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INTRODUCTION 

A great deal has been written about optimal methodological practices for randomized 
trials (Elbridge & Kerry, 2012; Friedman, Furberg, DeMets, Reboussin & Granger, 2015; 
Solomon, Cavanaugh & Draine, 2009). In this chapter, I provide a brief review of these 
practices as they apply to RETs. My treatment is selective; to do otherwise would require 
an entire book on RCT design. I begin by describing different types of randomized trials, 
including parallel-group trials, comparative trials, non-inferiority trials, and efficacy 
versus effectiveness trials. I then consider trial designs, including the two-group pretest-
posttest design, clustered designs, wait-list designs, crossover designs, and adaptive 
designs. Next, I consider the concept of a population as contextualized in randomized 
trials and use this to develop the implications of sample imbalance in random assignment. 
I then describe the mechanics of randomization. I discuss the phases of randomized trials, 
demand characteristics and treatment integrity. Finally, I present and comment on the 
Consolidated Standards of Reporting Trials (CONSORT) checklist for reporting 
randomized trials. The material in this chapter is fundamental to good design of RETs. 
Not only must you have your conceptual (Chapter 2) and measurement (Chapter 3) 
houses in order when conducting evaluations, so too must you have strong 
design/methodology. In this chapter, I identify key design issues you need to consider.  

TYPES OF RANDOMIZED TRIALS 

There are many ways of characterizing randomized trials. One of the most common types 
is a parallel groups trial, which seeks to determine if a program or an intervention has 
an effect on an outcome relative to a “neutral” (parallel) condition. The neutral condition 
can take many forms. For example, a trial might evaluate the effects of having cigarette 
smokers write counter-attitudinal essays about reasons not to smoke on subsequent 
cigarette smoking behavior. Individuals in the treatment condition come to an office, sit 
in a quiet room, and are provided a cover story for why they are to write the essay. One 
month later, participants are contacted by phone to complete a general survey on health, 
with one of the questions assessing the frequency of cigarette smoking during the past 
month. Individuals in the control condition are contacted at the time of the phone 
assessment and administered the same survey. Indices of smoking behavior are then 
compared between the two conditions. The latter group is called a no contact control 
group or, alternatively, a passive control group. Alternatively, individuals in the control 
condition night come to the office and write a counter-attitudinal essay, but they would 
do so on an unrelated topic. They then complete the health survey by phone one month 
later. This represents an active control group. With an active control group, the tasks are 
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equated as much as possible between the treatment and control groups except for the 
presumed “active ingredients” of the treatment program. In traditional drug trials, it is 
represented by a placebo condition in which individuals in the control condition are given 
an inactive drug (a sugar pill). The use of an active control group in behavioral research 
can sometimes be more costly than a passive control group.  
 A second type of trial is known as a comparative trial. These trials compare two or 
more treatments/interventions to one another. These designs often (but do not always) 
have three conditions to which people are randomized, (1) program A, (2) program B, 
and (3) a control condition that is either active or passive in nature. Sometimes, the 
control condition is omitted. This might be the case when the efficacy or effectiveness of 
the two programs has already been established and it is felt there is no need to include the 
control condition for purposes of documenting program effects. Rather, the primary 
interest is to compare the two programs to determine their relative effectiveness. 
Although there will be cases where this rationale is reasonable, for RETs, it usually is 
better to include a control group. One reason is that the RET goal is not only to examine 
program effects on outcomes but also program effects on mediators. This is best 
accomplished through treatment-control comparisons, as I elaborate below. A second 
reason is that by replicating effect sizes on the outcome from prior research for each 
program, it reassures critics that you have faithfully implemented the programs.  

Sometimes one program in a comparative trial is a new intervention and the other 
program is “treatment as usual” (TAU), which often is conceptualized as a control group. 
A TAU condition is an appropriate comparator to a new intervention when the primary 
interest is improving on the status quo. However, some scientists criticize the use of 
TAUs as control conditions when the goal is to test or advance theory. For example, two 
researchers might evaluate the same intervention under generally comparable 
circumstances but the particular TAU for one researcher might be reasonably effective 
given standard practice in his or her community whereas the TAU for the other researcher 
might be ineffective given standard practice in the community. The two studies might 
find differential program effects primarily because of quality differences in the TAU 
despite the fact the new programs themselves performed comparably in and of 
themselves. Without a careful analysis of what the TAU represents, it can be difficult to 
know what the new program is being compared to, thereby limiting knowledge gain. To 
be sure, we do learn that the new program is better than the status quo and that conclusion 
in and of itself might be useful for scenarios where the type of TAU studied is common. 
However, to build scientific theory, a reliance on the operative TAU in arbitrarily 
selected clinics can be limiting. Some methodologists argue that researchers conducting 
theory tests should instead consider creating an informative control condition in which 
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the treatment and controls are equivalent in all respects except for the “active 
ingredients” in the program one seeks to evaluate. Sometimes that requires modifying 
TAU to make it equivalent to the new program minus the presumed active ingredients.  
 A third type of randomized trial also is a type of comparative trial but is has a 
special label, namely a non-inferiority trial. In a non-inferiority trial, the researcher is 
most interested in determining if two treatments are equivalent in terms of their effects on 
an outcome rather than if one treatment is superior to the other treatment. These designs 
became prominent when manufacturers of generic drugs sought drug approval from the 
Food and Drug Administration (FDA) by arguing that their generic drugs were less costly 
but equivalent in effectiveness to brand name counterparts, i.e., they wanted to show that 
the generic drugs were not inferior to brand name drugs. Ironically, such equivalence 
could be “demonstrated” in a traditional trial by using weak and underpowered 
experimental methods that were almost certain to produce statistically non-significant 
differences between the brand name and generic drug. The FDA introduced specialized 
designs to test for non-inferiority that circumvented this problem.  
 Yet another way randomized trials have been distinguished is in terms of their focus 
on efficacy versus effectiveness. An efficacy trial seeks to determine if an intervention 
affects an outcome given the intervention is properly implemented and individuals 
receive the “full dose” of the program, per protocol. For example, if a program has 6 
sessions, an efficacy trial would ensure that participants in the treatment condition 
participate in all 6 sessions. An effectiveness trial seeks to determine if an intervention 
affects an outcome based on how the intervention is applied in real-world settings where 
patient populations and clinic variables cannot be rigorously controlled. In real world 
settings, patients might drop out of treatment, they might miss one or more sessions, they 
might not do “homework” if the program requires them to do so, and/or program staff 
might modify the intervention in subtle or even blatant ways. Efficacy trials are designed 
to minimize such occurrences and, if violations to protocol occur, researchers make 
analytic or methodological adjustments to correct for this. By contrast, an effectiveness 
trial allows the real world to “do its damage” so that one can determine how the program 
will fare once it is implemented in the broader community. Effectiveness trials are 
sometimes called pragmatic trials. 

In effectiveness trials, assessments of all individuals who are randomized to the 
treatment and control conditions are made at the posttest, irrespective of whether 
individuals drop out of the program or do not fully engage the treatment protocol. By 
comparing outcome distributions as a function of the condition people were randomized 
to irrespective of treatment adherence and other real-world “noise,” one gains insights 
into treatment effectiveness. By contrast, in efficacy trials, the focus is only on 
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individuals who complete the treatment per protocol. The former analytic approach is 
called intent-to-treat (ITT) analysis and the latter is called per-protocol (PP) analysis.  

In a traditional randomized trial, effectiveness designs and ITT analyses are seen as 
“better” or “more desirable”  by many methodologists. For an RET, however, the choice 
of an efficacy versus effectiveness orientation is complicated. For RETs that focus on 
program development, we want to understand the mechanisms by which a program 
affects an outcome in an efficacy sense. Once we have such knowledge and have 
improved the program to maximize its potential based on the feedback gained from the 
efficacy oriented RET, we then address the question of how best to move the program 
into real-world settings. Effectiveness trials, by contrast, confound three dynamics, (1) 
the extent to which a program is efficacious, (b) the extent to which the program is 
implemented correctly in treatment settings, and (c) the extent to which patients adhere to 
treatment protocols. When an effectiveness trial fails to produce meaningful outcome, we 
do not which of these three facets has failed us. Efficacy trials, by contrast, focus on the 
mechanisms that underlie outcome change devoid of the “noise” produced by improper 
implementation and protocol non-adherence. Program efficacy, program implementation, 
and protocol adherence can be influenced by different factors, so the relevant mediators 
and moderators for an efficacy RET can differ from those for an effectiveness RET. An 
effectiveness RET must address mediators and moderators for all three dynamics 
(efficacy, implementation, and adherence) whereas an efficacy RET need only focus on 
mechanisms affecting efficacy. Assessing mediators and moderators for the three 
different dynamics in a single RET can be challenging.  

When developing new, evidence-based programs, scientists often pursue the three 
facets in sequenced RETs that culminate at the final stage in an effectiveness trial. The 
first step is to conduct an efficacy RET to better understand the mechanisms/mediators 
that produce change in the target outcome. For example, after an efficacy RET, one might 
learn that the program affects only two of the four targeted mechanisms it sought to 
change and that it therefore needs to be strengthened to better address the two 
mechanisms it failed to change. One also might learn that one of the four targeted 
mechanisms/mediators is, contrary to program assumptions, unrelated to the outcome. 
Program activities directed at that mediator might therefore be dropped. Once the 
program is revised based on this information, attention then turns to developing strategies 
for “rolling out” the revised program in real world clinic settings in ways that promote 
proper program implementation. These implementation strategies can be evaluated in an 
implementation RET where the outcome shifts to that of proper implementation. Based 
on this RET, the original program might be revised to make it more amenable to faithful 
implementation. Next, the twice-revised program is subjected to an adherence RET in 
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which the outcome shifts to patient adherence to program protocols, working with 
mediators and moderators of such adherence. After the program is revised a third time to 
maximize client adherence, an effectiveness RET is pursued to evaluate the potential of 
the finished product in real world settings.  

Some social scientists criticize the sequenced approach because it takes so long to 
execute the series of studies. Treatments can become outdated by the time the sequence is 
finished. In response, the National Institute of Mental Health (NIMH) has advocated for 
hybrid designs that combine the ability to evaluate efficacy and effectiveness 
simultaneously. Such designs are complex because their goals are often oppositional; on 
the one hand, you want to maximize implementation fidelity and adherence to accurately 
assess efficacy; on the other hand, you want to let fidelity and adherence vary as it would 
in the natural world so you can determine their effects. 

When you are hired by a client to evaluate a program, the client typically is 
interested in the effectiveness of a program in the setting in which the program is 
administered. It is important to keep this focus front and center as you perform your 
evaluation. However, as noted, a key component of effectiveness is the efficacy of the 
program and you will want to gain perspectives on efficacy as well. In this sense, 
program evaluations for clients also require hybrid designs that can provide perspectives 
on both efficacy and effectiveness.      

Issues surrounding the use of efficacy versus effectiveness RETs and the analytic 
strategies for them are complex enough that I devote an entire chapter to the matter 
(Chapter XX). The bottom line is that when designing an RET, you need to decide what 
your focus will be, namely on efficacy, implementation fidelity, protocol adherence, or 
some combination of the three. You then design your RET accordingly. If the decision is 
to focus just on efficacy, then you adopt methods to maximize fidelity and adherence, 
even if the ways you do so may not be realistic in real world settings. For example, you 
can’t study the potential of a drug to cure a disease and the biological mechanisms by 
which that drug impacts the disease by including people in the treatment condition who 
take insufficient dosages of the drug or who do not take it at all. You adopt 
methodologies that ensure fidelity and adherence. If the decision is to focus on all three 
facets, then you would ensure your RET addresses mediators and moderators for each of 
the three facets. Your approach to RET design depends on your priorities. 

RANDOMIZED TRIAL DESIGNS 

The variety of randomized trial designs is considerable. I focus here on designs that I 
consider in future chapters (with a few exceptions), but the list of design types I provide 
here is not exhaustive. I first describe the classic two-group, pretest-posttest design and 
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use it to establish the advantages of a randomized trial relative to a single group pretest-
posttest design. In the context of doing so, I identify some common practices that are, in 
my opinion, ill-advised. I then discuss clustered designs, wait-list designs, cross-over 
designs, and adaptive designs.  

Trial Design 1: Two-Group, Pretest-Posttest Designs 

Campbell and Stanley (1963) identify factors that can undermine inferences about 
program effects in a variety of experimental designs. They use what they call a single 
group, pretest-posttest design to illustrate many of the validity threats we need to be 
concerned with, which is signified by O1 X O2, where the O represent the points in time 
when an outcome is measured and X is the administration of the intervention. Another 
design they discuss, and one that is quite common, is the two-group, pretest-posttest 
design. It appears diagrammatically as follows, with random assignment to the groups: 
 
Treatment Group:   O1 X O2 
Control Group:    O1     O2 
 
In this design, a control group that is not exposed to the intervention is added to the single 
group, pretest-posttest design. A related design is a two-group, posttest only design: 
 
Treatment Group:   X O 
Control Group:        O 
 
which is the two-group, pretest-posttest design but with no baseline assessments.  

I consider here eight “threats to validity.” Appreciation of these threats is essential 
to the design of strong RETs. Most of the threats were introduced by Campbell and 
Stanley using a single group, pretest-posttest design. However, the threats are relevant to 
two-group randomized designs when researchers pursue answers to questions by shifting 
their focus away from the randomized groups and concentrate instead on just the 
intervention group. For example, some researchers identify moderators of treatment 
response by calculating pretest minus posttest change scores for individuals in the 
intervention condition and then correlate these change scores with individual difference 
variables, such as gender, ethnicity, social class, or baseline severity. If a significant 
correlation is observed, say, between gender and the change scores, it is concluded that 
gender affects (or moderates) treatment response, e.g., males in the treatment condition 
show more change than females in the treatment condition. Note that this approach 
ignores the control group and thus simulates a single group, pretest-posttest focus. To the 
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extent there are “threats to validity” for single group, pretest-posttest designs, those 
threats compromise such moderator analyses.  

Threat 1 to Valid Inference: Testing Effects  

Testing effects occur when the act of completing a measure changes people’s standing on 
the construct being measured. Suppose in a single group pretest-posttest design, a 
program to lower depression is evaluated. Study participants complete an assessment 
battery at baseline asking about depressive symptoms and the coping strategies they use 
to deal with them. By completing the measures, individuals may reflect on and think 
more thoroughly about the symptoms and coping strategies. It may be that these 
reflections, not the intervention, cause reduction in depression and better coping 
strategies at the posttest. Testing effects are controlled in the randomized two-group 
pretest-posttest design if one compares the posttest outcome scores for the intervention 
group with the posttest outcome scores for the control group. Testing effects should affect 
both groups equally, so any differences between the groups on the outcome at posttest 
can’t be attributed to testing. Alternatively, one can use the posttest-only control group 
design, which eliminates the baseline, thereby removing any possibility of testing effects. 
This works fine for outcome-only RCTs, but it sacrifices much in RETs with mediation 
and moderation.   

Threat 2 to Valid Inference: History Effects  

History effects refer to events external to the study that may be responsible for changes in 
the outcome rather than the intervention. For example, in the single group pretest-posttest 
design, the effects of a program to decrease stress among patients over a period of 3 
months might be overestimated or underestimated due to events that occur in the 
community or the broader geographic region, such as an improving economy leading to 
more family income that, in turn, reduces stress. Or, an environmental program to reduce 
energy consumption might be implemented at the same time that the price of energy 
spikes upward, causing people to use less energy. History effects can be controlled by 
using either the randomized two-group pretest-posttest design or the two-group posttest 
only design because the effects of external events should occur in both the experimental 
and control groups. Outcome differences between the groups, as such, cannot be 
attributed to history effects. 

Threat 3 to Valid Inference: Instrumentation Change  

Instrument change occurs when the measuring device used to assess the outcome changes 
over time in ways that suggest program or treatment effects may be larger or smaller than 
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is the case. An example is the case of observer drift for an outcome measure that relies on 
observer reports (Smith, 1986). Observer drift occurs when observer understandings of 
the behavioral codes they use change over time. Observer drift can produce changes in 
the recorded observations even if a program has no effect. For example, what is 
considered to be aggressive behavior by children in a playground at baseline might be 
seen as less aggressive at posttest as observers become more accustomed to seeing 
aggressive behavior occur. For self-reports, perhaps the interpretation of the meaning of 
items on a self-report instrument change over time as participants become more 
sensitized to constructs addressed in an intervention. Mean differences between baseline 
and posttest assessments may not be due to the program but to the different 
interpretations of the items on the inventory. Instrument change usually operate for both 
the experimental and control groups in two-group designs, so between-group 
comparisons of posttest outcomes control for them (but see below for exceptions). Even 
if equated in the two-groups, instrument change is worrisome because the construct 
studied might be different than one thinks.  

Threat 4 to Valid Inference: Regression to the Mean  

Another validity threat is regression to the mean. The dynamics underlying this 
phenomenon are not well understood by many, so I develop the concept in depth here.  

Suppose I select for study individuals with extreme scores in a population 
distribution, such as people who score high on a depression scale. If I measure their 
depression again at a later point in time - even in the absence of a treatment program - I 
likely will find that their scores “regress to the mean” of the original distribution, i.e., the 
mean for the extreme group at re-assessment will change towards the value of the original 
mean of the full group. There are many sources of such regression to the mean, but I 
focus initially on one source, measurement error. I will use an unrealistic example to 
make it easier to illustrate the dynamics.  

Consider a group of 9 individuals who, unbeknownst to me, have the same true 
levels of depression, which I index on a 0 to 100 metric with higher scores indicating 
higher levels of depression. Table 4.1 presents their observed scores on a depression 
measure (Y) and their true depression scores (T) at baseline (Time 1) and posttest (Time 
2). I have ordered the observed scores from highest to lowest based on their Time 1 
values (note: in practice, we do not know the true scores, but assume we do here for 
purposes of pedagogy). Consistent with classic test theory, each observed score is an 
additive function of a person’s true score plus random noise reflecting measurement 
error, such as misreading items on the inventory, being distracted, and so on. The random 
error is uncorrelated with the true scores because it is random. Some of the random error 
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pushes observed scores upward and some of the random error pushes observed scores 
downward; again, its influence is random. Note that the error scores at Time 1 are 
uncorrelated with the error scores at Time 2, also because the error at both times is 
random; correlating one set of random numbers with another set of random numbers 
yields a zero correlation. 

Table 4. 1: Regression to the Mean 

                                Time 1                         Time 2 
 
   Person    ` Y1    T1     E1            Y2     T2      E2 
 
       1         93    90    +3              93      90    +3 

       2         93    90    +3              87      90      -3 

       3         93    90    +3              90      90       0 

       4         90    90       0              87      90      -3 

       5         90    90       0              93      90     +3 

       6         90    90       0              90      90      0 

       7         87    90    -3              87      90      -3 

       8         87    90     -3              93      90     +3 

       9         87    90     -3              90      90       0 

Suppose I decide to focus a treatment for depression on individuals who are most 
depressed, so I select the three individuals with the highest observed depression scores. 
Unbeknownst to me, these individuals are no different in their depression levels at 
baseline from any of the other individuals and their elevated scores are due solely to 
random error. The mean observed depression score for these three individuals at baseline 
is 93. I expose them to the intervention to lower depression and then measure their scores 
at Time 2, post-intervention. The intervention is completely ineffective and the true 
scores of the three individuals remain the same. This is shown in Table 4.1. Because 
random error at one point in time is uncorrelated with random error at another point in 
time, the random noise that contaminates the observed scores at Time 2 will take on 
different values than those that contaminate the scores at Time 1. The random errors for 
the highest scoring individuals at Time 1 were all positive in value (each was +3), but at 
Time 2, the values of the random errors are now evenly distributed across the three 
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individuals (one is +3, the other is 0, and the third is -3). The mean of the observed scores 
of the three individuals at Time 2 is now 90 and it looks like, at the observed score level, 
that the intervention had an effect because it decreased depression from a mean of 93 to a 
mean of 90 for these individuals. But this result is an artifact of regression to the mean. 
We essentially biased our selection of participants towards individuals with positive 
random errors at Time 1 whose errors will not necessarily be positive at Time 2.  

Regression to the mean is caused not only by measurement error, but by any 
variable that disrupts the correlation between two sets of scores measured at different 
points in time. Suppose I use a measure that is perfectly reliable and valid, Y, and 
measure it at two time points, Y1 and Y2. There is no measurement error in Y. Suppose 
further that the mean and variance of Y at both times is the same and that there is a 3- 
month interval between measures. Suppose I select the highest 10% of the population 
based on their scores on Y1. Assuming the variable is temporally dynamic, the chances 
are low that on the second testing occasion the exact same individuals will again be the 
highest 10% of the sample. To be sure, many of those who were initially selected as 
being in the highest 10% will again be in the highest 10% at time 2; but this will not be 
true in every case. Variables unrelated to Y1 that are operating in the real world (i.e., 
disturbance variables) will have caused some people’s true standing on Y2 to change 
upward and some people’s true standing on Y2 to change downward, essentially 
mimicking the random influences on Y in our measurement error example. If even just a 
few of the originally selected people are no longer in the highest 10% because of these 
random disturbances, the Y2 group mean for the highest 10% will now be closer to the 
original population mean, which is unchanged over time. Essentially, the disturbance 
variables, not measurement error, cause regression to the mean. As such, regression to the 
mean is caused by the presence of any disturbance variable that causes the correlation 
between Y1 and Y2 to be less than 1.00 (see Kenny & Campbell, 1999, for elaboration). 
This same phenomenon operates at the lower end of the distribution in a mirror fashion, 
with those in the lowest 10% of scores showing improvement in their mean Y over time.  
  There are two key points to keep in mind. First, regression to the mean is a group 
phenomenon not an individual phenomenon. We usually have no idea if a given 
individual is going to change upward or downward over time. But, as a group, the mean 
of the most extreme individuals at one or the other end of the distribution is likely to 
move closer to the original population mean given the operation of random disturbances. 
Second, regression to the mean operates even if everyone exhibits true changes by a 
systematic amount due to some intervention or event between Time 1 and Time 2. It may 
be the case that everyone’s true score in the population decreases by a constant of 10 
units. Nevertheless, the presence of disturbance variables (such as measurement error) 
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will cause the highest scorers at Time 1 to decrease more, on average, than the overall 
population decrease of 10 units and the same dynamic is mirrored for those at the lower 
end of the distribution but in the opposite direction.  

The bottom line is that in a single group, pretest-posttest design that has selected 
individuals from one end of the distribution for study, regression to the mean artifacts 
will produce mean changes toward the full population mean. In studies evaluating 
interventions that rely on extreme groups (e.g., patients who are above a clinical cut-off 
for depression), some degree of mean reduction/change is almost assured. The best way 
to deal with regression to the mean is to randomly assign the (extreme) individuals to the 
intervention and control groups. Regression to the mean should then operate equally in 
both groups. Any group differences in posttest means will reflect the true 
intervention/treatment effect. Evaluating change within a given group (e.g., just the 
treatment group) is problematic because it will be subject to regression to the mean.  

Threat 5 to Valid Inference: Maturation  

Campbell and Stanley (1963) refer to maturation as “all biological or psychological 
processes which systematically vary with the passage of time, independent of specific 
external events” (pp.12-13). A single group pretest-posttest design evaluating an 
intervention over a six-month period with middle school adolescents, for example, is 
contaminated by pubertal changes in adolescents that naturally occur during this time 
period. If pubertal changes are relevant to one’s outcome, the evaluation study is 
compromised. An intervention that  improves cognitive functioning in the elderly might 
erroneously appear to be ineffective in a single group pretest-posttest design because of 
naturally occurring, biologically based decrements in cognitive function that occur at the 
same time as the intervention. The program may increase cognitive performance but this 
is offset by the naturally occurring decrements that occur with aging, yielding the same 
pretest and posttest means. Had the program not been provided, the posttest means would 
have been lower than the pretest means. Maturation can be controlled using a two-group 
randomized pretest-posttest design because it should operate in both the intervention and 
control groups; any differences between them cannot be attributed to maturation.  

Threat 6 to Valid Inference: Experimental Mortality  

Campbell and Stanley (1963) define experimental mortality as participants dropping out 
of a study. In the single group pretest-posttest design, if dropping out of the study is non-
random, then it is possible that biased estimates of treatment effects will occur. For 
example, if early responders to a treatment for depression are more apt to remain in the 
study but early non-responders are more apt to drop out (because the treatment does not 
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seem to be working), then the estimated effects of the treatment will be overestimated.  
Campbell and Stanley also caution about study dropouts for the randomized two-

group pretest-posttest design and the randomized posttest only control group design if 
there is differential drop-out for the treatment and control groups. If the differential drop-
out is systematic rather than random, then a treatment can appear to be more (or less) 
effective than it actually is. For example, a resource and time demanding treatment that is 
cognitively complex might lead people who are less motivated to drop out of the 
treatment condition than in a control condition that is less demanding. This differential 
drop out can bias effectiveness estimates for the treatment versus control conditions.  

Threat 7 to Valid Inference: Selection Effects  

Campbell and Stanley discuss selection effects in the context of two-group designs 
without randomization. Selection effects refer to self-selection into the treatment or 
control conditions by individuals such that the treatment and control conditions are 
confounded by a host of individual differences. For example, consider an after-school 
program to increase reading skills in students. A researcher compares post-program 
reading skills for youth who completed the program with students not in the program. 
Without random assignment, it could be that students who volunteered to be in the 
program have different pre-program reading skills and different motivations to achieve in 
school than students who did not volunteer. These pre-existing differences muddy the 
evaluation of program effects because one does not know if group differences in reading 
skills after the program are due to the program or to pre-existing group differences.  

Selection effects also can undermine randomized designs if the selection variables 
interfere with the process of random assignment or if they exert their influence after 
randomization has occurred. For example, methodologists have suggested that 
researchers or clinic staff sometimes deviate from random assignment protocols to ensure 
a person who is in particular need of treatment is assigned to the intervention as opposed 
to the control condition (Rosenberger & Lachin, 2015). Berger (2005) suggests that 
researchers or clinic staff may occasionally deviate from the random assignment protocol 
so as to enroll patients into the intervention if they think the person is more likely to 
respond to treatment, thus favoring the treatment. Systematic post-randomization 
selection bias also can occur due to treatment dropouts, non-adherence to protocols, study 
attrition, missing data, and unintended between-condition differences in the use of co-
occurring treatments (e.g., medications to supplement a behavioral therapy trial).  

Threat 8 to Valid Inference: Interaction Effects between Threats  

It is possible for any of the above phenomena to operate in interaction with each other or 
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with treatment administration to undermine inferences about a treatment effect. For 
example, an intervention might only be effective if preceded by a baseline assessment 
because the baseline assessment sensitizes people to issues addressed in the intervention. 
Note that this is not the same as a testing effect per se. A testing effect refers to the 
impact of completing an assessment on the outcome. A testing-by-treatment interaction is 
when the effects of the treatment are dependent on  completing the baseline assessment.  
 As an example of a selection-maturation interaction, suppose a study of the effect of 
a new teaching approach in elementary school on student math abilities is conducted, 
with students in the control group recruited into the study at the beginning of the school 
year and those in the experimental group recruited in at the end of the school year (note: 
this is not random assignment to condition). There are selection effects present such that 
the students in the control group are younger than those in the experimental group and 
one would expect increases in cognitive abilities as a result of maturation over the course 
of the school year, changes that could bias scores on the math ability test. Treatment 
versus control group differences in posttest math ability means might occur, but they 
likely represent a selection-maturation interaction rather than program effects. 
 In sum, when conducting research to test the effect of an intervention on outcomes, 
it is important to rule out the types of threats discussed by Campbell and Stanley (1963). 
Campbell and Stanley suggest an effective strategy for addressing many of these threats 
called a Solomon four group design, which uses the following randomized design:  
 
Group 1:   O1 X O2 

Group 2:   O1     O2 

Group 3:         X O2 

Group 4:    O2 

Note that this design is a combination of the two-group pretest-posttest design (groups 1 
and 2) and the single group posttest-only design (groups 3 and 4). Comparing O2 for 
Group 4 with O2 for Group 2 diagnoses testing effects. Comparing O2 for Group 3 with 
O2 for Group 1 diagnoses testing by treatment interactions. Comparing O2 for Group 3 
with O2 for Group 4 tests for intervention/treatment effects. For more details, see 
Campbell and Stanley (1963) and Reichardt (2019). The Solomon four group design is 
rarely used because it tends to be costly. 

Revisiting Within-Condition Analyses of Change Scores 

I now revisit two practices mentioned earlier that you will sometimes encounter in 
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program evaluations using randomized trials. Both practices focus on change scores 
within the intervention condition. The first practice is when researchers ignore the control 
group and test for statistically significant change in the outcome from the pretest to the 
posttest for the intervention group using either a mean change score (by testing if the 
mean change is statistically significantly non-zero), a dependent groups t test (by 
comparing the pretest mean to the posttest mean), or a mixed effects model, all of which 
are statistically equivalent and yield the same result. The tests are used to assert the 
program produced change in the outcome from pretest to posttest. The problem with this 
strategy is that the mean change does not just reflect response to treatment; it also reflects 
testing effects, history effects, instrumentation change, regression to the mean, maturation 
effects, experimental mortality, selection dynamics, and potential interactions among 
these confounds, as well as other factors I have not yet discussed. This is not a 
scientifically sound way to assert a program effect. By ignoring the control condition, it 
ignores the advantages of an RCT and it essentially reduces to a single group pretest-
posttest, with all of its methodological problems. The best way to assert program effects 
is to compare the posttest mean for the treatment group with the posttest mean for the 
control group because the comparison accounts for these artifacts.  

The second practice is when researchers seek to identify moderators of treatment 
response by correlating pretest minus posttest change scores with individual difference 
variables, again within the intervention condition only. For example, for the intervention 
group, I might correlate biological sex with the change scores to determine if females or 
males respond better to treatment. A problem with this approach is that the change scores 
do not only reflect response to treatment. They are confounded with testing effects, 
history effects, instrumentation change, regression to the mean, maturation effects, 
experimental mortality, and selection dynamics, among other things. A second problem 
with this approach is that the correlation with the change score is impacted by the degree 
of correlation between the individual difference variable and the outcome as measured at 
baseline independent of change. Let YPRE be the outcome measured at baseline and YPOST 
be the outcome measured at posttest. A change score, CS, is YPRE - YPOST. Any individual 
difference variable that is correlated with YPRE will exhibit a correlation with CS because 
YPRE is part of CS. For example, biological sex tends to be correlated with depression: 
Females tend to report higher levels of depression than males. Given that sex is correlated 
with YPRE, it also will show an artifactual correlation with the change score. Indeed, 
because YPRE is part of CS, it also is the case that baseline measures of the outcome will 
show artifactual correlations with CS (see Cohen & Cohen, 1984, for mathematical 
proofs). This artifact has led many researchers to erroneously conclude individuals with 
more extreme baseline scores respond differently to a treatment, unaware that the 



                                                                                                      Methodological Fundamentals    17 

 
 

baseline score will be correlated with change just because it is part of the change score. A 
more rigorous approach to identifying moderators of treatment effects is to include both 
treatment and control individuals in the analysis of moderators by using a dummy 
variable, T, to represent the treatment versus control condition and then to formally test 
the interaction between T and the individual difference variable of interest (e.g., sex, 
ethnicity, social class) using product terms. I discuss this approach in more depth in 
Chapters XX and XX. Be careful not to fall into these traps. 

Trial Design 2: Clustered Designs 

Many trials randomly assign individuals to condition, but some trials randomly assign 
clusters of individuals to conditions rather than individuals per se. For example, when 
evaluating the effects of a new math curriculum in schools, a researcher might randomly 
assign classes to either the “new curriculum” or “old curriculum” condition. Or, 
researchers might test the utility of a new group treatment for attention deficit disorder 
(ADHD). They randomly assign individuals to treatment versus control conditions but 
they then form therapy groups of 5 individuals per group, to which a group leader 
administers the therapy. The treatment condition might have 50 such groups and the 
control condition also might have 50 groups that engage in ADHD irrelevant task 
activities. The therapy groups represent the clusters and this is another example of a 
cluster randomized design. 

When we analyze data in a traditional randomized trial, a statistical assumption we 
make is that the error scores across individuals are independent. However, in clustered 
designs this may not be the case. For example, if a therapy group contains a particularly 
disruptive group member, then the outcome scores for all members of that group might 
be affected, but not members of other groups since they are not exposed to the disruptive 
individual. Or a group might have a particularly good therapist/teacher/leader and all of 
the members of that group benefit but not members of other groups. The presence of such 
cluster effects can create dependencies among the error scores. If the dependencies are 
strong enough, then adjustments need to be made for statistical tests to be valid.  

Clusters can be small groups, they can be schools, they can be communities, or any 
other clustered unit that is randomly assigned to conditions or that exist within treatment 
and control conditions in ways that cluster membership introduces bias in statistical 
inference. I discuss the analysis of randomized cluster designs in Chapter 29. It is not 
uncommon to find examples of group-administered therapies in clinical psychology that 
are analyzed as if the individuals are independent when a cluster-adjusted analysis is 
called for.  
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Trial Design 3: Wait-List and Cross-Over Designs 

Another type of trial design is the wait-list design. In this case, individuals are randomly 
assigned to either a treatment or a control condition. Individuals in the control condition 
receive treatment, but they are delayed in doing so in order to fulfill their role of 
participating in the control group, i.e., they complete baseline and “posttest” assessments 
per control group individuals in a classic two-group, pretest-posttest design. Here is the 
design using the Campbell and Stanley notation: 
 
Treatment Group:   O1 X O2 
Control Group:    O1     O2    O3 X O4 
 
The classic analysis of this design is to work with the O1 and O2 data for the two groups, 
analyzing it as if it is a classic two-group pretest-posttest design. However, certain 
questions also can be addressed by pooling data from O1 and O2 for the treatment group 
with data from O3 and O4 for the control group. Wait-list designs typically use passive 
rather than active control groups at O1 and O2 and are challenging if one seeks to assess 
treatment versus control group effects at extended follow-ups because the wait list group 
must be delayed that much longer before beginning treatment. These designs are not 
ideal, but we often have little choice but to use them because of ethical considerations of 
otherwise denying people treatment.  

A related design is a cross-over design in which more than one treatment is 
administered to the same individuals but in different sequences depending on the group 
one is assigned to. For example, for the two treatments, XA and XB, the design might be: 

 
Group 1:   O1 XA O2    O3 XB O4 
Group 2:   O1 XB O2    O3 XA O4 
 
This type of design might be used for evaluating two different headache medications 
whose effects are short-lived, such as for relief of acute pain during a headache. 
Medication A is given first for those in Group 1 and then medication B some 6 months 
later. The reverse order is used for Group 2. The assumption is that the effects of the prior 
treatment do not carry over to the later treatment. A variant adds a control group, as 
follows: 
 
Group 1:   O1 XA O2    O3 XB O4 
Group 2:   O1 XB O2    O3 XA O4 
Group 3:   O1       O2    O3      O4 
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For more details about cross over designs, see Jones and Kenward (2014) and Lui (2016).  

Trial Design 4: Adaptive Designs 

A fourth type of trial design is an adaptive design. Definitions of adaptive designs vary, 
but in the current book, I define them as designs that (a) randomly assign individuals to a 
treatment or a control condition, (b) identify individuals in the treatment condition who at 
a pre-determined point during treatment are not responding well to the treatment, and 
then (c) randomly assigning these non-responders to either a new treatment regimen or to 
a condition that continues the original treatment. Usually the control group is assessed 
throughout all phases of the design, although this varies. Here is the design schematic: 
 

 XB  O3 

{ O1  XA  O2 

O1         O2 O3 

Responders

Non-responders  XA  O3 

 XA  O3 

}

R

R

 
 
where R indicates random assignment. Comparing the four group means at the final 
posttest (O3) is scientifically informative but there are special analytic considerations that 
must be taken into account given that assignment to the responder versus non-responder 
groups is non-random. 
 In sum, there are a host of RCT and RET trial designs that you will encounter. The 
most common one is the two-group pretest-posttest design or some variant of it. These 
designs capture the bulk of my attention in this book, although I also consider 
randomized cluster designs as well.  

POPULATIONS FOR RANDOMIZED TRIALS 

Almost all of the statistical methods used to analyze data in the social sciences assume 
that we analyze random samples from a broader population. The analysis of randomized 
trials is no exception. Do not confuse the practice of selecting for study a random sample 
from a population with that of randomly assigning individuals to different treatment 
conditions. They are distinct processes and have different purposes. I discuss each of 
them in this section, but I first focus on the concept of selecting a random sample from a 
population, not random assignment to conditions.  
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Two Ways of “Selecting” Random Samples from a Population 

In social science research, the traditional way of thinking about populations and samples 
involves two steps. First, we define the population of individuals we want to make 
statements about. Second, we enact procedures that select a random (or approximately 
random) sample from that population. We then analyze the data in ways that take into 
account the sampling error that inevitably results when estimating population parameters 
from the random sample. In idealized random sampling, one has a numbered list of all 
members of the population and then uses a random number table to select people to invite 
to be in the study. Given that everyone contacted accepts the invitation, the result is a 
random sample from the population. This idealized process is often unrealistic and 
variants of it have been developed that lead to reasonably good approximations of 
random samples (e.g., area sampling). For details see Blair and Blair (2014).   
 It is possible to turn this two-step logic on its head by reversing the process. 
Suppose I conduct a study on a group of recruited individuals, such as patients in a clinic, 
and then I declare that the group represents a random sample from some population. The 
task is to then specify the population the sample can be construed as a random sample 
from. Note that we are still dealing with a population and a random sample from that 
population. It is just that we are using the sample to drive specification of the population 
rather than vice versa. I call the former strategy a population-then-sample approach and 
the second strategy a sample-then-population approach. Using the latter, I might select 
people into my study based on responses to flyers I put in a clinic and advertising on the 
radio or on public transportation. People who respond to these solicitations and who 
ultimately agree to be in the study are my sample. I then construe them as a random 
sample from a broader population, which allows me to apply the statistical methods we 
learn in statistics classes that assume random sampling. The question then becomes just 
who the broader population is? 

The case we make about who the broader population is depends on the procedures 
we used to recruit the sample, the variables we are studying and the contexts in which 
those variables are studied. Many scientific researchers avoid thinking about such 
generalizability by putting an obligatory sentence in their Discussion sections about not 
generalizing results beyond the “study population” without ever specifying who the 
“study population” is. I personally think we should demand a more thoughtful 
consideration of who the population is that the study sample represents.  

When we are hired to conduct a program evaluation, the focus usually is on a 
population that represents the clientele of the clinic, the school, or the organization in 
which the program is administered. We use recruitment procedures that we think will 
approximate a random sample from the population that the program serves. This 
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represents a population-then-sample orientation. However, if the recruitment procedures 
we use result in a non-random sample from the population served, we still analyze the 
data using statistical methods that assume random sampling. We just shift our mentality 
to the sample-then-population logic and generalize our conclusions to the population the 
sample supposedly represents, what I call a meta-population.  

In actuality, the initial population we seek to generalize to in the population-then-
sample framework is not just the population of clientele who are currently served by the 
organization. Rather, we seek to generalize as well to future clients who will use the 
services of the organization in the coming years but who have not yet done so. In 
scientific research, if we seek to establish general laws of human behavior, our 
populations are even more broad, representing people in the past, people who are 
currently living, and people from future generations who may not even yet been born. In 
this sense, our populations are often hypothetical in nature, i.e., they are meta-
populations. 

When Sampling Bias Does not Matter  

Suppose I want to characterize the attitudes of people in the United States about 
legalizing marijuana. It would be folly for me to conduct a study on college students in a 
large Northeastern university, assess how favorable the students feel toward legalizing 
marijuana, and then claim that their opinions can be construed as if the students are a 
random sample of the general United States population. On the other hand, suppose I 
want to characterize the effect of smoking marijuana on brain physiology and I again 
conduct my study on college students in a large Northeastern university. I find that 
smoking marijuana impacts anandamide molecules in the hippocampus. I might argue 
that for these particular variables and for this particular question, the college students 
essentially function as a random sample of people in the United States and the results can 
be generalized accordingly. This latter example drives home an important point, namely 
that biased samples in a technical sense can yield unbiased population estimates. Suppose 
a population has 50% males and 50% females. A researcher is interested in estimating the 
divorce rate in the population and, unbeknownst to the investigator, the true overall 
divorce rate is 40%. Suppose that the divorce rate for males is 40% and it also is 40% for 
females. Stated another way, biological sex is unrelated to divorce rates. Suppose I 
conduct a study where my sampling frame, for whatever reason, oversamples males 
relative to females by a 3 to 1 margin. If my goal is to estimate the overall population 
divorce rate, the sex bias in my sample is irrelevant; I would get the same result if I used 
a sampling frame that included equal numbers of males and females because sex is 
unrelated to the parameter being estimated. The sample bias in biological sex is moot. 
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Bias only matters for variables that are relevant to estimation of the parameter in 
question, not variables that are irrelevant to that parameter. 

Some argue that when the focus is on basic biological or mental processes, it is not 
unreasonable to assume one’s sample can be construed as a random sample from people 
in general for the target variables in question and their interrelationships. For a study 
that addresses how psoriasis is impacted by a new drug, a sample of volunteers from a 
psoriasis clinic in Buffalo, New York, the argument goes, probably can be construed as, 
functionally, a random sample from a large portion of adults in the United States. Or can 
it? The onus is on the researcher to make a case for the population the sample represents.   

Populations in Randomized Trials  

The specification of a population based on a sample is more complicated for the case of 
randomized trials. Before describing how, let me first reiterate some key points about 
random assignment to conditions. In a typical trial, randomizing people to conditions 
means that each person has an equal chance of being in the treatment or control 
condition. A corollary of randomization is that it is equally likely that a person with any 
given attribute, A, will be in the treatment condition as in the control condition. 
Randomization to conditions tends to produce samples that are comparable at baseline on 
all known as well as unknown outcome determinants, including the baseline outcome 
itself. In this sense, randomization is said to control for pre-treatment confounds when 
evaluating the effects of a treatment relative to a comparison condition.  

Most randomized trials use convenience samples and adopt a sample-then-
population approach to specifying the study population. The population is further defined 
as representing two sub-populations that are equivalent in all respects except one, namely 
whether population members have experienced the treatment or whether they have 
experienced the comparator. The two hypothetical populations, by virtue of random 
assignment, are thought to have equal baseline means on the outcome but their posttest 
means can differ because of the effect of the intervention on individuals in the 
“treatment” population. Not only is the baseline mean presumed equal in the two 
populations, this also is the case for any baseline variable that might impact the outcome. 
This conceptualization of the populations is important to keep in mind when addressing 
imbalance due to randomization, a topic I now address.  

THE CONCEPT OF IMBALANCE 

When analyzing data for a randomized trial, researchers typically calculate for each 
condition the sample means of the outcome at baseline, Y̅0, and the sample means at the 
postest, Y̅1. These statistics represent estimates of the baseline and posttest means for the 
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two sub-populations noted above. There, of course, will be sampling error in the means 
relative to the true population means and this also will be true for any determinant of Y 
that I measure, either at baseline or at the posttest. When treatment and control baseline 
sample means on some variable are not exactly equal, the data are said to be imbalanced. 
Even though the population means for baseline variables are, in theory, balanced 
(because of random assignment), the sample baseline means may not be balanced 
because of sampling error. The theory of random assignment holds that across many 
replications of a trial, the biasing effects of these imbalances cancel when sample 
estimates are averaged across replications. However, it does not change the fact that 
when working with data for just one trial, sample imbalance not only can result but it is 
fully expected given the presence of sampling error. 

Imbalance as an Indicator of Compromised Randomization 

If large amounts of sample imbalance are observed in a given study, then this might lead 
an investigator to question if random assignment to conditions truly occurred. As 
discussed earlier, sometimes random assignment is compromised, such as when staff do 
not follow randomization protocols. If randomization is faithfully executed, however, 
then with a large enough sample size, we do not expect to observe much imbalance in the 
sample data because there should be little sampling error. If we do observe large 
imbalance, then this might suggest that the two referent populations are not equal on 
baseline variables because randomization was compromised. To explore this possibility, 
some researchers perform tests of statistical significance on the baseline variables 
contrasting the treatment and control conditions with the idea that such tests can 
determine if random assignment was compromised. This practice is controversial, with 
most methodologists recommending against it (e.g., Bland & Altman, 2011; Senn, 1994). 

The case against conducting between-group baseline significance tests if we do not 
think randomization is in doubt has been aptly stated by Altman (1985): 

performing a significance test to compare baseline variables is to assess 
the probability of something having occurred by chance when we know that 
it did occur by chance given proper implementation of randomization. 
Altman (1985, p. 126) 

If, however, we believe randomization may have been compromised, the use of 
significance tests for evaluating this possibility is not illogical; it is just that many 
methodologists consider it to be a weak strategy for determining compromised 
randomization. Objections include (a) the fact that such tests usually examine many 
baseline variables with the consequent problem of inflated Type I error rates due to 
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multiplicity, (b) the  statistical power of such tests might be low causing us to miss 
meaningful imbalance, (c) if the sample size is large, then the tests might detect levels of 
imbalance that are trivial, and (d) there is a lack of clear standards surrounding what 
constitutes a sufficient between-group difference on variables to question randomization 
(de Boer, Waterlander, Kuijper, Steenhuis, & Twisk, 2015). To be sure, all 
methodologists agree that researchers should be sensitive to the possibility of 
compromised random assignment. However, significance testing of baseline differences 
is seen as a weak approach to gaining perspectives on the matter.  

Imbalance and Small Sample Sizes 

Imbalance between groups for sample data will tend to be less the larger the per group 
sample size. This is because there is smaller amounts of sampling error with larger N. 
With small N, however, it is possible that non-trivial sample imbalance will occur, even 
when there is no imbalance in the populations. Hsu (1989) estimated the probability that 
“non-trivial” sample imbalance would occur as a function of sample size for a 
randomized two-group design. Non-trivial imbalance was defined for a dichotomous 
variable, X (scored 0 and 1), when either the treatment or the control group had twice as 
many people with a score of 1 on X than the other group after random assignment. In 
addition to varying sample size, Hsu calculated this probability for differing numbers of 
baseline outcome determinants (also called prognostic variables). For example, if there 
were three baseline variables that impact the outcome (meaning imbalance on them is 
potentially consequential), Hsu calculated the probability that at least one of them would 
show “non-trivial” false imbalance. Table 4.2 presents his results. As an example for 
reading the table, for a total sample size of 18 (9 per group), the probability that at least 
one prognostic variable given two such variables would show “non-trivial” false 
imbalance is 0.574. It can be seen that for N = 64 (32 per group) or higher, the chances of 
non-trivial false imbalance was quite low. This suggests that of your N is about 65 per 
group or larger, sample imbalance probably is not an issue.  

Strube (1991, 2015) argued that a more accurate picture of the consequences of 
false imbalance requires not only documentation of how often it occurs as a function of 
sample size, but also how it affects posttest significance tests of group differences on the 
outcome. This is important because the tendency for small-sample induced false 
imbalance to create a false treatment effect might be offset by the reduced power to 
detect that false treatment effect due to the small N. Strube found that false imbalance 
only induced unacceptable Type I error rates when the effect size of the prognosticator 
was large (Cohen’s d > 2.0 or more) for sample sizes less than 15 or so per group. He 
concluded that “although the likelihood of nonequivalence may be quite high for small 
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samples…, the likelihood is quite low that the nonequivalence will produce erroneous 
inferences about treatment efficacy.” (p. 349).  

Table 4. 2: Probability of False Imbalance 

                     Number of Prognostic Variables 

Total N 1 2 3 
    
8 0.486 0.736 0.864 
12 0.567 0.813 0.919 
18 0.347 0.574 0.721 
24 0.220 0.392 0.526 
32 0.076 0.146 0.210 
40 0.026 0.050 0.075 
64 0.005 0.011 0.016 
80 0.003 0.007 0.010 
100 0.001 0001 0.002 

Addressing Imbalance 

Given the inevitable presence of imbalance in sample data (but assuming there is no 
imbalance in the populations), the question becomes what to do about it, if anything. 
Here are some guidelines. First, sample imbalance on variables that do not impact the 
outcome (or the mediators) is irrelevant and can safely be ignored. We are only 
concerned with imbalance on variables that matter. For example, if the treatment and 
control conditions differ on shoe size, who cares? Second, for prognosticators of Y that 
show non-trivial imbalance, most methodologists recommend controlling for them during 
data analysis (Altman, 1985; de Boer et al., 2015; Greenland, Robins, & Pearl, 1999; 
Senn, 1994, 2013). This recommendation might seem surprising in light of the results of 
Hsu and Strube, but the idea is that doing so can only improve our estimates of program 
effect sizes, so why not adjust for them. There are, of course, qualifications to this 
suggestion. For example, if the measures of the covariates that show non-trivial sample 
imbalance have low reliability, then covarying them out may make matters worse, not 
better. If there are outliers on the covariate that distort its relationship to the outcome, 
then including it in the model can make matters worse unless you deal with those outliers. 
Given this and other modeling complications, you will want to be judicious about what 
covariates you control to deal with sample imbalance (Senn, 2013).  
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In practice, I routinely check for baseline imbalance on variables I have measured 
before embarking on data analysis, although I do not rely on tests of statistical 
significance to do so. I focus instead on effect size indices of baseline differences. If I 
find a potentially troublesome effect size for imbalance for a given variable, I ask myself 
if the variable is a likely determinant of either my mediators or outcomes. If the answer is 
no, then the imbalance is irrelevant. If the answer is yes, I consider controlling it during 
data analysis by including it as a covariate in the analysis. I usually prioritize my list of 
covariates in terms of importance and then control as many as is practically reasonable.  

RANDOMIZATION STRATEGIES 

There are many methods for randomly assigning people to treatment versus control 
conditions. In this section, I describe four approaches, fixed allocation, block 
randomization, stratified randomization, and adaptive randomization. 

Fixed Allocation Random Assignment 

Fixed allocation methods assign people to treatment or control conditions based on a 
pre-specified probability, usually equal (1:1). Some methodologists suggest the use of 2:1 
allocation ratios, with the N for the intervention group being twice the size of the control 
group. This allows researchers to address within treatment analyses that might not 
otherwise be possible due to small N. Such allocations must be used with caution because 
the statistical power of a two-group contrast is primarily driven by the smaller sample 
size of the two groups; a 2:1 allocation can thus reduce power relative to a 1:1 scheme, 
sometimes substantially so.  
 For simple randomization, one can use computer software to generate random 
numbers that determine which cases to assign to which condition. Table 4.3 presents 
example output from the programs available on this book’s website using a sample size 
of 20 per group. If the list of participants is available before random allocation, then the 
cases are numbered from 1 to 40 and assigned per the table. If individuals are instead 
recruited and assigned to a condition sequentially in the order they appear at a clinic or 
organization, the numbers in the table refer to the sequence number of the participant (1 = 
first recruited participant, 2 = second recruited participant, and so on through 40 = last 
recruited participant), with condition assignment dictated accordingly. For example, the 
second person who is recruited into the study will be assigned to Condition 1 using Table 
4.3. but the first person recruited into the study will be assigned to Condition 2.  
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Table 4. 3: Simple Random Assignment 

ASSIGN THE FOLLOWING CASES TO CONDITION 1  (N = 20) 
 
2    10    16     24 
5    11    19     31 
6    12    20     32 
7    13    21     36 
9    15    23     37 
 
ASSIGN THE FOLLOWING CASES TO CONDITION 2  (N = 20) 
 
1    17    27     34 
3    18    28     35 
4    22    29     38 
8    25    30     39 
14   26    33     49 

 A variant of this approach is to flip a coin for each participant as they are recruited 
into the study, with heads indicating assignment to the treatment condition and tails 
indicating assignment to the control condition. An advantage of this strategy is that the 
researcher or staff member making the assignment has no idea which condition a person 
will be assigned to until that very second. Chalmers, Celano, Sacks and Smith (1983) 
reviewed reports of over 100 clinical trials. For studies where the researcher or staff 
member was blind to the condition to which the person would be assigned, 14% of the 
studies observed imbalance on at least one baseline variable. For studies where the 
researcher or staff member was not blind to the treatment condition a person would be 
assigned to, the corresponding imbalance rate was 26%.1 The pre-generated list per Table 
4.3 can be used in a blinded way if staff call a centralized data coordination location and 
are told over the phone just prior to allocation the condition the person is to be assigned 
to. Or, staff can learn of condition assignment at the time of allocation from a project web 
page they consult that monitors allocation vis-à-vis Table 4.3.  

Some researchers believe an alternating assignment of sequentially recruited 
participants to the treatment or control condition constitutes random assignment (e.g., T-
C-T-C-T-C-…., where T is the treatment condition and C is the control condition). Such 
a listing has no random component to it, so it does not fulfill random assignment 
requirements. In random assignment, the group to which the next case is to be assigned 
should be unpredictable. This is not the case with an alternating sequence.  

 
1 These results must be taken with a grain of salt because the imbalance was defined on the basis of significance 
tests. 
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Block Random Assignment 

Another randomization strategy is called block randomization. This method is used if 
one wants to avoid condition imbalance in the number of participants in a condition 
across time, given sequential recruitment of people into the trial. It assures that at certain 
points in time, the number of people in each condition will be equal. As such, block 
randomization protects against temporal trends during enrollment if one suspects that 
meaningful external conditions might be changing across the time of recruitment. For 
example, if one is recruiting 7th grade adolescents into a study of math achievement over 
the course of an academic year, students recruited early in the academic year will likely 
have less math achievement than students recruited later in the academic year, due to 
naturally occurring brain development and the fact that students are learning math in their 
classes over the course of the year. Simple randomization, properly executed, generally 
will work in these cases, but if one wants to assure equal numbers of participants in the 
two conditions as time unfolds, block randomization can be used.  

In block randomization, suppose one wants to ensure that after every fourth person 
randomized, the number of people in the two conditions is equal. The block size is 
defined as 4, with each block containing two treatment assignments and two control 
assignments. For two conditions and block sizes of 4, there are 8 possible block types 
(e.g., T-C-T-C; T-T-C-C; C-T-C-T, and so on). One of these block types is randomly 
selected and people are assigned in accord with the ordering within the selected block. 
The process is repeated after the first block is complete. A disadvantage of blocked 
randomization is that most statistical methods for data analysis assume simple random 
sampling. With block randomization, special analytic adjustments are required. For 
details, see Calinski and Kageyama (2003) and Rosenberger and Lachin (2015). 

Stratified Random Assignment 

Stratified randomization is a random assignment strategy designed to reduce 
sample imbalance. It requires having information about relevant prognosticators for each 
participant before random assignment. Continuous prognosticators usually are divided 
into strata (e.g., if the prognosticator is age, three age groups might be defined). The 
strata that a recruit is in is determined and then assignment to the treatment or control 
condition is randomly determined within that strata. Strata can be defined for more than 
one prognosticator, with each prognosticator being treated as a “factor.” The factorial 
combination of prognosticators then defines the stratification design. Like block 
randomization, stratified randomization requires specialized statistical methods; see 
Rosenberger and Lachin (2015). 
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Adaptive Random Assignment 

Adaptive randomization alters the allocation ratios as a trial progresses. There are 
many types of adaptive randomization. Covariate adaptive randomization sequentially 
assigns participants to treatment conditions in ways that consider prior participant 
assignments and baseline prognosticators. The first n of N participants (e.g., 20% of 
them) are assigned to condition using simple randomization. At that point, each 
subsequent participant is assigned to a condition based on his or her scores on the 
targeted prognosticators. Specifically, an aggregate index of prognosticator values (e.g., 
mean scores across prognosticators) are calculated for each condition based on those 
individuals already assigned to the groups. The new participant is then assigned to the 
condition that will cause the aggregate index in the two conditions to be closer in value, 
thereby reducing imbalance. Different types of adaptive randomization are defined by 
variants of methods for aggregation and for the decision rules to assign participants to 
conditions based on those aggregates. For details, see Rosenberger and Lachin (2015). 

In sum, there are multiple randomization strategies, with the most common strategy 
being simple randomization. I concentrate on it in this book. The other methods have 
evolved largely in the context of outcome-only randomized trials rather than RETs. 
Extending them to account for multiple mediators as well as multiple outcomes in a 
single RET can be difficult in applied settings.  

PHASES OF A RANDOMIZED TRIAL 

A well-known way of describing the phases of a randomized trial is the approach used by 
the Consolidated Standards of Reporting Trials (CONSORT) organization. There are four 
phases, (1) enrollment, (2) allocation, (3) follow-up, and (4) data analysis. CONSORT 
(Moher, Hopewell, Schulz, Montori, Gøtzsche, Devereaux, et al., 2010) developed a 
flow-chart to document participant flow through these phases (see Figure 3.1). Most 
scientific journals require researchers to report the chart. The first phase is enrollment, in 
which individuals are screened for trial eligibility using explicit inclusion and exclusion 
criteria. Researchers document the number of people screened, the number who were 
excluded, and the reasons for exclusion. This process defines the number of people who 
are randomized.  

The second phase is allocation to the treatment conditions, where one of the 
conditions usually is the treatment group and the other is the control group. The 
CONSORT chart in Figure 3.1 shows the label “treatment” for each group because 
CONSORT uses the term “treatment” in its most generic sense. The chart can be edited to 
add more than two groups and it can explicitly label one of them the “control” or “no 
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treatment” group, as appropriate. Within each group, you indicate the number of people 
who received the allocated intervention and the number who did not and why.  

 

FIGURE 3.1. CONSORT flowchart 

The third phase is the follow-up phase, with the follow-up period starting after 
treatment initiation. You report the number of participants who discontinued treatment 
and the reasons why this occurred, as well as the number of participants who were “lost 
to follow-up,” i.e., the number of people who could not be contacted for post intervention 
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assessments. The final phase is the data analysis phase. Here, you indicate the number of 
participants who were excluded from the analysis and why.  

The chart is oversimplified for many trials. Researchers are expected to amend the 
chart as needed and to provide details of the amendments in the text of the report. The 
spirit of the chart is to provide readers with a clear record of participant flow through the 
trial phases and to provide an accounting of reasons why there is fall-off in the flow at the 
different phases.  

You also will encounter the concept of “trial phases” in a completely different 
context, namely with reference to a sequence of studies that move from the initial phases 
of intervention testing to widespread intervention implementation. The number and 
characterization of these phases varies, but usually there are four of them, traditionally 
framed in medical terms. A Phase I trial involves the testing of a new drug or treatment 
on a small group of people to determine safe dosage levels, toxicity, and major side 
effects. A Phase II trial evaluates the efficacy of the drug or treatment on a small-scale 
basis and builds a case for treatment potential. A Phase III trial is administered to larger 
groups of people to confirm efficacy, to evaluate effectiveness of the treatment, to 
compare it to other commonly used treatments, and/or to gain further insights on safety. 
A Phase IV trial further evaluates the drug or treatment in the general population after it 
has been licensed and marketed. RETs can be pursued during all phases. 

DEMAND CHARACTERISTICS AND BLINDING 

In psychology, the concept of a demand characteristic is a well-known experimental 
artifact that researchers routinely address. A demand characteristic is a cue that makes 
study participants aware of what an experimenter might expect to find in the study or 
how study participants are expected to behave. Participants then purposely alter their 
behavior and/or responses to questionnaires to match these perceived expectations.  
 In a randomized trial, by virtue of informed consent, individuals know they are 
participating in an evaluation of a treatment/program. Many participants may infer that 
the “new” program will be effective and/or that the investigator wants the program to 
succeed. They therefore might positively bias their characterizations of the program and 
the self-report measures designed to assess program outcomes. In a single group pretest-
posttest design, such demand characteristics can make a treatment appear more effective 
than it is. For a randomized trial, demand characteristics are likely to operate in both the 
treatment and control conditions (if an active control is used) or if individuals are 
unaware of which condition they are in. Given this, between-group comparisons of 
outcome distributions help to control for demand characteristics. The possible operation 
of demand characteristics is yet another reason we prefer between-group treatment versus 
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control means to within-group analyses of pretest to posttest mean change.  
A double-blind study is one in which neither the participants nor the experimenters 

know who is receiving a particular treatment condition. It is a standard that is sought 
under the assumption that it reduces not only the impact of demand characteristics on the 
part of participants but also other forms of bias on the part of the staff that knowledge of 
the treatment condition might produce. Although a double-blind trial is desirable, it does 
not alter the fact that participants know they are in a randomized trial and that an 
intervention/treatment is being evaluated. This is why treatment versus control 
comparisons should be the standard by which a treatment is evaluated.2  

There are steps one can take to increase honest responding to help reduce bias due 
to demand characteristics. These include: (1) use of a self-administered as opposed to a 
face-to-face reporting format so that participants do not have to report sensitive behaviors 
directly to an interviewer; (2) ensure response confidentiality and assure participants that 
identifying information will not be associated in any way with their data; (3) stress that 
results in research reports will only be reported for groups of people, not for individuals; 
(4) emphasize to participants that the quality and ability of the research to “make a 
difference” depends on people giving honest answers; (5) instruct respondents not to 
answer a question if they are not going to be truthful (and then use modern analytic 
methods to handle the missing data); and (6) obtain a measure of participant social 
desirable response tendencies to use as a potential statistical covariate during modeling.  

TREATMENT INTEGRITY 

Treatment integrity refers to the degree to which an intervention or program is 
implemented as intended. In randomized trials assessments of treatment integrity are 
considered to be good methodological practice, although researchers often fail to do so 
(Perepletchikova, Treat, & Kazdin, 2007). For efficacy trials, correctives are often 
introduced if treatment integrity falls below a pre-specified threshold during monitoring. 
For effectiveness trials, treatment infidelity is a natural part of program evaluation, so 
correctives are not introduced. Instead, treatment integrity is stressed when the 
intervention is first introduced to a clinic or organization. There is a large literature in 
implementation science that addresses how best to maximize treatment integrity in clinics 
or organizations. For introductions to this literature, see Perepletchikova (2011) and 
Brownson, Colditz, & Proctor (2017).  

 
2 Wait-list control designs usually are inadequate for controlling demand characteristics because control individuals 
know they have not yet started treatment 
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SELECTION EFFECTS AND GENERALIZABILITY 

Earlier I discussed selection effects as a threat to the internal validity of an RET. There 
also are forms of selection that threaten the generalizability of one’s results, either in a 
population-then-sample or a sample-then-population sense. For example, people might 
self-select into or out of my study based on a positive or negative response to flyers I put 
in a clinic and advertising on the radio or on public transportation inviting them to 
contact my office if interested in study participation. Or, I might approach a person to 
participate in my study but the person declines to do so. Randomization to conditions 
typically occurs after people have self-selected into the study, so the internal validity of 
the study is unaffected by such selection. However, the self-selection dynamics can 
impact who the internally valid results apply to. If I develop a program to teach parents 
how best to talk with their adolescent children about sex but only motivated parents who 
are prone to talk with their adolescent children about sex agree to be in my study, then 
perhaps my study results do not apply to parents who are reluctant to talk with their 
children about sex, thereby limiting result generalizability.  
 When I conduct an RET, I try to document if meaningful selection bias has 
occurred. I often use two strategies, neither of which is perfect. First, for a subsample of 
decliners, I ask them if  they can complete a very brief questionnaire that takes only a few 
minutes and that I will monetarily compensate them for their time to complete. I explain 
that it is scientifically important to document general characteristics of people who can’t 
or choose not to be in my study. The questionnaire or interview I give them has 5 to 10 
carefully selected questions that I also ask of people who agree to be in the study, perhaps 
as part of the regular study protocol. I then conduct comparisons between decliners and 
participators for self-selection bias on the questions to determine if self-selection bias on 
those questions has occurred. I typically find that almost all decliners are willing to help 
out in this way.  
 If the above strategy is not feasible, I use a second method, or, ideally, I use both 
methods. Suppose my study is conducted in a clinic or community for which I have 
aggregate level statistics from another source, such as the percent of different ethnic 
groups, the prevalence of risk factors, and so on. If my sample is not contaminated by 
self-selection bias, then it should mirror these aggregate level statistics. Given such 
mapping, I have more confidence that self-selection into my study has not intruded on 
result generalizability. Of course, this strategy is limited by the nature of the aggregate 
level data I have available and it can miss self-selection bias that has occurred but for 
which I do not have aggregate data. However, if I can use such data to strengthen my 
case for the absence of meaningful self-selection bias, I take the opportunity to do so. 
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REGISTERING CLINICAL TRIALS 

For many clinical trials, it is common practice to register the trial with the federal 
government on a site called www.clinicaltrials.gov. Registered trials are those that use 
humans to assess biomedical and/or health outcomes and that conform to applicable 
ethics review regulations. Table 4.4 presents an example from the ClinicalTrials.gov 
website of the information typically needed to register a trial (in addition to IRB 
approval). 

Table 4.4: Registration Information  

Overview 
 
Summary: The purpose of this study is to evaluate, subjectively and objectively, whether 
playing music during procedures for treatment of chronic lower back pain has an effect 
on patients' anxiety and pain. Our hypothesis is that playing music will result in reduced 
patient reported anxiety and pain scores and less variation from baseline of vital signs 
versus patients in the control group without music therapy. This is a pilot study. 
Condition or disease: Chronic pain, anxiety 

Intervention/treatment: Music Therapy, No music  

Phase: Not Applicable 

Study Type: Interventional  (Clinical Trial) 

Estimated Enrollment: 30 participants 

Allocation: 1:1 Randomized 

Intervention Model: Single Group Assignment 

Masking: None (Open Label) 

Primary Purpose: Treatment 

Official Title: Effect of Music on Pain and Anxiety in Chronic Pain Patients  
                          undergoing Lumbar Intervention  
Procedures: A Pilot Study 

Estimated Study Start Date: June 15, 2021 

Estimated Primary Completion Date: December 1, 2021 

Estimated Study Completion Date: December 1, 2021 
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Arms and Interventions 
 
Arm: Intervention/treatment  

Active Comparator: No Music 

No music will be played during the subject's standard of care lumbar spinal interventional 
procedure (including epidural steroid injections, facet injections, medial branch blocks).  
Experimental: Music Therapy 

Music of the subject's preferred genre will be played during the subject's standard of care 
lumbar spinal interventional procedure (including epidural steroid injections, facet 
injections, medial branch blocks). 
 
Outcome Measures 
 
Primary Outcome Measures: 
    Measure 1: Pre-procedure STAI Score  
    [Time Frame: Within 30 minutes prior to the subject's interventional procedure] 
    A measure of anxiety in a person 
    Measure 2: Post-procedure STAI Score [Time Frame: Within 30 minutes following to    
    the subject's interventional procedure] 
    A measure of anxiety in a person 
 
Secondary Outcome Measures: 
 
    Measure 1: Pre-procedural Visual Analog Score (VAS) for pain  
    [Time Frame: Within 30 minutes prior to the subject's interventional procedure] 
    Visual Analog Score for pain 
     Measure 2: Post procedural VAS Score  
     [Time Frame: Within 30 minutes following the subject's interventional procedure] 
     Visual Analog Score for pain 
 
Eligibility Criteria 
 
Ages Eligible for Study: 18 Years and older (Adult, Older Adult) 
Sexes Eligible for Study: All 
Accepts Healthy Volunteers: No 
Patients undergoing standard of care lumbar spinal interventional procedures including  
epidural steroid injections, facet injections, medial branch blocks 
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Exclusion Criteria: 
Patients who cannot consent for themselves, including cognitively impaired patients. 
Non-English speaking patients 
Patients taking beta blocker medication 
Patients that have a pacer and have a set rate 
Patients with self-reported hearing problems or with hearing aids 
 
 Many researchers also publish a detailed study protocol in journals such as Trials. 
These publications allow researchers to present detailed information about conceptual 
logic models for a trial, general trial methodology, measurement approaches, and 
statistical analysis plans, all of which can then be referenced in later publications. The 
spirit of journals like Trials also is to promote transparency.  

THE CONSORT CHECKLIST 

As a final note, many journals require researchers to complete a CONSORT checklist for 
randomized trials. I reproduce an abridged version in Table 4.5 because it provides a 
useful summary of issues to attend to in trial design. In addition to the CONSORT 
statement, the Cochrane Group (2019) has published a checklist for assessing “risk of 
bias” of randomized trials. Although there are many methodological points in that list you 
will want to attend to, I personally find the algorithm for combining them into an overall 
risk score to be somewhat dubious.  

Table 4.5: Abridged CONSORT Checklist 

       Reported on 
                   Page Number 

Title and abstract 
 1a Identification as a randomised trial in the title       _______ 
 1b Structured summary of trial design, methods, results, and  

Conclusions (for specific guidance see CONSORT for abstracts)    _______ 
 

Introduction 
Background and objectives  

2a Scientific background and explanation of rationale      _______ 
 2b Specific objectives or hypotheses         _______ 
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      Reported on 
                                                 Page Number 
Methods 
Trial design 
 3a Description of trial design (such as parallel, factorial) including 

 allocation ratio             _______ 
 3b Important changes to methods after trial commencement (such as 

 eligibility criteria), with reasons          _______ 
Participants 

4a Eligibility criteria for participants         _______ 
 4b Settings and locations where the data were collected     _______ 

Interventions 
 5 The interventions for each group with sufficient details to  

allow replication, including how and when they were actually 
         administered            _______ 

Outcomes 
 6a Completely defined pre-specified primary and secondary 

          outcome measures, including how and when they were assessed    _______ 
          6b Any changes to trial outcomes after the trial commenced, with 

          reasons             _______ 
Sample size 

7a How sample size was determined         _______ 
 7b When applicable, explanation of any interim analyses and 

stopping guidelines           _______ 
Randomisation:   
 Sequence generation 

8a Method used to generate the random allocation sequence     _______ 
 8b Type of randomisation; details of any restriction (such as  

blocking and block size)           _______ 
    Allocation concealment mechanism 
 9 Mechanism used to implement the random allocation sequence 

(such as sequentially numbered containers), describing any  
steps taken to conceal the sequence until interventions were 
assigned             _______ 

 Implementation 
 10 Who generated the random allocation sequence, who enrolled 

participants, and who assigned participants to interventions     _______ 
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        Reported on 
                   Page Number 

Blinding 
 11a If done, who was blinded after assignment to interventions 

(for example, participants, care providers, those assessing 
outcomes) and how           _______ 

11b If relevant, description of the similarity of interventions     _______ 
Statistical methods 
 12a Statistical methods used to compare groups for primary 

and secondary outcomes          _______ 
 12b Methods for additional analyses, such as subgroup analyses 

and adjusted analyses             _______ 
 
Results 
Participant flow (a diagram is strongly recommended) 
 13a For each group, the numbers of participants who were 

randomly assigned, received intended treatment, and were 
analysed for the primary outcome         _______ 

 13b For each group, losses and exclusions after randomisation, 
together with reasons           _______ 

Recruitment 
14a Dates defining the periods of recruitment and follow-up     _______ 
14b Why the trial ended or was stopped         _______ 

Baseline data 
 15 A table showing baseline demographic and clinical characteristics 

for each group            _______ 
Numbers analysed 
 16 For each group, number of participants (denominator) included 

in each analysis and whether the analysis was by original assigned 
groups             _______ 

Outcomes and estimation 
 17a For each primary and secondary outcome, results for each group, 

and the effect size and its precision (such as 95% confidence  
interval)              _______ 

 17b For binary outcomes, presentation of both absolute and relative 
effect sizes is recommended          _______ 

Ancillary analyses 
 18 Results of any other analyses performed, including subgroup  

Analyses and adjusted analyses, distinguishing pre-specified from 
exploratory             _______ 
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        Reported on 
                   Page Number 

Harms 
 19 All important harms or unintended effects in each group (for 

specific guidance see CONSORT for harms)        _______ 
 
Discussion 
Limitations 
 20 Trial limitations, addressing sources of potential bias,  

imprecision, and, if relevant, multiplicity of analyses      _______ 
Generalisability 
 21 Generalisability (external validity, applicability) of the trial  

findings             _______ 
Interpretation 
 22 Interpretation consistent with results, balancing benefits and  

harms, and considering other relevant evidence       _______ 
 
Other information 
Registration 

23 Registration number and name of trial registry        _______ 
Protocol 

24 Where the full trial protocol can be accessed, if available     _______ 
Funding 
 25 Sources of funding and other support (such as supply of drugs), 

role of funders            _______ 
 

CONCLUDING COMMENTS  

The present chapter has outlined a wide range of methodological issues that researchers 
need to take into account when designing RETs. RETs need to address core issues of 
program confounds per Campbell & Stanley (1963), devise effective randomization 
strategies, address sample imbalance, minimize demand characteristics, and ensure 
treatment integrity. RETs are, by nature, more complicated than traditional outcome only 
randomized trials given their joint focus on mediators, moderators and outcomes. Every 
methodological issue one must think about when designing an outcome-only randomized 
trial must also be brought to bear on mediators and moderators. Future chapters will 
identify additional methodological issues that researchers need to consider when 
designing RETs. 


