strong assumptions, and the 
difficulties of identifying viable instrumental variables, you should not move into such 
analyses lightly. To use them, you should believe that consequential reciprocal causality or 
unmeasured confounds are at work and that ignoring it will undermine the answers to the 
questions one poses. The mathematics of instrumental variable analysis are rather 
technical, so I do not delve into them here. A good discussion is in Woolridge (2010). 
Bollen (2019) presents an elegant SEM analytic framework that makes use of instrumental 
variables that I discuss in Chapter 8. There exist other methods for dealing with 
endogeneity that do not rely on instrumental variables or covariate inclusion (e.g., Lewbel, 
1997; Falkenström, Park & McIntosh, 2021; Park & Gupta, 2012; Liengaard et al., 2025), 
but in my opinion these require further development. I discuss in Chapter 16 applications 
of instrumental variables to longitudinal modeling and in Chapter 28 to per protocol 
analyses in RETs. For a more formal treatment of instrumental variables than my 
introductory sketch here, see Hernán and Robins (2006), and Swanson et al., (2015, 2017).    

CENTERING VARIABLES 

Another procedure I make use of in future chapters is that of centering variables in 
regression analyses. I discuss the topic in two contexts, (a) centering predictors in 
traditional linear regression and (b) centering predictors in regression analyses that use 
product terms to facilitate the analysis of moderation and non-linear relationships.  

Centering in Linear Models  

When we “center” a variable, we subtract a constant from it for each person in a study. One 
of the most common forms of centering is to mean center, a process that subtracts the 
sample mean from each person’s score. In such cases, the mean of the centered variable in 
the data will always equal zero but its standard deviation will be preserved relative to the 
original metric. Actually, there are two forms of mean centering, one known as grand 
mean centering and the other as group mean centering. In the former case, the mean 
across all individuals is subtracted from each person’s score. In the latter case, the mean of 
an a priori specified subgroup of individuals is subtracted from each person’s score who is 
a member of that subgroup. For example, I might mean center scores on reading ability of 
students as a function of their grade in school, with the sample mean reading ability score 
of 7th graders subtracted from the score of each 7th grader, the sample mean reading ability 
score of all 8th graders subtracted from the score of each 8th grader, and so on. Henceforth, 
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when I refer to “mean centering” I am referring to grand mean centering. I discuss group 
mean centering in Chapter 25. 
 In classic linear regression, the two parameters that often are of interest are the 
regression coefficient associated with a predictor and the intercept. The value of the 
regression coefficient, its standard error, its confidence interval, and its significance test all 
are unaffected by mean centering. However, the value of the intercept is affected because 
it reflects the mean of the outcome when all predictors equal zero. With mean centering of 
predictors, the intercept equals the sample mean of the outcome when all predictors equal 
their sample mean or, stated differently, when the predictor profile is defined by the 
“typical” score on each predictor.  
 Sometimes a score of zero on an untransformed predictor is meaningless, such as a 
score of zero on a standard intelligence test or a score of 0 on a variable measured on a 1 
to 10 metric. By mean centering such variables, scores of zero on the transformed variable 
become meaningful because they reflect the mean on the original variable. This, in turn, 
makes the intercept interpretable when it otherwise would not be. Specifically, the intercept 
is the predicted mean on Y when the predictor is set equal to its “typical” value, namely 
the mean of the predictor.  
 Mean centering is core to the statistical technique of analysis of covariance 
(ANCOVA) when calculating covariate-adjusted outcome means. I might compare 
treatment versus control individuals for a weight loss program on their mean post-program 
weight using baseline weight as a covariate. Of interest is what the covariate adjusted post-
treatment means for each group are and what the size of the covariate adjusted mean 
difference is. In ANCOVA, the adjusted means are the predicted outcome means for each 
group when the covariate is held constant at its sample mean value, i.e., when the covariate 
is mean centered. 
 Consider the following regression equation predicting the post-treatment weight 
(WeightPOST) from a program to reduce weight (the dummy variable call Treat is scored 0 
= control, 1 = treatment) and the mean centered baseline weight: 

WeightPOST = a + b1 Treat + b2 WeightBASELINE-CENTERED 

The intercept in this equation is the predicted mean of WeightPOST when Treat = 0 and when 
the centered baseline weight variable equals zero. The intercept thus reflects the control 
group’s posttest weight holding the covariate constant at its sample mean or its “typical” 
value.  
     The value we center a variable around does not have to be its mean. For example, I 
can subtract the median from each person’s score or I can center on any other value that is 
of substantive interest. Suppose I have a linear model in which I predict the income of 
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people between the ages of 22 and 35 as a function of their age. The linear equation is  

Income = a + b1 Age 

I might want to estimate the mean income of people who are 20 years old, including the 
standard error of the mean and its associated 95% confidence interval. If I subtract 20 from 
each person’s age score, the “centered” age variable ranges from -2 to 15 instead of 18 to 
35. A score of 0 on the transformed age metric corresponds to a score of 20 on the original 
age metric. When I regress income onto the transformed age variable, the intercept will 
now equal the predicted mean income of individuals who are 20 years old. The standard 
error and confidence interval for the intercept are routinely reported on computer output, 
providing me the additional information I desire.  
 Researchers can use centering to estimate mean outcome values, their standard errors, 
and confidence intervals for multivariate predictor profiles by centering each predictor 
around the particular value of interest, executing the regression analysis, and then 
examining the intercept and statistics associated with it. For example, if I predict annual 
income from the number of years of education and the age of respondents, the equation 
would be 

Income = a + b1 Age + b2 Years of Education 

If I center age around the number 20 and years of education around 12, the intercept will 
equal the predicted mean income for 20 year olds with 12 years of education. The standard 
error and confidence interval of the intercept map onto those for this mean.  
 When controlling for binary covariates in ANCOVA-like designs, a question that 
often arises is whether one should mean center the dummy variable coded covariate. 
Although mean centering a dummy variable may seem unusual, Raudenbush and Bryk 
(2002, p. 34) argue that doing so often has desirable properties. Consider a dummy variable 
like biological sex (0= female, 1 = male), which I will call DMALE. Mean centering this 
variable does not affect the value of the regression coefficient for it when regressing Y (the 
outcome) onto the dummy variable but it does affect the intercept. Without centering, the 
intercept will equal the mean Y for the group scored 0 on the dummy variable, i.e., the 
mean for females. If I mean center DMALE and regress Y onto this centered dummy variable, 
the intercept will now equal the weighted mean of Y taking into account the typicality of 
the scores in the different categories of DMALE.  

For example, suppose there are five males in a sample and they have scores of 11, 12, 
13, 14, 15 (the mean of which is 13). Suppose there are 10 females and they have the scores 
of 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 (the mean of which is 3). The mean of the dummy variable 
DMALE across the 15 scores is .3333 because one third of the sample is male. If DMALE is 



                                                                                                                 Advanced Topics 52 

 
 

uncentered, then when I regress Y onto DMALE, the intercept will equal 3.0, the mean for 
females. However, if I mean center DMALE, the intercept will now equal 6.333, which is the 
mean of the 15 Y scores. Stated another way, it is the weighted mean of Y proportional to 
the size of the two groups comprising DMALE. Sometimes the latter statistic might be of 
more interest than the former. Importantly, when I regress Y onto a substantive variable of 
interest, M, and a mean centered dummy covariate that is not of substantive interest, C, the 
resulting intercept often will yield the mean Y value (or a value close to it) when M equals 
zero collapsing across C. For this reason, it is not uncommon to mean center dummy 
covariates that are not of substantive interest in a regression equation so that the intercept 
mimics collapsing across them while keeping the traditional intercept interpretation of the 
substantive predictors intact.7     

Centering in Models with Product Terms  

Sometimes a regression model includes product terms, either in the form of polynomials 
to evaluate non-linearity or products of different variables to evaluate moderation. It is not 
uncommon for the product terms to be highly correlated with the component parts of the 
product terms. This has led some researchers to be concerned about issues of multi-
collinearity for product term analyses. Such concern is often misplaced.  

Statisticians have shown that the squared R for the product term equation, the 
coefficient for the product term, and the significance test of the product term coefficient all 
are unaffected by the collinearity between the component terms with the product term 
(Allison, 2012). If both component parts of the product term are normally distributed, then 
mean centering them will reduce their correlation with the product term to zero; yet the 
coefficient for the product term will be unchanged by this transformation as will its p value. 
As noted in my discussion of polynomial regression, the only time a high correlation 
between a product term and its component parts becomes problematic is when the 
correlation is so high (r > 0.95) that it interferes with computational algorithms that rely on 
matrix inversion. If this error happens, simply mean center the component parts of the 
product term and it will vanish. To be sure, mean centering predictors is not required for 
product term analysis, but in many cases, it can make interpretation of coefficients easier 
(see my discussion of moderator variables in the third section of this book).  

Although collinearity of product terms with their component parts is not necessarily 
problematic, one does need to be concerned about multicollinearity between the component 
parts of the product term per se (McClelland et al., 2017). The consequences of such 
collinearity for coefficient tests of the component parts of a product term  are the same as 

 
7 Exceptions to this property occur in logit/probit regression and in non-linear modeling more generally (Muller & 
MacLehose, 2014). See Chapter 12 for elaboration.     
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for traditional additive multiple regression; it can inflate standard errors of the coefficients 
and affect statistical power of their coefficient tests. Ironically, higher correlations between 
the component predictors can sometimes increase the statistical power of the test of the 
product term coefficient, although the effect is not likely to be large and it is somewhat 
intractable (see McClelland & Judd, 1993).  

PROFILE ANALYSIS 

The final topic I focus on is profile analysis. A profile is a specific multivariate pattern of 
scores on the predictors of a regression equation. For example, for a regression analysis 
that uses biological sex (female vs. male) and the highest grade completed (e.g., 10th grade, 
12th grade) as predictors of an outcome, I might specify a profile of females who completed 
grade 12. Or, I might specify a profile of males who completed grade 16. Based on the 
regression equation that emerges from the analysis, I can use that equation to calculate the 
outcome value associated with any given multivariate profile I specify. For OLS 
regression, the value is the predicted mean Y; for logistic regression it is the predicted log 
odds of Y; for negative binomial count regression it is a log mean count, and so on.  
 Long and Mustillo (2018) use comparative profile analyses to contrast predicted 
probabilities of binary outcomes for groups or profiles of substantive interest using logistic 
and probit regression. Consider the four profiles in Table 6.2 that represent obese females, 
non-obese females, obese males and non-obese males, all from a study of U.S. adults over 
the age of 50. The column on the right reports the predicted probabilities for the onset of 
diabetes as derived from a logistic model predicting diabetes onset from biological sex and 
obesity status, holding constant a host of covariates at their mean values. The difference 
between the obese and non-obese probabilities for females is shown in the last column and 
it reflects the effect of obesity on diabetes onset for women. The corresponding difference 
for males represents the estimated effect of obesity on diabetes onset for men. Both 
differences in profile probabilities were statistically significant but the difference for males 
was statistically significantly stronger for males than for females. 
 

Table 6.2: Multiple contrasts 
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The general idea of profile analysis is to identify different predictor profiles that are 
of substantive interest in their own right or for which comparisons between them are 
theoretically or practically illuminating. For inherently non-linear models that work with 
transformed probabilities (such as logit regression, probit regression, ordinal regression) or 
transformed means (such as negative binomial regression, Poisson regression), the profile 
analyses focus on the more meaningful outcome metrics of probabilities or means rather 
than the transformed parameters, which is advantageous. This is because effects and the 
magnitude of effects can differ depending on whether one focuses on probabilities or the 
transformed probabilities, such as odds or probits. Profile analyses also can be illuminating 
for OLS or traditional maximum likelihood analyses of means or probabilities per se, as I 
show in future chapters.   

Standard Errors and Confidence Intervals in Profile Analysis  

It is helpful when evaluating or comparing profile predicted probabilities and means to 
have standard errors and confidence intervals for the profiles predicted scores or for the 
predicted differences between profiles. In OLS regression, statisticians distinguish between 
two types of standard errors for profile analyses. One is the standard error for the mean 
fitted value for a profile and the other is the standard error of prediction. The former 
applies to the case of the outcome population mean/probability associated with the profile 
and the latter applies to the case where one is using the equation to predict the score of a 
future individual outside of the sample data we are working with. My focus throughout this 
book is on the former type of standard error. There are different approaches to calculating 
this standard error or the standard error of the difference between the fitted values for two 
profiles. Long and Mustillo (2018) use what is called the delta method. I instead often use 
nonparametric percentile bootstrapping. I create, say, 600 traditional bootstrap replicates 
from the sample data, generate a regression equation for each bootstrap replicate and the 
relevant fitted profile values using the metric of my choice (e.g., fitted probabilities or fitted 
means). I then calculate the standard deviation and quantiles of the predicted profile values 
that map onto the desired confidence interval vis-a-vis classic bootstrap methods. The 
bootstrap approach for this type of application has not been rigorously evaluated, so it must 
be used with some caution. It does not make as strong assumptions as the method of Long 
and Mustillo (2018). 
 In traditional profile analysis, researchers specify values for every predictor in the 
equation, including covariates. In the Long and Mustillo study of diabetes, the authors held 
the covariates constant at their sample mean values. An important distinction is whether 
inferences then apply to the fixed values used to define the profile or to the more general 
parameter (the population mean) the value supposedly represents. If the mean age in the 
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sample is 66.5, this does not necessarily equal the true mean age in the population because 
of sampling error. For purposes of bootstrapping standard errors and confidence intervals, 
you need to decide if  you want the bootstrap process to focus on the fixed value of 66.5 as 
bootstrap replicates are processed or to allow the sample means to vary with each replicate 
to reflect the focus on mean values, not the value 66.5 per se (see Oberski & Satorra, 2013). 
I show in future chapters how to implement both approaches, but my general preference is 
to work with a priori defined, substantively interesting, fixed values.  

Significance Tests for Profile Comparisons  

Although standard errors and confidence intervals for fitted values from profile analyses 
are helpful, using these statistics to pursue formal significance tests of null hypotheses 
when comparing two profiles is not straightforward. The complicating issue can be 
illustrated in the context of a comparative profile analysis for standard OLS regression for 
a simple additive linear model with no interaction or polynomial terms. Suppose I predict 
an index of patient adherence to a prescribed medical protocol (on a 0 to 100 metric) from 
the age and income of patients. Suppose also that the regression coefficients for both age 
and income in the overall regression analysis are statistically significant (p < 0.05), leading 
me to conclude that the population regression coefficients for each of the two predictors 
are not zero, i.e., I reject the null hypothesis of a zero coefficient for both of them. Such a 
result means that if I hold age constant and vary income by any amount in two different 
predictor profiles, even if that amount varies by, say, only one dollar, the predicted means 
for the two profiles must be different in the population. In this case, there is a formal link 
between the significance test for the regression coefficient and the significance test for the 
difference between the predicted mean levels of adherence. If the former is statistically 
significant, so too must be the predicted means of the profiles that vary the predictor in 
question but hold constant all other variables in the equation. To be sure, the standard errors 
and confidence intervals for the profile difference provide me with a sense of the sampling 
error that plagues any statements I want to make about outcome magnitude differences 
between the profiles. But I also need to be aware that the statistical power of the profile 
contrast can be too low for very similar profiles for the significance test to be of value.  
 Exceptions to the above occur when we work with non-linear models, models with 
interaction terms, or when we simultaneously vary multiple predictor profile values to gain 
perspectives on multivariate different profiles. In my opinion, in the final analysis, the 
profiles we select to explore should be of substantive interest in their own right and our 
focus in profile analysis should be more on magnitude estimation surrounding profile 
differences (and the operative sampling error surrounding those differences) rather than 
significance testing of null hypotheses for the profiles.  
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CONCLUDING COMMENTS 

In this chapter, I have covered a wide range of statistical issues, all of which I use in future 
chapters. These include non-linear regression, outlier resistant and robust regression, the 
problem of multiple significance tests, margins of error, sensitivity analyses, endogeneity, 
centering variables, and profile analysis. Much of the material is probably already known 
to you, but I think it important to lay a common foundation as we approach RET analysis. 


