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INTRODUCTION 

A common question when designing an RET is “what sample size should I use?” A related 
question is “can I analyze the data using statistical method X given my sample size?” The 
answers to these questions are complicated. A major facet of statistical inference that 
sample size affects is sampling error. Sample size also affects the properties of estimators 
and, in cases of asymptotic theory, our ability to calculate coherent margins of errors and 
p values. I begin this chapter by reviewing key concepts of sampling error, properties of 
estimators, and asymptotic theory to set the foundation for my discussion of sample size 
decision making. With this as background, I then discuss power analysis per se, the choice 
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of sample size to minimize margins of error, the conduct of localized simulations to choose 
sample sizes, and analytic methods that can be used with small sample sizes. The chapter 
is long, so you probably will need to process it in several sittings. 

When making statistical conclusions associated with null hypothesis testing, there are 
two types of errors you can make. You can reject the null hypothesis when you should not 
have (i.e., you falsely say there is a relationship between variables when, in fact, there 
isn’t), or you can fail to reject the null hypothesis when you should have (i.e., you miss a 
relationship that exists). The first type of error is called a Type I error and the second type 
is called a Type II error. The probability of making a Type II error is called beta and 
power is one minus beta. Power is the probability of correctly rejecting the null hypothesis 
or the probability of not making a Type II error. It reflects effect sensitivity. Power of 0.90 
means that we are 90% likely to detect an effect that is present in the population; power of 
0.80 means that we are 80% likely to detect an effect in the population; power of 0.70 
means we are 70% likely to detect an effect; and so on. 

What is an acceptable level of statistical power? Tradition in the social sciences is to 
seek power of 0.80 or greater, but this is an arbitrary standard. You need to think more 
deeply about such matters and decide what you believe is a reasonable level of power to 
have. How bad would it be to miss a medication that non-trivially reduces the death rate 
from cervical cancer? How bad would it be to miss the presence of a serious side effect to 
a new contraceptive method? I think we need to be more nuanced about setting acceptable 
levels of statistical power for a study rather than just blindly accepting a 0.80 standard. 

Most researchers know that sample size impacts statistical power with larger sample 
sizes being associated with increased power. However, sample size decisions are complex 
and require us to think about more than statistical power. We also need to think about 
margins of errors, asymptotic theory, covariance matrix stability, model complexity, 
effects on estimation properties, missing data, and practical constraints. The present 
chapter considers these facets of sample size decision making.  

SAMPLING ERROR 

Consider the case of 1,000 families in a small town. An investigator wants to describe the 
average number of children in the families and decides to interview heads of households 
to determine family sizes. Because of practical limitations, the investigator is unable to 
include all 1,000 families in the study, so s/he instead resorts to a (random) sample. Assume 
that the sample size is ten. In this case, the population is the 1,000 families in the town and 
the sample is the ten families who are selected to be interviewed. Suppose the true 
population mean is 3.50, the true variance is 2.09, and the true standard deviation is 1.45 
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but the investigator is unaware of these values. 
For the random sample of 10 families, the number of children in each family is found 

to be 3, 4, 4, 5, 2, 4, 1, 1, 4, and 3, which yields a mean of 3.10. Note that this value is not 
equal to the true population mean. A sample statistic can (and usually does) differ from the 
value of its corresponding population parameter because of sampling error. Sampling error 
occurs because the sample estimate is based on only a portion of the overall population. 
The amount of sampling error is represented as the difference between the value of a 
sample statistic and the value of the corresponding population parameter. In our example, 
the amount of sampling error is 3.10 - 3.50 = -.40. In practice, an investigator does not 
know the value of the population parameter, so it is impossible to know the exact amount 
of sampling error. Sampling error occurs in most research and is something we must deal 
with when we make inferences about populations. 

We run the risk of making Type II errors when sampling error is large. This is because 
with large amounts of sampling error, there is more “noise” in our data that can lead us 
astray. If we can harness sampling error, we usually can lower the risk of Type II errors 
which is key to increasing statistical power. As such, it is important to understand factors 
that contribute to sampling error and how we can bring sampling error under some control.  

Factors Affecting Sampling Error 

There are multiple factors that impact sampling error, but I concentrate on two of them. 
One factor is sample size. In general, the larger the sample size, the less the sampling error, 
everything else being equal. In our family size example, if I sample only 10 families, I 
likely will have more sampling error than if I sample, say, 999 families. The second factor 
is the variability of scores in the population. I can illustrate this principle using a simplistic 
example. Consider two populations each with 5 observations and the following scores: 

Population A  Population B 
 

2    4 
3    4 
4    4 
5    4 
6    4  

The mean in each population is 4, but the two populations obviously differ in the variability 
of scores. Suppose I do not know the value of the means and I am told I can randomly 
sample two cases from each population to estimate it. In Population A, I might end up 
sampling the scores 4 and 6 when I select the two observations randomly, and the average 
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of them is 5. Absent any other information, 5 is my best guess about the population mean 
and, as it turns out, I am “off” by 1 unit (sampling error). For Population B, I randomly 
select the scores of, say, the third and fifth person, which are 4 and 4 and the mean is 4. 
There is no sampling error. Because there is no variability in scores in Population B, it does 
not matter which two cases I happen to sample because they all equal 4 and, when averaged, 
will yield the value of the Population B mean. In Population A, where the scores are 
variable, there are many combinations of two that I could sample, some of which will yield 
means that are quite discrepant from the population mean. 

Other factors can impact sampling error depending on the parameter but more often 
than not these factors can be traced back to sample size and variability. As examples, for 
proportions, the closer a population proportion is to 0.50, the more sampling error there 
will be, everything else being equal. This is because for a binary variable, there is more 
variability in scores when the proportion is 0.50 (half the scores are 0s and half are 1s) than 
when the proportion is, say, 0.90 (10% of the scores are zeros and 90% are 1s) or 0.10 
(90% of the scores are zeros and 10% are 1s). For correlations, the closer a population 
correlation is to zero, the more sampling error there will be, everything else being equal. 
This is because when the true population correlation is, say 0.90, there is not as much 
variability in the multivariate cloud of scores than when the correlation is zero, everything 
else being equal. 

Sample size and population variability usually are key in statistical theory as 
influencers of sampling error. If I have small sample sizes, there likely will be more 
sampling error; if the variables I am studying have considerable population variability, 
either univariately or multivariately, there likely will be more sampling error.  

Sampling Distributions and Standard Errors 

In practice, we can never know how much sampling error is operating in a study because 
we never know the true value of the population parameter we seek to estimate. However, 
we can use our knowledge of factors that impact sampling error to estimate or get a sense 
of how much sampling error might be operating in a given study. To make this intuitive, I 
need to introduce an abstract concept called a sampling distribution.  

Suppose I am interested in characterizing the annual starting salary of new assistant 
professors in the United States but, because of practical constraints, I must use a random 
sample of 100 professors to estimate this (N = 100). In theory, there are many different 
combinations of 100 individuals I could end up with in this study. One random sample of 
100 individuals might yield a sample mean of $45,132. Another random sample of 100 
individuals might yield a sample mean of $48,215. Yet another random sample of 100 
individuals might yield a sample mean of $50,108. None of these sample means are 
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probably exactly equal to the true population mean because of sampling error, but I hope 
they all are at least close to the population mean. 

Now think about the thousands of means that would result if I were to take every 
possible random sample of size 100 relative to the population of assistant professors and 
calculated a mean for each one of them. Of course, we would never do this in practice, but 
in theory, it is possible. The resulting set of means that I would generate from this exercise 
is called a sampling distribution of the mean. Note that I can compute a sampling 
distribution for any statistic, not just the mean. For a correlation between X and Y in a 
population, I could calculate a correlation in every possible random sample of a given size 
and I would end up with thousands of correlations. These correlations represent a sampling 
distribution of correlations.  

One would hope that the sampling distribution of a statistic, in this case the mean, 
has very little variability in it. Stated another way, it should make us nervous if we know 
there are wild fluctuations in the parameter estimate as we move from one random sample 
to the next; after all, when we conduct a study, we are focusing on one sample in the larger 
sampling distribution. An index of variability of sample means in a sampling distribution 
of the mean is the standard deviation of the sampling distribution (if we could, in fact, 
calculate it – but we can’t because sampling distributions are hypothetical). A standard 
deviation of zero would mean that every sample yielded the exact same result. By contrast, 
larger standard deviations indicate more sample-to-sample fluctuations. The standard 
deviation of a sampling distribution is called the standard error. One can speak of the 
standard error of a mean, the standard error of a correlation, the standard error of a 
regression coefficient – i.e., the standard error of any parameter that we seek to estimate. 

Although we can rarely calculate a standard error, it turns out statisticians have 
devised methods for estimating standard errors from sample data. The methods need not 
concern us here and formulas that statisticians use can be found in statistical texts. My 
emphasis is more on helping you appreciate what a standard error is than actually 
computing an estimate of it. Statistical software will do that for you.  

The estimated standard error of the mean reflects the accuracy with which sample 
means tend to estimate a population mean. If I am trying to estimate the average number 
of children that couples have in their completed families, and I tell you that the estimated 
standard error of the mean for samples of size 50 is 1.30, this means that, on average, the 
sample means differ 1.30 units (in this case, "children") from the true population mean. 
This reflects a sizable amount of error. If, on the other hand, the estimated standard error 
of the mean is only 0.10, this would mean that, on average, sample means deviate only 0.10 
from the true population mean.  

If you examine the formula for estimating a standard error of the mean, you will find 
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that the two factors I discussed earlier as determinants of sampling error are part of the 
formula – the sample size and the population standard deviation (which is reflected by the 
variability of scores in the sample or the sample standard deviation): 

Estimated standard error = SD / N  

Note that in this formula as the sample size increases, the estimated standard error of the 
mean becomes smaller, other things being equal. Similarly, as the sample standard 
deviation (SD, which is an estimate of the population standard deviation) becomes smaller, 
so does the estimated standard error of the mean.  

Keep in mind that interpretation of the size of a standard error is dependent on the 
metric of the variable(s) being studied. A standard error of 2.0 is quite large when 
estimating the average number of children people have in their families. However, a 
standard error of 2 would be amazingly small if one is estimating the average annual salary 
of assistant professors in the United States (i.e., on average, our sample means are only off 
by $2.). Computer output routinely reports estimated standard errors. They play a key role 
in significance tests and the formation of margins of error. 

There is one other feature of sampling distributions I should mention. If you have a 
population with mean μ and standard deviation σ and you take sufficiently large random 
samples from the population when you calculate a mean, the sampling distribution of the 
mean will be approximately normally distributed even if the original variables themselves 
are not normally distributed. This property derives from a theorem known as the central 
limit theorem and is a property that statisticians take advantage of when estimating p 
values and confidence intervals.  

SAMPLE SIZE AND PROPERTIES OF ESTIMATORS 

Statisticians have elucidated properties of estimators, such as the sample mean as an 
estimator of the population mean or the sample correlation as an estimator of the population 
correlation. I highlight here three properties and then note their relevance to sample size 
decisions.  

First is the property of bias. A good estimator is one that is not biased, everything 
else being equal. In statistics, bias has a precise meaning. An estimator is unbiased if the 
mean of the sampling distribution of the estimator equals the true value of the population 
parameter. A positively biased estimator is one whose sampling distribution mean is 
larger than the population parameter and a negatively biased estimator is one whose 
sampling distribution mean is smaller than the population parameter. The sample mean is 
an unbiased estimator of the population mean. A sample regression coefficient in a linear 
regression is an unbiased estimator of its corresponding population regression coefficient 
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if the assumptions of linear regression are met. Numerous statistics you are familiar with, 
however, are biased estimators. For example, the standard deviation of sample data is a 
positively biased estimator of the population standard deviation.1 The sample squared 
correlation coefficient is a positively biased estimator of the population squared correlation 
coefficient.  

Note that just because a sample estimator is unbiased does not mean that it is accurate. 
There will still be sampling error in the estimate for any given sample and it may or may 
not be close to the value of the true population parameter. All it means when we say an 
estimator is unbiased is that, on average, across all possible random samples of a given 
size, the mean of the estimate will equal the population parameter. 

A second important property for estimators is that of efficiency. Efficiency refers to 
the sample-to-sample fluctuations of the estimator. Efficient estimators have low standard 
errors. Actually, efficiency is a relative term because it usually compares two estimators in 
terms of their relative efficiency. For example, for small sample sizes, eta squared is a more 
efficient estimator of the proportion of explained variance in the population compared to 
epsilon squared or omega squared. 

A third important property of an estimator is its consistency. A consistent estimator 
is one whose probability of accurately reflecting the parameter in question increases with 
increasing sample size. Although this principle is a re-statement of my previous assertion 
that sample size influences sampling error, it turns out that some estimators lack such 
consistency; increasing N will not necessarily make the estimator more accurate. 
Inconsistent estimators are troubling. 

When we choose estimators of population central tendencies, population variability, 
and population relationships between variables, we tend to prefer estimators that are 
unbiased, efficient, and consistent. To be sure, there are other properties that we take into 
account, such as the extent to which the estimator is outlier resistant. However, bias, 
efficiency, and consistency are three qualities we seek. Sometimes the properties of 
estimators are immune to sample size. For example, the mean of randomly selected 
independent scores from a population is an unbiased estimator of the population mean 
irrespective of sample size. By contrast, sometimes the properties of estimators are 
impacted by sample size; for example, the amount of bias in a sample squared multiple 
correlation as an estimator of the population squared multiple correlation is impacted by 
sample size. As such, we want to take the potential impact of sample size on the properties 
of estimators into account when choosing an N.  

 
1 This is why the formulas for variances, upon which standard deviations are based, divide the sum of squares by N-
1 instead of N. Using N-1 is a correction factor that adjusts for the positive bias that results from using N. 
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SAMPLE SIZE AND ASYMPTOTIC THEORY 

Asymptotic theory is a statistical framework for assessing the properties of estimators and 
statistical tests. A tenet of asymptotic theory is that sample size, in principle, can increase 
indefinitely. This tenet allows statisticians to evaluate the statistical properties of an 
estimator or a test of significance under the limit that N → ∞, or as f(N) goes to infinity. 
For example, statisticians characterize the limit of the function 1/N as 0 because as N gets 
larger and larger, the value of 1/N gets closer and closer to 0. It turns out that by invoking 
asymptotic theory, statisticians can derive many statistical principles that can’t be derived 
when samples are finite. Invoking asymptotic theory is compatible with randomized trials 
because, as discussed in Chapter 4, we often conceptualize populations in such trials as 
hypothetical and extremely large. It also turns out that statistical properties derived using 
asymptotic theory often can be imported to the case of finite populations as long as the 
finite populations are sufficiently large. The question of what we mean when we say 
“sufficiently large” depends on the broader statistical context, as I discuss below. 

Many of the statistical methods you are familiar with are based in asymptotic theory. 
This includes maximum likelihood SEM, logistic regression, chi square testing, and 
count/discrete regression, among others. These statistical tests usually are well behaved as 
long as the sample size is large enough. Again, the practical question becomes “what is 
large enough?” Sample size decisions also must take into account the demands of 
asymptotic theory if such theory underlies the tests/estimators that you  use.  

SAMPLE SIZE, COVARIANCE PROPERTIES, AND MODEL COMPLEXITY 

When working with multivariate models, such as multiple regression, factor analysis, or 
multi-equation full information structural equation modeling (FISEM), another factor that 
must be weighed when making sample size decisions is the properties of the 
covariance/correlation matrix being analyzed in conjunction with the nature and 
complexity of the model being tested. Consider a multiple regression analysis with 3 
predictors, X1, X2 and X3. Suppose the variables (including the outcome Y) all have a 
mean of zero and a standard deviation of 1.0 so that the input covariance matrix can be 
interpreted much like a correlation matrix. Consider the case where the true population 
covariance and correlation matrices between the variables has the following values: 
 

 Y X1 X2 X3 
Y 1.00    
X1 0.40 1.00   
X2 0.35 0.50 1.00  
X3 0.30 0.50 0.50 1.00 
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The population regression equation for both the unstandardized and standardized versions 
of the equation is 

Y = 0 + 0.275 X1 + 0.175 X2+ 0.075 X3 

with X1 having the strongest coefficient. Suppose I select a random sample from this 
population and my sample size is 125. The values in the sample covariance and correlation 
matrices will not exactly equal the values of their population counterparts because of 
sampling error. Here is a correlation matrix I might observe in my sample:  
 

 Y X1 X2 X3 
Y 1.00    
X1 0.41 1.00   
X2 0.34 0.55 1.00  
X3 0.32 0.51 0.44 1.00 

 
The sample standardized regression equation in this case is 

Y = 0.282 X1 + 0.142 X2+ 0.136 X3 

Suppose the random sample I selected instead yields a patterning of correlations 
where the rank order of the sample correlations between the predictors and the outcome 
violates the rank order pattern of these three correlations in the population, like this:  
 

 Y X1 X2 X3 
Y 1.00    
X1 0.35 1.00   
X2 0.42 0.52 1.00  
X3 0.33 0.48 0.44 1.00 

 
Note that because of sampling error, the correlation between Y and X2 exceeds the 
correlation between Y and X1 but this is not the case in the population. The sample 
standardized regression equation now is 

Y = 0.133 X1 + 0.290 X2+ 0.139 X3 

and the narrative surrounding the magnitude of the predictor coefficients changes rather 
dramatically because of sampling error. It turns out that some forms of modeling are quite 
sensitive to such rank order reversals while others are not. Our goal as researchers should 
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be to minimize the amount of operative sampling error throughout the entire covariance 
and correlation matrices so as to preserve as best we can the rank ordering of correlation 
magnitudes. Otherwise, we can sometimes be seriously deceived.  
 The stability of correlation matrices in this regard is impacted not only by the sample 
size we use but also by the absolute magnitude of the correlations in the matrix because 
large absolute correlations have less sampling error than correlations near zero. Also, as 
the number of variables increases, the overall amount of sampling error in the matrix can 
accumulate. So, sample size, the magnitude of the correlations, and the sheer number of 
variables all can affect sampling error dynamics in complex ways. The sensitivity of the 
parameter estimates in your model to such sampling error also will depend on the nature 
and complexity of your model, further making it difficult to know how sample size impacts 
your modeling efforts.  
 You will find scattered in the literature a host of rules of thumb surrounding the 
sample size you need relative to the number of predictors, the number of estimated 
parameters, the number of degrees of freedom and/or the number of latent variables in your 
model. These recommendations are meant to address the above problem but they vary 
dramatically, such as recommendations of a ratio of 5 study participants per measured 
variable to as many as a ratio of 100 study participants per measured variable (Wolf, 
Harrington, Clark & Miller, 2013). Most Monte Carlo evaluations of the rules of thumb 
have found them to be wanting. A major limitation of them is that adequate sample size is 
not a simple function of the number of measured variables (MacCallum et al., 1999), so 
such ratios are, by definition, simplistic. Parenthetically, you also will encounter rules of 
thumb about sample size for the applicability of asymptotic theory, such as the need for 
samples sizes of at least 100 to 150 for asymptotic theory to hold. These rules of thumb 
also are gross oversimplifications.  

IMPLICATIONS FOR SAMPLE SIZE DECISIONS 

Many researchers think that the main driver of sample size decision making is statistical 
power. The choice is more complicated. Sample size can affect the amount of sampling 
error we have in our estimates. It also can affect the properties of estimators, such as their 
bias and efficiency. It can affect the applicability of asymptotic theory and the shape of 
sampling distributions, which affect accurate estimation of p values and confidence 
intervals. Effect size estimation is important for randomized trials, not just statistical 
significance. Sample size affects the magnitude of the margins of error surrounding effect 
size estimates. In SEM, sample size can affect the performance of global tests of fit, 
localized tests of fit, and tests of path coefficients for specific paths in a model, sometimes 
differentially so. Clearly, an analysis only of statistical power using assumption driven 
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canned software falls short when making informed sample size decisions. This is why I 
prefer, where possible, to use localized simulations to help choose a sample size. The 
present chapter will provide you with approaches for thinking about sample size selection 
taking all of the above factors into account.  
 In SEM, you can approach sample size decision making from the perspective of 
limited information SEM (LISEM) or full information SEM (FISEM). For LISEM, we 
often work on an equation by equation basis using an analytic method of our choosing (e.g., 
OLS regression, logistic regression, analysis of covariance). In these cases, standard 
software for power analysis often can be used to good effect, at least for gaining back of 
the envelope estimates of statistical power.  
 When I review grants for NIH that propose randomized trials, a common strategy that 
applicants use is to present a section on sample size in which they justify their chosen 
sample size in terms of the statistical power it yields for the effect of the treatment on the 
primary outcome. This is somewhat naïve not only because there is more than statistical 
power at stake but also because statistical power can differ for different statistical 
procedures. If the proposal has more than one analysis (which it usually does), than power 
analyses should be conducted for each analysis. A logistic regression with a binary 
outcome can be much more sample size demanding in terms of statistical power than OLS 
regression with a continuous outcome given comparable effect sizes. It, of course, is not 
practical to describe in a space constrained grant proposal power analyses for each equation 
or analysis. To deal with this, I often focus on the most sample size demanding analysis 
and do a thorough sample size analysis for it. If the sample size is adequate for it, it usually 
will be so for the other less demanding analyses.  
 Almost all power analyses we conduct are approximate and assumption driven. As 
you will see shortly, when conducting power or precision analyses in multivariate models, 
we often must make guesses about multiple parameter values in the population. These 
guesses are just that – guesses. Much of the software for power analysis assumes no missing 
data, that variables are normally distributed, and that the residual disturbances are 
homoscedastic. These assumptions often are violated in practice making the results of 
power analysis using canned software approximate at best. Analysts need to appreciate the 
approximate nature of power analyses. If practical constraints permit a larger sample size, 
I often use somewhat larger N than what software suggests.  

SAMPLE SIZE AND STATISTICAL POWER 

Suppose you are listening through a set of earphones and trying to decide whether you hear 
a particular signal. The static on the earphones makes this difficult for you. You have been 
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told that you should hear the signal within 30 seconds. One type of error you could make 
is to say you heard the signal when, in fact, it did not occur. This is analogous to a Type I 
error. Suppose making such an error would lead to negative consequences. You would 
want to be very sure of yourself. Only if you are virtually certain you heard the signal 
would you say you heard it. This is similar to setting a low alpha level in an investigation. 
 On the other hand, there is another type of error you could make–saying you did not 
hear the signal when, in fact, it was there. This corresponds to a Type II error. The ability 
not to miss the signal corresponds to the power of a statistical test. If you have a very 
sensitive ear, you will be likely to detect the signal when it occurs (high power); if you do 
not have a sensitive ear, you will be more likely to miss the signal (low power). 
 In this section, my concern is with power analysis for sample size decision making. I 
first describe two factors other than sample size that can affect statistical power because 
addressing them represent strategies for increasing statistical power in scenarios where 
increasing sample size is not viable. I then distinguish between conducting power analysis 
at the level of omnibus tests versus the level of more focused contrasts and underscore the 
importance of conducting power analysis at the level that is compatible with your statistical 
strategy. Finally, I walk you through the mechanics of using the canned power analysis 
programs on my website to assist you in gaining perspectives on statistical power.     

Factors Affecting Statistical Power Other Than Sample Size 

The Alpha Level  

Using the electronics analogy from above, it is evident that the value of the alpha level 
affects the power of the statistical test. If you are very conservative about saying you heard 
the signal, then this decreases the likelihood you will say the signal is there when it is 
indeed present. The tradition of adopting a low or conservative alpha level in behavioral 
science research evolved from experimental settings where it was very important to avoid 
a certain kind of error. An example is testing a new drug with the aim of ensuring it is safe 
for the general adult population. In this case, deciding that a drug is safe when, in fact, it is 
not is an error that is certainly to be avoided. Under these circumstances, the proposal "the 
medicine is unsafe" would be cast as the null hypothesis with a low alpha level chosen so 
that the medical researcher has little risk of concluding the drug is safe (H1) when actually 
it is not (H0). By casting consequential errors as Type I errors in the framework of 
hypothesis testing and then setting a low alpha level, researchers minimize the risk of 
committing the error. 

Many social scientists believe we have been preoccupied with Type I errors at the 
expense of Type II errors. The argument is that it is hard to justify that a Type I error will 
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have the drastic implications implied by a low alpha level relative to a perhaps more costly 
Type II error. Perhaps we need a better balancing of Type I and Type II errors instead of 
the common bias towards avoiding Type I errors even at the cost of insufficient Type II 
error control. My own bias is to avoid both types of errors and if I can set low probabilities 
of them occurring through my choice of sample size and covariate control, I do so. But I 
also am cognizant of the fact that that setting low probabilities of Type I errors can affect 
the probability of making a Type II error and that sometimes balancing the two is needed.  

The Strength of the Effect in the Population Relative to Population Variability  

Another factor influencing statistical power is the magnitude of the effect in the population. 
Statistical power is larger for strong effects than for weak effects, everything else being 
equal. Returning to our electronics analogy, it is much easier to detect a signal in a noisy 
environment if the signal is strong as compared to faint relative to the operative noise.  

If we think of effect size and power in these terms, then we should be able to increase 
statistical power by eliminating noise from the system, thereby increasing the strength of 
the signal relative to the noise that is present. There are several strategies researchers can 
use to reduce noise. For example, gender impacts depression, with females showing higher 
levels of depression than males. Suppose we conduct a study to examine the effects of a 
new therapy on depression. We randomly assign people to either the new therapy condition 
or a control condition that does not receive the therapy. If the study includes both men and 
women, then in the presence of random assignment, both sexes will be represented in the 
treatment condition as well as the control condition. Within either condition considered 
separately, the presence of males and females will create variability in depression. This 
variability represents “noise” that detracts from the “signal” we are trying to detect, namely 
the effect of the treatment on depression. One way to eliminate this noise is to conduct the 
study only on women (or men). This would have the effect of removing biological sex as 
a source of noise in the study. The strategy, of course, has the disadvantage of reducing the 
external validity of the study. Alternatively, one can measure factors like biological sex 
and then statistically covary them out. This reduces the within-group standard deviations 
and, in turn, reduces noise. The statistical power of the test will be increased, accordingly.  

The above point is important because it indicates strategies social scientists can use 
to increase power other than increasing sample size. These strategies become particularly 
important in research domains where practical constraints limit the number of research 
participants one can obtain. I elaborate this point below. 

Omnibus Tests versus Focused Contrasts 

When conducting a power analysis for methods such as analysis of variance and multiple 
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regression, many researchers conduct the power analysis on the omnibus or overall effect 
(e.g., the overall main effect for mean differences or the overall multiple correlation). 
However, few researchers stop at omnibus statistical tests when analyzing data; they pursue 
more focused tests. In ANOVA, researchers examine pairwise mean differences within a 
factor and in multiple regression, researchers examine individual regression coefficients 
associated with predictors. It is important to examine the statistical power associated with 
these more focused tests because they often will be the main source of conclusions in the 
study. Often, power for these contrasts is lower than that of the omnibus test.  

The Mechanics of Power Analysis  

In this section, I walk you through the software I provide on my website for traditional 
power analysis in the context of per equation LISEM analysis. These are my versions of 
“canned software power analysis” but are available to you at no cost. They share all the 
limitations of such programs more generally. They provide “back of the envelope” 
estimates of statistical power in a wide variety of scenarios. 

To conduct power analysis, we need to specify the alpha level we intend to use 
(typically 0.05 with a two tailed test, which is the default in my software), the population 
effect size we want to target, and the minimum level of power we want to achieve (e.g., 
0.90). With this information in hand, most software programs determine the sample size 
one needs to use to have sufficient sensitivity for the statistical test in question. The 
programs on my website allow you to create customized power tables with sample sizes of 
interest as rows, population effect sizes of interest as columns, and the table entries being 
power values. You can have as many rows and columns as you wish. I illustrate the 
usefulness of being able to construct customized tables shortly.  

Specifying Target Population Effect Sizes 

As noted, a basic facet of power analysis is specifying the strength of the effect in the 
population that the power analysis targets. For most program evaluation scenarios, the 
actual population effect size should not be what we specify when we conduct power 
analysis. Rather we specify what the minimum effect size value is that we want to be sure 
to detect as contrasted with effect size magnitudes that we don’t care if we miss them. 
Stated another way, we are not obsessed with rejecting the null hypothesis per se; rather, 
we want to be sure that we can reject the null hypothesis when doing so matters.  

Consider the case of salary discrepancies between males and females in academia. 
Suppose we want to test for discrepancies in the mean annual salaries as a function of 
biological sex and we want power of 0.90 to detect a difference. Suppose there is indeed a 
sex difference in annual income, but that the difference is $1. The null hypothesis of no 
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difference in annual salaries is not true, but do we really care if we miss such a trivial 
difference in our study of sex differences in annual salaries? Probably not. How about if 
the difference is $50? We still probably do not care if we miss this “effect” either. It is 
simply too small to worry about. But suppose the difference was $5,000? This is a 
considerable amount of money that will purchase quite a bit. We would not want to miss a 
discrepancy as large as this.  

When specifying the population effect size to target, we want to specify the minimal 
effect size that we want to be sure to detect. Values below that effect size are too small to 
be of interest, but values equal to or larger than that effect size are important to detect. I 
refer to this as a threshold value for effect size (TES) or the minimal important effect 
size (MIES) and it is this value you want to use in your power analyses, not what you think 
the effect size in the population actually is. How do we know what the threshold value 
should be? There is no easy answer to this question, and the choice of a value must be 
dictated by substantive concerns and past research. As I discuss in Chapters 1 and 10, in 
my opinion, researchers give this matter too little attention. Instead, they often fall back on 
Cohen’s (1988) classic criteria of what constitutes a “small,” “medium,” and “large” effect 
size despite the fact that Cohen’s criteria are arbitrary and encouraged researchers not to 
use them (see Chapter 10).  
  Consider as an example a randomized trial where individuals are randomly assigned 
to two conditions, an active control group that receives educational materials about 
depression and a condition that applies a new form of cognitive-behavior therapy (CBT) to 
reduce depression. Suppose I want to compare the lost income due to days of missed work 
because of depression over a six month period for individuals in the CBT and the control 
conditions. Suppose the population average lost income difference between the two groups 
is $1. I would argue that this is trivial and I do not care if I “miss” this effect. On the other 
hand, if the true difference is $1,000, almost all would agree that this is meaningful. Should 
I use the value of $1,000 as my threshold? How about $500? What do you think the value 
should be and how can you justify it? Suppose I work with very low income, inner city 
populations who are economically disadvantaged. I might decide that for this particular 
population, a $100 disparity between the treatment and control groups over a six month 
period is important and therefore use it as my TES or MIES.  

As I discussed in Chapter 10, I believe that for most areas of research, there will be a 
range of values either the scientific community or the organization that has hired you to 
evaluate their program would agree represents trivial effects, a range of values the most 
would agree represent meaningful effects, and a range of values that are in a “gray area” 
and which are debatable. I try to specify, as best I can, the values in these latitudes. In the 
present example, I might build a case for treating lost income between $60 to $180 (or 
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about $10 to $30 per month) as being in the “gray area.”  Saving less than $10 a month, I 
might argue, is not really going to matter all that much to the lives of people but saving 
more than $30 a month could be consequential. Thus, the $60 to $180 range is my “gray 
area.”  I might then decide to conduct the power analysis on the midpoint of the interval, 
namely $120 (or about $20 per month). Or, I might adopt a conservative approach and 
target an effect size that represents the smallest value of the latitude. A liberal approach is 
to use the largest value of the latitude. In the final analysis, I usually conduct power 
analyses for multiple values in the gray area and make sample size decisions, accordingly. 

My point is that choosing a target effect size for power analysis is often a difficult, 
value-laden enterprise. I find it troublesome that some researchers treat effect sizes like t-
shirts that come in sizes of “small,” “medium,” and “large,” with the same definitions of 
these sizes applying to all situations. We need to be more nuanced than this. 

Effect Size Sensitivity 

A popular perspective on effect size in power analysis is to focus on a given sample size 
and then to specify the minimum population effect size that it will be reasonably sensitive 
to detecting. For example, suppose in the lost income example I decide that the lowest 
power that is acceptable to me is 0.80, which translates into a Type II error rate of 1-0.80 
= 0.20. I decide to focus on a sample size of 125 per group because this is my “ceiling” 
sample size, i.e., it is the largest sample size I feel I can practically get given the resources 
available to me. Suppose I am interested in the effect size sensitivity of a sample size of 
125 per group for a mean comparison of a continuous outcome between a treatment and 
control group when contrasted using an independent groups t test. I decide to isolate the 
value of the population effect size that will yield power of 0.80 for N = 125 for a two group 
t test of independent means. I might find that it equals $175. This is the effect size 
sensitivity of N = 125 per group for this test; for a sample size of 125 individuals per group, 
I will have reasonable sensitivity to detect an income difference of $175 or greater. 

Some researchers, including myself, prefer to report power analyses using effect size 
sensitivities for different sample sizes when conveying the implications of using different 
N. For example, in grant proposals, I often provide to reviewers the sample size I have 
settled upon (or two or three alternative sample sizes I am considering) and then convey 
the effect size sensitivity of that sample size. I then build a case for why the sensitivity 
level is satisfactory.  

Standardized or Unstandardized Effect Size Indices for Power Analysis 

As discussed in Chapter 10, there are two types of effect size indices, unstandardized and 
standardized. Unstandardized effect size indices work in the raw metric of a variable, such 
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as the raw mean difference or an unstandardized regression coefficient. Standardized effect 
size indices impose a transformation on the unstandardized effect size to make it have a 
metric that some researchers find more meaningful, such as Cohen’s d or a correlation 
coefficient. In general, most (but not all) of the utilities for power analysis I provide on my 
website work with unstandardized effect size indices, but you can adapt most of them to 
accommodate standardized effect sizes, as I show below. 

Power Analysis for Mean Differences Between Independent Groups 

In my programs for power analysis of mean differences between two or more independent 
groups (e.g., an intervention and control group), you specify the minimal size of the mean 
difference in the populations that you want to be sure to detect and what you think the 
population standard deviation is for each group after you control for covariates if covariates 
are part of your model. Your estimate of the population standard deviations typically will 
be informed by past research and/or a pilot study. Like other power analysis software, the 
traditional assumptions of normality and across group homogeneous variances are made. 
As a result, once you have specified the population standard deviation for one group, you 
have specified it for all groups. The power estimates also assume equal per group sample 
sizes, which is true of most power analysis software. If the per group sample sizes in your 
study are not or will not be equal, as long as they are not too unequal, the power estimates 
that assume equal group sizes will yield reasonable, ball-park power estimates. If your 
sample sizes will be quite discrepant, you can use the simulation strategies I discuss later 
to determine statistical power 

In my programs, you can invoke Cohen’s standardized criteria that define effect sizes 
as fractions of standard deviations by specifying the population within-group standard 
deviation as being 1.0 and then specifying the mean difference values as either 0.20, 0.50, 
or 0.80 for Cohen’s small, medium, and large effect sizes, respectively. The resultant Ns 
will map onto those needed to achieve power for a raw mean difference equivalent to 2/10 
of a standard deviation, half of a standard deviation, and 8/10 of a standard deviation, 
respectively, no matter what the actual value of the standard deviation is. If in your 
proposed study your outcome is measured in dollars and the population within group 
standard deviation is $10,000, the above strategy will tell you the sample size you need to 
detect a raw mean difference of $2,000, $5,000, and $8,000 with reasonable power. 

The programs on my website create customized power tables for you. For the lost 
income example that contrasts the means of two groups, I use the program called Power: 
Contrasts because I am implicitly using formal contrast analysis. In the two-group case, 
this statistical test is the same as applying the traditional independent groups t test. The 
contrast approach specifies the contrast of interest using the following formula: 
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1 1 2 2c cψ = µ + µ                      

where ψ is the contrast value of interest and to the right are the population means for each 
group multiplied by a contrast coefficient. The mean difference is defined using the 
contrast coefficients of 1 and -1: 

1 2(1) ( 1)ψ = µ + − µ  

which, when executed, subtracts the population mean for group 2 from the population mean 
for group 1. If I had 3 groups and wanted to contrast the mean for group 1 with the average 
of the means for groups 2 and 3, I would use the following contrast coefficients: 

1 2 3(1) ( .5) ( .5)ψ = µ + − µ + − µ  

The video and details link associated with the program describe the logic of the above 
specifications and provide multiple examples for defining contrast coefficients.  

Here is a table from the program for the two group case where I have specified as 
input different population effect sizes as fractions of the within-group population standard 
deviation in the columns (because I set the population within group standard deviations to 
1.0) and per group sample sizes of possible interest in the rows. The program then provides 
power estimates for each cell of the matrix, like this: 

 
Custom table; rows are grp n, cols are mean diff, entries are power 
 
        0.20     0.33     0.50     0.67     0.80 
30     0.119    0.266    0.478    0.697    0.862 
50     0.168    0.372    0.697    0.913    0.977 
65     0.205    0.463    0.808    0.966    0.995 
75     0.229    0.519    0.860    0.983    0.998 
100    0.291    0.641    0.940    0.997    1.000 
125    0.350    0.739    0.976    1.000    1.000 
150    0.408    0.813    0.991    1.000    1.000 
 

From this table, I see that for an effect size corresponding to a population mean difference 
equivalent to a third of a standard deviation (0.33), a sample size of about 150 per group 
yields statistical power of approximately 0.813.  
 If I want to use the table from the perspective of effect size sensitivity, I choose a 
group sample size of interest and then scan its row values to find the a priori specified 
power I want to impose, say 0.80. The value of the column effect size where the two 
intersect is the effect size sensitivity of the sample size. For example, for a per group sample 
size of 65 and setting my tolerance for a Type II error at 0.20 (or 1–0.20 = 0.80 power), the 
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effect size sensitivity of my test is d = 0.50 or greater, per the yellow highlighted portions 
of the table. Stated another way, given a group sample size of 65 per group, the independent 
groups t test will be reasonably sensitive (with power of 0.80) to population mean 
differences equal at least half a within-group standard deviation. Keep in mind that the 
table can be customized. Sometimes I regenerate my initial table with different row and/or 
column values to get a finer grained analysis of the dynamics at play as I zero in on the 
sample size I likely will use.  

As discussed, one way of increasing power is to increase one’s sample size. An 
alternative strategy if increasing N is challenging is to introduce covariates that are 
relatively uncorrelated with group membership (which will be true of any baseline 
covariate if random assignment to groups is used) but that impacts the outcome. If 
available, the baseline outcome or a proxy for it often is a good choice for such a covariate, 
per my discussion in Chapters 2 and 4. The program on my website Power: Use of 
Covariates helps you appreciate and convey to others the impact on power of using 
baseline covariates. For example, suppose without covariates the population mean 
difference between two groups equals a Cohen’s d of 0.50 or half a standard deviation. The 
required sample size to obtain power of 0.80 is 64 per group when comparing the treatment 
and control groups. If I take into account covariates that account for, say, 40% of the 
variance in the outcome (which is a correlation of about 0.65 between the covariates and 
the outcome, which is not unheard of if the baseline outcome is the covariate), the program 
tells me that the required sample size to achieve power of 0.80 reduces to 38 per group. 

On my website, I also provide a program for power analysis when comparing 
dependent or repeated measure means called Power: One Sample. The suite of programs, 
taken together, allow you to explore power analyses of tests of mean differences from 
multiple perspectives. Watch the video on my website for Power: Contrasts for multiple 
examples. 

Power Analysis for a Regression/Path Coefficient 

For multiple regression analyses, I provide a power analysis program for a regression 
coefficient in a multiple predictor context. You specify the effect size for a given predictor 
using a standardized index that, in my opinion, is more intuitive than that used by many 
power analyses programs. The index is the percent of unique explained variance associated 
with the predictor, such as the case where the target predictor accounts for 3% unique 
explained variance over and above the other predictors in the equation. This is specified in 
my programs by indicating what you think the population squared multiple correlation is 
when all of the predictors are included in the equation including the target predictor (e.g., 
0.35) and then what happens to the squared multiple correlation when the target predictor 
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is dropped from the equation (the squared R reduces to 0.32). The change in R squared is 
an index of the minimum effect size for the predictor that you are interested in powering 
and represents the squared semi-part correlation associated with it. 

As an example, I might conduct a power analysis to determine the required sample 
size to detect an effect for a predictor that accounts for at least 3% unique explained 
variance in a five predictor regression analysis. I set the population squared R in the 
population to, say, 0.25 when all 5 of the predictors are in the equation (or to any other 
value I think maps onto my analytic scenario). To examine power for a predictor that 
accounts for 3% unique explained variance, the squared R would drop to 0.22 if I 
eliminated the predictor. For this scenario and an alpha level of 0.05 (two tailed test), the 
required total sample size to achieve power of 0.80 is about 200. 

It turns out the power value is influenced by the absolute magnitude of the two 
squared multiple correlations, so if I enter squared Rs of 0.40 and 0.37, I will get different 
results than if I enter 0.25 and 0.22. You need to make reasonable guesses of the 
magnitudes of the two population squared correlations. Power also will be affected by the 
number of predictors in the equation, with more predictors producing less power, 
everything else being equal, though the effect usually is trivial when N is large.  

Here is an example of a table I generated exploring different effect sizes for a 7 
predictor equation in which the population squared R for the full equation is 0.30. The 
columns were 0.27, 0.25, 0.20 and 0.15. These entries represent 3% unique explained 
variance, 5% unique explained variance, 10% unique explained variance, and 15% unique 
explained variance, respectively, because the values reflect how much the squared R might 
decrease when the target predictor is dropped. The sample sizes in the rows are N = 100, 
120, 140, 150 and 160. The table is: 

 
R square for full equation: 0.3 
  
       0.27     0.25     0.20     0.15 
100   0.510    0.727    0.952    0.993 
120   0.592    0.808    0.979    0.998 
140   0.662    0.867    0.991    1.000 
150   0.694    0.890    0.995    1.000 
160   0.723    0.909    0.997    1.000 

 
For a predictor that has unique explained variance corresponding to 10%, a sample size of 
100 will have power of 0.952 for the test of the target coefficient.  

From an effect size sensitivity perspective, suppose I decide my sample size ceiling 
is 120 and that I can’t practically get a larger N than this. I want to have my Type II error 
rate be 0.20 which means I want power of 0.80. I look at entries in the row for the sample 
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size of 120 and find the entry that equals 0.80. I highlight it in yellow. The effect size 
sensitivity for a sample size of 120 is unique explained variance of 5% or greater (which 
is the difference 0.30 minus 0.25 multiplied by 100. The video associated with the 
regression coefficient power program on my website (called Power: Regression coeff) 
walks you through several examples.  

You can also conduct an approximate power analysis for a squared correlation 
coefficient using the Power: Regression coeff program. You specify 1 predictor and 
provide the squared correlation for that predictor, say 0.05. If you eliminate the predictor, 
the squared correlation becomes 0. Here is the table that results for various sample sizes 
for a squared correlation of 0.05: 

 
R square for full equation: 0.05 
 
        0.00 
100    0.622 
120    0.703 
140    0.769 
150    0.797 
160    0.822  

An N of 150 will have power of approximately 0.797 for a test of a population squared 
correlation of 0.05.  

Power Analysis for a Logistic Coefficient 

Software programs for power analysis of logistic regression coefficients, including the 
programs on my website, treat the case of a continuous predictor as distinct from the case 
of a binary predictor. For my program to determine statistical power for a continuous 
predictor (called Power: Logistic coeff 1), the population effect size for the predictor, X, is 
stated as an odds ratio. This is the multiplicative factor by which the odds of Y change 
given a one unit change in X, holding constant all other predictors. As discussed in Chapter 
5, the odds ratio is the exponent of the population logistic coefficient associated with the 
predictor.  

For the program on my website, the target predictor defaults to an X metric consisting 
of a mean of 0 and a standard deviation of 1.0, i.e., it mimics a standardized metric. You 
can change this value if you want but using a standardized metric gives the analysis broader 
applicability. The population multiplying factor (or odds ratio) you provide is for a one unit 
change in X which corresponds to a one SD change in X given the use of the standardized 
metric. For example, an odds ratio value of 1.5 means that every time X increases by one 
standard deviation, the odds of engaging in the event changes by a multiplicative factor of 
1.5. If the odds of engaging in Y is 2.0, then when X increases by one unit (standard 
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deviation), the odds of Y changes by a multiplicative factor of 2.0. And so on.  
Suppose I have 5 predictors of a binary Y. In the program on my website, I need to 

specify (a) the sample sizes I am considering, (b) the odds ratios of interest to reflect the 
effect size, (c) the population squared correlation between my target predictor and the other 
four predictors in the model (to index multicollinearity), (d) what I think the population 
event rate is for Y when all predictors equal their means (this is input as the probability of 
Y or the proportion of people who engage in Y when all predictors equal their mean), and 
(e) the alpha level. Suppose the squared correlation for collinearity is 0.15, the event rate 
at the predictor means is 0.50, and the alpha level is 0.05. I might explore population odds 
ratios of 1.2, 1.5, 1.8 and 2.0 for sample sizes of 150, 175, 200, 225, 250, 275, and 300. 
Here is the table that results: 
 
Custom Table: Row is total N, column is odds ratio, entries are power values 
 
        1.20     1.50     1.80     2.00 
150    0.176    0.629    0.913    0.975 
175    0.198    0.696    0.948    0.988 
200    0.220    0.753    0.969    0.995 
225    0.242    0.801    0.982    0.998 
250    0.264    0.840    0.990    0.999 
275    0.286    0.873    0.994    1.000 
300    0.307    0.899    0.997    1.000 

 
For a coefficient that reflects an odds ratio of 1.80, a total sample size of 150 will have 
statistical power of 0.913. From an effect size sensitivity perspective, suppose I have a 
sample size ceiling of 225. Using the above table and for a Type II error rate of 0.20 (power 
= 0.80), the effect size sensitivity of a sample size of 225 is an odds ratio of 1.50 or greater.  

The program Power: Logistic coeff 2 does a power analysis similar to the above but 
for a binary predictor. In this program, the effect sizes are specified using proportions rather 
than odds ratios. As an example, I might specify the population control group proportion 
of those who perform Y to be 0.50. I specify for the columns of the table the possible 
population proportions for the intervention group of 0.55, 0.60, 0.638, 0.64, 0.65, 0.70, 
0.75. Each of these proportions define a different effect size in terms of a proportion 
difference that subtracts the control group proportion (in this case, 0.50) from the 
intervention group proportion. For example, the value 0.55 represents a 0.05 proportion 
difference of 0.55-0.50; the value 0.60 represents a 0.10 proportion difference of 0.60-0.50; 
and so on. Note also that if you want, you can translate these proportion differences into 
odds ratios. For example, for the proportions 0.55 versus 0.50, the odds ratio is [0.55/(1-
0.55)] / [(0.50/1 – 0.50)] = 1.22. I set the squared correlation for collinearity to be 0.0 
because the intervention versus control group assignment is random which means the 
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binary predictor should be uncorrelated with the other predictors. I explore sample sizes of 
200, 250, 300, 350, and 400 per group and an alpha level of 0.05. Here is the table that 
results from the program:    

 
       0.55    0.60   0.638    0.64    0.65    0.70    0.75 
200   0.170   0.521   0.799   0.810   0.861   0.984   0.999 
250   0.201   0.615   0.878   0.887   0.926   0.996   1.000 
300   0.232   0.694   0.929   0.935   0.962   0.999   1.000 
350   0.263   0.759   0.959   0.964   0.981   1.000   1.000 
400   0.294   0.813   0.977   0.980   0.991   1.000   1.000 

 
To detect a 0.10 difference in proportions (0.60-0.50) with power of approximately 

0.80, I need about 400 individuals per group. To detect a proportion difference of 0.14 with 
power near 0.80, I need a sample size of approximately 200 per group. Keep in mind that 
by using control and intervention population proportions near 0.50, sample size demands 
are greater than if the population proportions were towards their extremes, 0 or 1.0, vis-a-
vis the principles I discussed on the effect of variability on sampling error.  

From an effect size sensitivity perspective, suppose I have a sample size ceiling of 
200 per group. Using power of 0.80, a two tailed test, and multicollinearity of 0, I find from 
the above table that the effect size sensitivity is 0.638 – 0.500 = 0.138 or greater (see the 
yellow highlighted table entries).  

With practice and by having the ability to create your own custom power tables, you 
can conduct reasonable power and effect size sensitivity analyses for a wide range of 
research scenarios. Watch video C on my website for illustrations.  

Power Analysis for Selected SEM Tests 

 Power Analysis for the Global Chi Square Test. A commonly used test in full 
information SEM is the chi test of global fit (see Chapter 7). The test evaluates a null 
hypothesis of perfect model fit in the population (or a zero residual matrix) against an 
alternative hypothesis of non-perfect model fit (or a residual matrix with at least one non-
zero element). To the extent that you rely on this statistic, you will want to ensure you have 
sufficient statistical power or test sensitivity to detect meaningful ill fit in the population 
model. I provide a program on my website, called Power: SEM chi square test,  to conduct 
such power analyses to help you choose a sample size that will provide sufficient 
power/sensitivity for the global chi square test of fit.  

Like other power analyses, you need to specify a minimum population effect size that 
you want to be sure to detect. This takes the form of an a priori specified degree of  
discrepancy from perfect model fit. The tradition for power analysis is to express this 
disparity in RMSEA units. Recall that the RMSEA has a lower bound of zero (which 
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indicates perfect model fit) and that larger values indicate a worse fitting model. Usually, 
RMSEA values fall between 0 and 1 and they tend to be lower than 0.25. In the SEM 
literature, RMSEA values less than 0.08 are often said to reflect satisfactory model fit and 
values less than 0.05 are deemed as good model fit. However, there is controversy about 
these standards and many methodologists argue (persuasively) against their use. The 
problem with relying on the RMSEA to specify/quantify population ill fit for purposes of 
power analysis is that it uses a counterintuitive metric for a statistic that is complexly 
determined. My preference instead is to conduct global chi square power analyses using 
the localized simulation strategy that I describe later, but for those who gravitate towards 
the RMSEA, I provide a program for a power analysis of the global chi square test.  

In the program, suppose I set the minimum degree of population model 
misspecification that I want to be sure to detect to be an RMSEA population value of 0.08 
for the misspecified model. For the program, I need to specify the model degrees of 
freedom. You can derive this algebraically or you can run your model using Mplus with 
hypothetical data of any sample size and then check the Mplus output for the model degrees 
of freedom reported just under the chi square test on the output. For my program, you also 
specify the power you desire (e.g., 0.80). Given this information, the program will calculate 
the sample size you need to achieve that power for the traditional chi square test as well as 
power values a little lower and a little higher than your input power value. For example, if 
my model has 15 degrees of freedom and I desire power of 0.80 to detect a population 
RMSEA of 0.08 or greater, here is the program output: 

 
                   Results 
n for power = 0.8      197 
n for power = 0.75     179 
n for power = 0.80     197 
n for power = 0.85     219 
n for power = 0.90     247 
n for power = 0.95     291 

 
The first entry is the required sample size for the power value you requested; I need 

a sample size of 197 cases to have adequate power to detect model misfit of RMSEA = 
0.08 or greater. The remaining output is self-explanatory. Note that this program is only 
applicable to single group models using maximum likelihood estimation. If you have a 
multigroup model or use a robust estimator, use the simulation approach discussed below. 

Power Analysis for the Chi Square Difference Test. I also provide on my website a 
program called Power: Compare models to conduct a power analysis for a chi square 
difference test for nested models using maximum likelihood estimation. I refer to one of 
the models as the constrained model and the other as the unconstrained model. The null 
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hypothesis posits identical fit for the two models in the population. The alternative 
hypothesis is that the unconstrained model fits better than the constrained model (the test 
itself is described in Chapter 8). You specify in RMSEA units the model fit difference 
between the constrained and the unconstrained models that you want to power against. 
Instead of specifying a single RMSEA difference, such as a difference of 0.05, you must 
specify the component parts of that difference, namely the presumed population RMSEA 
for the constrained model (e.g., RMSEA = 0.10) and the presumed population RMSEA for 
the unconstrained model (e.g., RMSEA = 0.02). You also specify the degrees of freedom 
for each model. The constrained model always will have the larger RMSEA and the larger 
degrees of freedom. Like the power analysis for a global chi square test of fit, the challenge 
is that the method uses RMSEA units which are  counterintuitive.  

As an example, the constrained model presumed population RMSEA might be 0.10 
with 12 degrees of freedom and the unconstrained model population RMSEA might be 
presumed to be 0.02 with 10 degrees of freedom. Here are the results from my program for 
a desired power of 0.80: 

 
                   Results 
RMSEA difference      0.08 
n for power = 0.8    84.00 
n for power = 0.75   67.00 
n for power = 0.80   84.00 
n for power = 0.85   95.00 
n for power = 0.90  110.00 
n for power = 0.95  134.00 

 
I need a sample size of about 84 cases to have adequate power (0.80) to detect the model 
difference using the chi square difference test. As with the single model chi square test, 
this program is only applicable to single group models with maximum likelihood 
estimation. If you have a multigroup model or you want to evaluate power using a robust 
estimator, use the localized simulation approach I describe below. 

Additional Power Analysis Programs. My website has several other power analysis 
programs that may be of use to you, including power analysis for tests of close fit and for 
confirmatory factor analyses.  

The Role of Pilot Studies and Past Research in Power Analysis 

Some methodologists believe it useful to inform power analysis by using documented 
effect sizes from prior research or pilot research. Although there are scenarios where this 
is appropriate, it often is not. A researcher might conduct a meta-analysis of past research 
to identify the average effect size for the intervention of interest. This average effect size 
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is then used to power the proposed study. To me, what matters most is specifying a 
minimum effect size magnitude that you want to be sure to detect. Whether that effect size 
has been observed in prior research is not necessarily germane. If I decide detecting a $750 
disparity in annual salaries between males and females is important but prior studies with 
similar populations have observed, on average, a $1,500 sex difference, I am not going to 
power my study relative to an effect size of $1,500 if I have decided a difference of $750 
is meaningful. There are, of course, cases where effect size choices are appropriately 
informed by prior research. Suppose that current medications for an illness lead to a 60% 
cure rate. I want to introduce a new medication that is less expensive and has fewer side 
effects. I might then power my study to detect cure rates that are at least near 60% so I can 
take advantage of the reduced costs and fewer side effects of it.  

Pilot research also is of questionable value if it uses a small sample size to define the 
likely or desired effect size. A small N in pilot research makes the effect size estimate from 
that research subject to large amounts of sampling error, often resulting in untrustworthy 
estimates (Kraemer et al., 2006). For example, the margin of error for a Cohen’s d statistic 
based on a pilot N of 20 is about ±0.90; for a sample size of 40 it is ±0.63; and for a sample 
size of 60 it is ±0.52. Such estimates are not very reliable and one would be hard pressed 
to justify them as a basis for powering a major, expensive clinical trial. 

Pilot studies can be used to estimate or inform choices about the population standard 
deviation, base rates for proportions, predictor collinearity, and distribution normality 
(Leon, Davis & Kraemer, 2011) that need to be taken into account when making sample 
size decisions. However, relying on pilot studies to do so also can suffer from the small N 
problem and sampling error for these goals as well.   

When a researcher relies exclusively on an effect size from a pilot study or an average 
from prior research to conduct a power analysis, the rationale usually is based on an 
antiquated view that one’s primary goal in power analysis is to reject the null hypothesis 
even if the true effect size is trivial and without implications. More modern views have 
shifted perspectives towards not just powering a study to detect any effect no matter how 
small to one of detecting meaningful effect sizes for the research questions being asked. 
Making such meaningfulness judgments usually requires far more than importing an 
average effect size from a meta-analysis or from estimating an effect size in a small N pilot 
study.  

Post Hoc Power Analysis 

Some statistical software reports post hoc power analysis that calculates the power of a 
contrast or coefficient based on the effect size observed in the data being analyzed. This 
often is referred to as post hoc power analysis. The approach is problematic because (1) 
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it assumes the minimal meaningful effect size equals the effect size observed in the study, 
and (2) it fails to appreciate that the observed effect size is subject to sampling error. 
Having said that, it is not unreasonable to conduct certain kinds of post hoc power analyses 
to evaluate the operative power in a study, especially if the authors of the study are making 
important conclusions based on statistically non-significant effects. In such power 
analyses, one should not use the observed effect size in the study but rather a logically 
derived minimum important effect size to set the standard for power analysis. I discuss 
other applications of post hoc analyses to assist in data analysis below. 

Power Analysis for Robust Statistics 

Wilcox (2021) describes robust analytic methods (e.g., MM regression, quantile 
regression, trimmed mean analysis) that can be used in LISEM in place of more traditional 
methods when evaluating RET models. These methods usually do not have power analysis 
software associated with them. A crude approach for power analysis for these methods is 
to use power analysis software for traditional non-robust methods with the idea that the 
results generally (but not always) will be indicative of power for their robust counterparts, 
indeed conservatively so. Alternatively, one can conduct localized simulations for the 
robust methods using R, but this requires knowledge of R programming.  

Power Analysis for Group Administered Interventions  

Sometimes we conduct randomized trials where instead of assigning individuals to 
conditions, groups of individuals (often called clusters) are assigned to conditions and the 
groups receive a common experience or intervention. For example, a treatment protocol 
for child anxiety might involve forming small groups of children with each group then 
receiving an intervention of group activities designed to reduce anxiety. A control 
condition might assign children to groups, but the groups engage in activities that have 
nothing to do with anxiety reduction. The use of groups or “clusters” introduces analytic 
complications per my discussion in Chapter 25. When conducting power analysis, these 
cluster or group effects need to be accounted for. I do not provide canned software on my 
website for conducting clustered power analyses although I offer a program called Power: 
Cluster adjustment that can give you a rough back-of-the-envelope appreciation of how 
clustering affects statistical power in some contexts. The best way to gain perspectives for 
statistical power in such contexts is to do localized simulations in Mplus, which I describe 
below. For the program on my website, I use the approach by Donner et al., (1981). 

Concluding Comments on Sample Size and Statistical Power 

In sum, sample size affects our ability to detect meaningful effects in RETs. We can specify 
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a priori how sensitive we want our tests to be and then choose sample sizes that  achieve 
that sensitivity. Canned power analysis software can help us select sample sizes to achieve 
our goals but these programs are only approximate and they are incomplete. They make a 
host of assumptions, some of which are unrealistic in practice. An alternative is to choose 
sample size based on localized simulations, a strategy I describe below. If the sample size 
demands of your study are unworkable because of pragmatics, there are other strategies 
you can use to increase statistical power. Probably the most viable strategy is to use 
thoughtfully selected covariates to reduce “noise in the system.” With carefully chosen 
covariates, you might be able to cut your sample size in half, without sacrificing power. 
 An important task for power analysis is to specify the minimum effect size that you 
want to be sure to detect in your study. Some effects are trivial and it does not matter if you 
miss them. Others are substantively meaningful and you want to be certain you do not miss 
them. The effect size sensitivity of the sample size you settle upon should be reasonably 
capable of detecting minimum meaningful effects.  
 The default for many researchers is to seek power of 0.80, which means you have a 
20% chance of missing a meaningful effect. The default also is to use an alpha level of 
0.05, which means you are willing to tolerate only a 5% chance of concluding an effect is 
present when, in fact, it is not. There is a notable asymmetry in error tolerance for the two 
types of errors in hypothesis testing (Type I and Type II errors). When choosing sample 
sizes, you need to justify in your mind such asymmetry and think through the consequences 
of both types of errors. Set your target error rates accordingly.  
 Power analyses should be pursued in the context of the broader RET model you are 
using. There usually will be multiple equations in your model. If you use LISEM or 
piecewise SEM, separate power analyses need are applied to each equation. In an RET, 
this takes the form of power analysis for the effects of the treatment on the mediators, for 
the effects of the mediators on the outcome, and for the independent effects of the treatment 
on the outcome over and above the mediators. Your approach to power analysis can differ 
depending on whether you use LISEM or FISEM, but often the sample size needs converge 
in the two methods. However, there are definite exceptions, some of which I discuss below.     

SAMPLE SIZE AND MARGINS OF ERROR 

Although most social scientists perform power analyses before they conduct studies to 
ensure that their sample sizes are adequate, sample size decisions also can be approached 
from the perspective of margins of errors (MOEs), i.e., obtaining small enough MOEs 
about one’s estimates. For example, if I tell you that I plan to estimate a correlation between 
two variables and that based on my sample size the MOE for the correlation estimate will 
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be ±0.60 correlation units, you would likely be critical of my study plans because the MOE 
will be too large. On the other hand, if I tell you that my sample size is such that the MOE 
will be plus or minus 0.01 correlation units, then you likely will be satisfied that the 
estimate will be informative. Many factors impact the magnitude of a margin of error, but 
a major influence is sample size; the larger the sample size, the smaller the margin of error, 
everything else being equal. 

When planning an experiment, we can think about how imprecise we are willing to 
let our estimate be, i.e., how large a margin of error we are willing to tolerate. On my 
website, I provide programs to determine the sample size necessary to achieve a MOE no 
greater than a given size for various statistical methods.  

The value of the margin of error observed in data for a given study will vary from 
one sample to the next because of sampling error. This means that you cannot be certain 
that when you conduct your study, you will get the exact MOE value you planned based 
on the sample size provided by my programs. For example, if you seek to estimate the 
mean annual income in a population and you want a margin of error no greater than 
±$1,000, the programs provide you a sample size to attain that margin of error. However, 
when you collect your data and calculate your MOE using that sample size, the margin of 
error may be somewhat larger (or smaller) than $1,000. The concept of an assurance 
probability (also sometimes called tolerance) refers to the probability that the MOE will, 
in fact, be no larger than the MOE you specified in the sample size determination 
algorithms. When using programs to determine sample sizes for MOEs, you need to choose 
an assurance probability with respect to the MOE.  

Let’s consider an example to make this concrete. Suppose I have a diet/exercise 
program designed to help people lose weight. I fit a linear equation that predicts weight in 
pounds from the treatment condition (1 = treatment, 0 = control) and a set of covariates, 
one of which includes the baseline weight of the individual. When I compare the treatment 
and control conditions, the regression coefficient for the treatment dummy variable reflects 
the covariate adjusted mean weight difference between the treatment and control groups. 
There will be a margin of error associated with this estimate. How large do I care that the 
margin of error is? Suppose I decide I want the MOE to be no larger than plus or minus 2 
pounds. I use the program on my website called MOE for regression and enter the required 
information to calculate the sample size I need to use in my study to achieve a MOE of 
±2.0 for the posttest weight difference. This includes providing information or guesses 
about the population standard deviation of the target predictor (which in this case is the 
standard deviation of the dummy variable for the treatment condition; for a two group 
dummy variable with dummy coding, it is 0.50), the population standard deviation of the 
outcome (suppose it is 15 pounds), the presumed squared correlation of the target predictor 
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with the other predictors in the prediction equation to index multicollinearity (which will 
equal zero if the target variable is a  randomly assigned treatment condition variable), what 
I think the overall population squared correlation is between the outcome and all of the 
predictors in my regression equation (e.g., I might set it to 0.55, which is large because I 
include baseline weight as a covariate in my model), the number of predictors in my 
regression equation (there were 4), the percent of the confidence interval I want to use to 
define the MOE (95%), and the assurance probability, which I might set to 0.80. Here are 
the results from my program: 
 
           MOE        Required N 
 
Case 1      1.0          1616 
Case 2      1.5           736 
Case 3      2.0           425 
Case 4      3.0           202 
Case 5      4.0           122 

 
To obtain a MOE of ±2.0, I need a total sample size of about 425, or 212 per group. The 
program also provides sample sizes for MOEs close to the one I requested to provide 
additional perspectives. For example, if I am willing to tolerate a MOE of ±3.0 pounds, I 
can use about 100 people per group instead. 

How large should your MOE be? There is no simple answer to this question and it 
depends on how much error you are willing to tolerate given the substantive questions 
being asked. When working with percents, it is not uncommon to see national polls with 
MOEs between 3% and 5%. Polls whose MOEs are above 8% are seen as dubious. Some 
researchers import Cohen's guidelines for small and medium effect sizes to the 
specification of MOEs whereby you do not want a MOE larger than, say, 0.20 d units. But 
such an approach is arbitrary. I recommend you think carefully about tolerable MOEs given 
the consequences of large MOEs based on what you are studying.  

I find it helpful to think in terms of MOEs rather than solely statistical power when 
making decisions about sample sizes. The perspective is different. In power analysis, we 
seek to specify an N that will allow us to find a statistically significant effect if a meaningful 
effect is present in the population. In MOE analysis, we approach the matter from the 
perspective of how much error we are willing to tolerate in our estimates. I describe below 
how to gain perspectives on both power and margins of error using localized simulations. 

Some Technical Matters 

 In this section, I point you to statistical literature for determining sample sizes for desired 
levels of MOEs. You can skip this section if you are uninterested in such details.  
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Sample size and confidence interval estimates for mean comparisons use classic 
single degree of freedom contrast strategies in conjunction with precision analyses. These 
methods are discussed in Kupper and Hafner (1989) and Pan and Kupper (1999).  

When estimating sample sizes for MOEs for correlations, the required sample size 
differs depending on the magnitude of the correlation in the population; in general, larger 
correlations are less sample size demanding. Kupper and Hafner (1989) suggest using a 
conservative approach for sample size determination in which you base your decision about 
sample size by always focusing on an expected population correlation of zero. This will 
then conservatively yield the largest required sample size for your margin of error relative 
to other expected correlations.  

For regression coefficients, the sample size needed to obtain an interval width of a 
specified size has been described in Kelley and Maxwell (2003).  

For percentages and percentage differences, one can use a variant of the approaches 
described in Kupper and Hafner (1989) and Pan and Kupper (1999). Like correlations, the 
required sample size differs depending on the magnitude of the percentage in the 
population; in general, the closer percentages are to 50, the more sample size demanding 
they are. Kupper and Hafner (1989) recommend estimating required sample sizes assuming 
the population percentage is 50, where sampling error is greatest. This will then yield a 
conservative estimate.  

Kelley and Maxwell (2003, 2008) present approaches for estimating the width of 
confidence intervals for multiple correlations and regression coefficients (see also the work 
of Jiroutek, Muller, Kupper and Stewart, 2003). Satten and Kupper (1990) describe 
methods for sample size estimation for margins of errors for odds ratios (i.e., for the case 
of dichotomous outcomes; see also the Erratum by Kupper, 1990). Cesana, Reina, and 
Marubini (2001), Samuels and Lu (1992), and Bromaghin (1993) discuss such approaches 
for percentages and/or percentage differences. Algina and colleagues (Algina and Olejnik, 
2003; Algina, Moulder, and Moser, 2002) apply sample size planning for margin of errors 
for correlations, partial correlations, the difference between squared multiple correlations, 
and squared semi-part correlation analysis. A general review of relevant literatures on 
sample size planning and margins-of-error is in Maxwell, Kelley, and Rausch (2008).  

LOCALIZED SIMULATIONS FOR SAMPLE SIZE DECISIONS 

When planning an RET, it can be helpful to conduct a localized Monte Carlo simulation to 
inform choices about sample size. I refer to this activity as conducting a localized 
simulation study because the simulation provides feedback about your specific study 
conducted under specific conditions. The material I cover here is a bit advanced but the 
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skills are well worth mastering. I begin by first describing the core logic of a simulation 
study using a comparison of two group means as the target method of analysis, a method 
you typically associate with an independent groups t test. I then expand on that core logic 
to describe how to analyze power for a wide range of statistical tests relevant to RETs using 
simulations. I augment this presentation with even more examples on my website.  
 Suppose I want to evaluate the effects of violating normality assumptions on 
statistical power when comparing group means. To do so in a simulation, I create two very 
large populations of normally distributed scores on my computer in a way that I know that 
the standard deviation of the Y scores in each population is 1.0, with the mean in population 
A being 0.50 and in population B it is 0.0. Thus, the mean difference is 0.50 and given that 
the standard deviations both equal 1.0, this maps onto a Cohen’s d of 0.50. Using a 
traditional power analysis program, I find that the power for rejecting the null hypothesis 
using an independent groups t test is 0.80 when my sample size equals 65 per group. 
However, suppose I also generate a set of such scores on my computer, but I add a twist. 
In both groups, the population scores are non-normally distributed with skewness = 2.5 and 
kurtosis = 4.0. What happens to the power of the test of mean differences in this case? It 
turns out that Mplus has random number generators that allow me to generate such 
populations with characteristics that I desire so that I can do a deeper analysis to see what 
happens.  
 Suppose after creating the populations, I select a random sample of 65 individuals 
from each of them. I use Mplus to calculate a test of the difference between the two means 
based on the robust maximum likelihood algorithm that uses Huber-White estimation. This 
is not the same as an independent groups t test because Huber-White estimation on Mplus 
is based in asymptotic theory and it has robust properties. This fact causes me to wonder 
what the statistical power will be for this analytic scenario. I note whether I reject the null 
hypothesis for the test I conduct on the 130 individuals I have randomly selected. I fully 
expect to obtain a statistically significant result because, after all, the null hypothesis is 
false; the population means are not equal. Suppose I repeat this sampling process 20,000 
times followed by a test of the mean differences each time. I note for each case if the null 
hypothesis is rejected. These repeated tests are called simulation replicates or, more 
simply, replicates. In executing this step, I essentially conduct 20,000 study replications 
but each study uses a different random sample of 65 cases per group and all of the tests are 
automatically performed by Mplus on my computer. I then calculate the proportion of times 
across the 20,000 replicates that the null hypothesis was rejected. This represents the power 
of the test. If the test is robust to violations to non-normality and the Huber-White estimator 
works well, I should find that I reject the null hypothesis about 80% of the time per what I 
found with the power analysis software. I can also calculate a confidence interval in each 
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replicate and count the proportion of times that the population group difference was 
contained in the interval across the 20,000 replications. This should be 95% of the time for 
a 95% confidence interval. The proportion of times the population value is in the interval 
is called the confidence interval coverage. 
 If my statistical power in this scenario was, in fact, near 0.80, then I would have 
increased confidence that I can use a sample size of 65 per group to compare means using 
the SEM based strategy implemented by Mplus even in the face of the non-normality that 
was present in the respective populations. The simulation study gives me perspectives that 
canned power analysis software cannot because the latter only provides power estimates 
for the case of homogenous variances with normally distributed data for a t test.  
 To teach you Mplus programming for simulations, I use here a simplistic example in 
which I have a treatment versus control condition, a single mediator, and a single outcome. 
I address more complex models later. I seek to conduct a pre-study power analysis for the 
model in Figure 28.1. The intervention teaches students study skills for math. There are 
two treatment conditions, an intervention and control group. The mediator is a test of 
student study skills measured four weeks post- intervention scored from 0 to 100 with 
higher scores indicating better skills. Students typically score about 60 on the test, with a 
standard deviation of 15 or so. The outcome is performance on the final math exam. Scores 
on the exam range from 0 to 100 with higher scores indicating better performance. Like 
many school exams, a score of 90 is excellent, a score of 80 is above average, a score of 
70 is average, and so on. The standard deviation on the exam is usually about 15.  

Treatment vs. 
Control

Study 
Skills

Exam 
Performance

d1 d2

p1

p3

p2

 

FIGURE 28.1. Simulation Example with Single Mediator 

The model is unrealistic in its simplicity but serves my purposes for exposition. It is 
overidentified given it omits path p3 (the dashed arrow); the effects of the program on exam 
performance are assumed to be fully mediated by program effects on study skills. This is 
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not an unreasonable assumption in practice. I omit baseline measures but introduce them 
later. My tentative plan for the study might be to use a sample size of 75 per group in the 
treatment and control conditions and I set up my simulation accordingly. I explore the 
properties of other sample sizes later.  

Choosing Parameter Values 

The first step in a simulation is to specify values of the population parameters that are 
needed  to conduct the power analysis. In Figure 28.1, I seek to evaluate statistical power 
for paths p1 and p2. To do the analysis, I need to specify the population path coefficient 
values for p1 and p2 that I want to target or be sensitive to with adequate power, i.e., the 
minimal important effect sizes for each of them. It turns out that I also will need to specify 
the variances or standard deviations of each variable in the model, and values of the two 
disturbance variances because all of these also can affect my power estimates. As you will 
see shortly, I do not need to specify population means or intercepts because they are not 
used in this particular model. However, there are models where such specification is 
necessary. In the current case, I want to choose values for the path coefficients that reflect 
the minimal meaningful effect sizes that I want to be sure not to miss and then determine 
the sample size I need to obtain the desired power. I will work with the traditional alpha 
level of 0.05 for a two tailed test.  

Simulation designers specify population parameter values using either the raw 
metrics that characterize model variables (e.g., study skills and exam performance each 
vary from 0 to 100) or they use a metric that is convenient, easy to work with, and that will 
produce the same core results as raw metric specifications. A common strategy for the latter 
approach is to treat all continuous measures as having an overall mean of zero and a 
variance of 1.0, much like a standardized metric. To be sure, the metrics are not formally 
standardized but by having a mean of 0 and a standard deviation of 1, the parameters 
behave much like standardized parameters that many researchers are more comfortable 
with. I use the raw metric approach here for simulation design but I show you the 
standardized metric approach in the Appendix. I prefer the former but you may find 
situations where the latter is easier to work with.  

When specifying parameter values, it is important that they be logically consistent 
with each other. There are several formulae and regularities that will be useful in this 
regard. First, in the models we typically work with, the population variance of an outcome 
can be partitioned into two components, (a) systematic or between group variance and (b) 
error or within group variance. Here are some expressions of this partitioning that you may 
have encountered in your statistics courses: 
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varTOTAL = varBETWEEN + varWITHIN           [28.1] 

varTOTAL = varREGRESSION + varERROR           [28.2] 

varTOTAL = varSYSTEMATIC + varERROR         [28.3] 

 varTOTAL = varEXPLAINED + varUNEXPLAINED          [28.4] 

A population parameter called eta squared or R squared makes use of the above partitions 
to define the proportion of the total variance in the outcome that can be accounted for by 
the predictors in a linear equation that predict the outcome, like this: 

Eta2 = varBETWEEN / varTOTAL = varREGRESSION / varTOTAL =  

           varSYSTEMATIC / varTOTAL = varEXPLAINED / varTOTAL       [28.5] 

 I will make use of this formula. Another useful formula for simulation design is a 
different type of variance partitioning but focused on a linear equation. Consider a linear 
model with a single predictor: 

Y = α + β X + ε 

It can be shown through algebraic manipulation that  

var(Y) = β2 var(X) + var(ε)                    [28.6] 

or that the variance of the outcome Y equals the value of the squared regression/path 
coefficient for the predictor times the variance of the predictor plus the error (or 
disturbance) variance. As you will see, I also make use of this formulation when designing 
a simulation. 
 A final set of formulae I sometimes use focuses on the relationship between 
correlations and covariances. A correlation between two variables, X and Y, can be 
expressed as a function of a covariance as follows: 

rXY = (covXY) / [(SDX)(SDY)]          [28.7] 

where rXY is the correlation between X and Y, covXY is the covariance between X and Y, 
SDX is the standard deviation of X, and SDY is the standard deviation of Y. Using simple 
algebraic manipulation of Equation 28.7, a covariance can be expressed as a function of a 
correlation as follows: 

covXY = (rXY)(SDX)(SDY)           [28.8] 
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 With these formulae in mind, let’s work through the parameters I need to specify for 
the model in Figure 28.1. In the current example, I  will use some but not all of the formulae.  

First, working from left to right in the figure, I need to specify the variance of the 
dummy coded treatment condition, T, where 1 = the intervention group and 0 = the control 
group. If I have an equal number of participants in each group per random assignment, the 
population standard deviation of T always will be 0.50 (which is the standard deviation of 
a binary dummy variable with equal n per group) and the variance will be the square of this 
value, 0.25.  
 Based on my experience with both the study skills and exam performance measures,  
(which I hereafter call M and Y, respectively, for “mediator” and “outcome”), I decide to 
set each of their standard deviations to 15 which, as I noted, is commonly found in the 
literature. The variances are the square of 15, i.e., 225. The standard deviations do not have 
to be the same for the two variables and they represent your best guesses about their SD 
values in your population. I discuss later ways you might “hedge” on these guesses.  
 I next need to specify the minimum important effect size that I want to be sensitive 
to in terms of the treatment effect on the mediator. This dictates both the value of the 
disturbance variance, d1, and the value of the path coefficient for T→M, or p1. Because T 
is a two valued dummy variable, p1 is a mean difference that subtracts the mean M for the 
control group from the mean M for the intervention group. I specify the effect size using 
the 0 to 100 M metric and decide to set the minimal meaningful effect size of the program 
on study skills to be a mean difference of 7 points. This will be the value of p1 in my 
simulation. I can then use this information to define the disturbance variance for M, var(d1). 
Using the equation 

var(M) = p12 var(T) + var(d1) 

I obtain 

225 =  (72)(0.25) + var(d1) 

and with  algebraic manipulation I find that  

var(d1) = 225 - (72)(0.25)  =  212.75   

Note that using this value, I can calculate the proportion of unexplained variance in M; it  
is 212.75/225 = 0.946 and the proportion of explained variance in M by T is 1 – 0.946 = 
0.054.  

This exercise coupled with the previous steps yields the following population 
parameter values for the model thus far:  
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var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, and p1=7.0 

Next, I specify the minimal important effect size for the effect of study skills on exam 
performance, p2. Given both M and Y are measured on a 0 to 100 metric, I might decide 
that a minimum path coefficient that I want to be sure to detect is 0.30 or greater for M→Y, 
i.e., for every one unit that I increase M, Y will increase, on average, 0.30 units. If the true 
path value is less than this, I judge the effect to be too small to be of interest and I do not 
care if I “miss it” via statistical significance testing in my study .  

Once p2 is specified, I derive the value of var(d2). Using the equation 

var(Y) = p22 var(M) + var (d2) 

I obtain 

225 =  (.32)(225) + var(d2) 

and with algebraic manipulation I obtain  

var(d2) = 225 - (.32)(225)  =  204.75   

The proportion of unexplained variance in Y when predicted from M is 204.75/225 = 0.910 
and the proportion of explained variance (by M) is 1 – 0.910 = 0.090.  

This gives me what I need for the simulation in terms of population parameters: 

var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2)=204.75, p1=7.0, p2=0.30 

As you will see, I can determine the implications of altering these values by repeating 
the simulation on Mplus but using different parameter values but I show you first how to 
program Mplus using these particular parameter instantiations. I start by exploring the 
viability of using a total sample size of N = 150 (75 per group), which I might feel is 
pragmatically reasonable for the study I plan to conduct.  

Stepping back for a big picture view, my goal in the simulation is to estimate 
statistical power under the analytic scenario of robust maximum likelihood as applied to 
the model in Figure 28.1. I seek to determine for N = 150 (a) the approximate statistical 
power for the link between T→M where the true population coefficient maps onto 5.4% 
explained variance, (b) the approximate statistical power for the link between M→Y where 
M accounts for 9.0% of the variance in Y in the population, and (c) as an ancillary analysis, 
the approximate statistical power for the omnibus mediation effect of (p1)(p2) = (7.0)(0.30) 
= 2.10, the value of which is dictated by my values of p1 and p2. As I will show you, there 
is much more information than this that I will be able to extract from the simulation.   
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Executing the Simulation 

Table 28.1 presents the Mplus syntax to conduct the simulation.  

Table 28.1: Local Simulation 1  

1. TITLE: LOCAL SIMULATION 1; 
2. MONTECARLO: 
3. NAMES ARE t m y ;  
4. CUTPOINTS = t(0); 
5. NOBS = 150 ;         !sample size 
6. NREPS = 20000 ;      !number of replicates 
7. SEED = 2222 ;        !random seed 
8. !SAVE = temp.dat; 
9. ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:   !specify population model 
12. [t*0] ;             !set mean when generating original continuous t  
13. t*1 ;               !set var when generating original continuous t 
14. [y*0]; [m*0];       !set intercepts to 0 
15. y ON m*.30 ;        !set effect of m on y 
16. m ON t*7.0 ;        !set effect of t on M 
17. y*204.75 ;          !disturbance variance for y   
18. m*212.75 ;          !disturbance variance for m   
19. MODEL:              !specify analysis model 
20. y ON m*.30 ;        !outcome equation 
21. m ON t*7.0 ;        !mediation equation 
22. y*204.75 ;          !disturbance variance for y   
23. m*212.75 ;          !disturbance variance for m   
24. MODEL INDIRECT: 
25. y IND t ;           !evaluate omnibus mediation effect 
26. OUTPUT: TECH9 ;  

 
Line 2 tells Mplus to conduct a simulation. Line 3 gives the names of the variables for 
which to generate data. Note there are no input variables from a data file. This is because 
Mplus generates the data internally using the computer. By default, Mplus creates scores 
for variables that are continuous and normally distributed. I need to dichotomize the 
treatment variable and I use Line 4 to do so. When Mplus encounters the CUTPOINTS 
subcommand it knows to break the continuous variables listed on the command, in this 
case t, into groups. The value in parentheses tells Mplus the cutpoint(s) to use to split the 
named variable into groups. If one value is listed there is one cutpoint. If two values are 
listed, there are two cutpoints. And so on. Line 4 indicates that the continuous variable t is 
to be converted to a binary variable because there is only one cutpoint specified. Any Mplus 
initially generated score for t that is less than 0 will be set to 0 and any initially generated 
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score greater than 0 will be set to 1. Given the initially generated t is, by default, normally 
distributed with a mean of 0, the command will result in t being transformed into two 
groups with an equal population probability of being in a given group. This results in two 
equal sized groups, scored 0 and 1.  
 Line 5 indicates the focal sample size I want to use, N = 150, or 75 per group. Line 6 
is the number of replication studies you want Mplus to conduct. I indicate 20,000 of them. 
Line 7 provides a random number seed so that you can replicate the simulation results upon 
a second execution of the program. I discuss Line 8 later, which is commented out here. 
Line 9 tells Mplus that analysis commands and subcommands will follow. Line 10 tells 
Mplus to use a robust maximum likelihood estimator, and Line 11 states that you will next 
provide the population parameter values that I calculated earlier. Lines 12 to 18 provide 
traditional Mplus syntax to specify the parameter values by specifying the parameter name 
followed by a * and then the value of the parameter. Some people use a @ instead of a * 
when specifying population values in a Monte Carlo simulation. In Mplus, there is no 
difference between the two demarcations when you specify population parameters values 
in a simulation (but this is not so in normal Mplus programming or in the analytic phase of 
the simulation study).  
 Line 19 tells Mplus you will next specify the analytic model to apply in each sample. 
Lines 20 through 25 use Mplus syntax to specify the analytic model. These lines usually 
will be the same as those for the population model (lines 12 to 18). Note, however, that I 
provide starting values after the * sign that map onto the true population values specified 
in Lines 12 to 18. The one exception is that I omit reference to the exogenous variable t 
because Mplus by default treats exogenous variables as fixed predictors and I do not want 
t treated otherwise. This typically will be the case for all the exogenous variables in your 
simulation model; you will not reference their variances or covariances in the analysis 
portion of the simulation so they are treated as fixed predictors. The OUTPUT line invokes 
TECH9 which shows error messages that occur in the analysis of each simulation replicate. 

Double Checking the Parameter Values 

I make it a habit of double checking the population values I derived and specified in the 
syntax to ensure they reflect the dynamics I intended to produce. I do so using the syntax 
in Table 28.1 but I change Lines 5, 6 and 8 to read 

5. NOBS = 2000000 ;         
6. NREPS = 1 ;              
8. SAVE = temp.dat; 

and I run the revised syntax first. Mplus will then generate a single sample from the 
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population data consisting of an N = 2,000,000 cases and it stores the data in the file called 
temp.dat in the same folder that I ran the syntax in. Such a large N should produce results 
that are very close to the true population values. I can then analyze the data for this very 
large sample using a traditional Mplus program and double check my derivations. When I 
execute the above program first, I need to examine the Mplus output to see the order in 
which the variables were saved in the temp.dat file, like this: 

SAVEDATA INFORMATION 
 
  Order of variables 
 
    M 
    Y 
    T 

The order in which the three variables are stored in the temp.dat file is M, Y, and T in free 
format. I next run a standard Mplus model that maps onto the analysis model in Lines 19 
to 25 of Table 28.1 as applied to this data set. Here is the syntax I use: 

Table 28.2: Population Check  

1. TITLE: POPULATION CHECK ; 
2. DATA: FILE IS temp.dat ; 
3. VARIABLE:  
4. NAMES ARE m y t ;  
5. ANALYSIS:  
6. ESTIMATOR = MLR ;  
7. MODEL:             !specify analysis model 
8.   y ON m  ;        !outcome equation 
9.   m ON t ;         !mediation equation 
10.  y* ;             !disturbance variance for y   
11.  m* ;             !disturbance variance for m   
12. MODEL INDIRECT: 
13.  y IND t ; 
14. OUTPUT: SAMP STDYX TECH1 ; 

 
All of the above syntax should be familiar to you. 

Looking at the output for this program, I first double check the unstandardized 
population values to make sure they were what I specified. Here is the output for them 
(note: I ignore the standard errors and significance tests because they are meaningless 
byproducts of my true goals for the analysis, which is just to double check the population 
values): 
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                    Estimate       S.E.  Est./S.E. P-Value 
 
 Y        ON 
    M                  0.300      0.001    444.818      0.000 
 
 M        ON 
    T                  7.016      0.021    340.110      0.000 
 
 Residual Variances 
    M                212.795      0.213    999.949      0.000 
    Y                205.124      0.205   1000.220      0.000   
 
All of the values were what I programmed but with minor disparities that reflect sampling 
error, even with an N of 2,000,000. I calculated that p1 should represent 5.4% explained 
variance in M as a function of T and that p2 should represent 9.0% explained variance in Y 
as a function of M. I check the squared Rs on the output to see if this is, in fact, the case: 
 
STDYX Standardization 
 
R-SQUARE 
 
    Observed                                          Two-Tailed 
    Variable        Estimate       S.E.  Est./S.E.  P-Value 
 
    M                  0.055      0.000    177.423      0.000 
    Y                  0.090      0.000    233.227      0.000 
 
All seems to be in order given I expect small disparities due to minor sampling error. 
Although the checking process is straightforward and may not seem necessary, when you 
start working with more complex models, this step can be helpful. 

Output for Global Fit Indices 

When we are certain that all is in order, we then execute the syntax in Table 28.1 to conduct 
the formal simulation.  I now go over the output that results, beginning with the initial 
output focused on the global fit indices. Here is the output for the chi square statistic of 
global fit for the simulation: 

Chi-Square Test of Model Fit 
 
        Degrees of freedom                       1 
 
        Mean                                 1.029 
        Std Dev                              1.455 
        Number of successful computations    20000 
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             Proportions                   Percentiles 
        Expected    Observed         Expected       Observed 
           0.990       0.990            0.000          0.000 
           0.980       0.980            0.001          0.001 
           0.950       0.951            0.004          0.004 
           0.900       0.900            0.016          0.016 
           0.800       0.800            0.064          0.064 
           0.700       0.704            0.148          0.153 
           0.500       0.505            0.455          0.466 
           0.300       0.309            1.074          1.114 
           0.200       0.209            1.642          1.703 
           0.100       0.106            2.706          2.774 
           0.050       0.052            3.841          3.902 
           0.020       0.022            5.412          5.567 
           0.010       0.010            6.635          6.726 
           0.020       0.021            5.412          5.564 
           0.010       0.011            6.635          6.712 

 
 The first part of the output reports the average chi square value across the 20,000 
replications, which was 1.029. If the fit statistic truly has a sampling distribution that is chi 
square distributed, this value should roughly equal the model degrees of freedom, which is 
1. In a set of scores that are chi square distributed, it turns out that the standard deviation 
of the chi square values will equal the square root of double the degrees of freedom. The 
square root of 2 is 1.414, which roughly equals the reported standard deviation value of 
1.455 on the output. These results support the use of chi square p values to evaluate model 
fit for your study because the simulation suggests the chi square statistic has a sampling 
distribution that is chi square distributed, at least as reflected by the above two criteria.  

The entry Number of successful computations indicates on how many of the 
simulation replications the solution converged. When sample sizes are small, non-
convergence can be an issue and the result allows you to diagnose if this is a problem.   
 The column Proportions Expected is used in conjunction with the column 
Percentiles Expected to further evaluate if the sampling distribution of the fit statistic 
is chi square in nature. Each value in the Proportions Expected column provides the 
probability of observing a chi-square value greater than the corresponding value in the 
Percentiles Expected column for the operative degrees of freedom. For example, the 
proportion of 0.05 in the Proportions Expected column is the probability that the chi-
square value exceeds the Percentiles Expected value (the critical value of the chi-
square) of 3.841. The columns labeled Observed give the corresponding values calculated 
across the 20,000 replications. In this example, the observed probability 0.052 is close to 
the expected theoretical value of 0.050 and the observed percentile of 3.902 is close to the 
expected theoretical percentile of 3.841. These results again support that the chi square 
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statistic calculated under the study conditions are, in fact, chi square distributed.  
 Recall from earlier that the chi square statistic is based in asymptotic theory; only if 
the sample size is “large enough” will the sampling distribution of the statistic be chi square 
distributed and yield correct p values. The above simulation results affirm that for the 
model I am testing, my planned sample size of 150 is indeed “large enough” in terms of 
asymptotic theory. The simulation strategy represents an advantage over canned power 
analysis software for sample size selection because it allows us to evaluate sample size 
viability for asymptotic theory taking into account the number of variables, model 
complexity, and the patterning and magnitudes of the population covariances.  
 Here is the output for the CFI global fit index: 
 
        Mean                                 0.977 
        Std Dev                              0.057 
        Number of successful computations    20000 
 
        Cumulative Distribution Function 
           Value    Function Value 
           0.990       0.276 
           0.980       0.238 
           0.950       0.154 
           0.900       0.078 
           0.800       0.022 
           0.700       0.008 
           0.500       0.001 
           0.300       0.000 
           0.200       0.000 
           0.100       0.000 
           0.050       0.000 
           0.020       0.000 
           0.010       0.000 

 
The “typical” or mean CFI across the 20,000 replicates was 0.977 with a standard deviation 
of 0.057. The output includes the cumulative distribution function (CDF) for the statistic. 
In this case, the CDF function value evaluated at the score X is the estimated probability 
that the CFI will take on a value less than or equal to X. For example, it is estimated that 
15.4 percent of the CFIs in the sampling distribution of the CFI are less than or equal to 
0.95 and that 100 – 15.4 = 84.6 percent of the CFIs are larger than 0.95. The vast majority 
of CFIs in this case were larger than 0.95. About 7.8% of the samples produced CFIs of 
0.90 or less given the operative sampling error. Mplus reports this information for each of 
the global fit indices produced by Mplus. The often used rule of thumb of rejecting a model 
that has a CFI less than 0.95 seems, in this case, over-prone to rejecting a true model; 15.4% 
of the simulation trials have CFIs less than 0.95 even though the tested model is correct.  
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Output for Model Parameters 

Here is the output for the core individual parameters in the model: 
 
                              ESTIMATES                S. E.  M. S. E.    95%  % Sig 
                 Population   Average   Std. Dev.  Average               Cover  Coeff 
 
 Y        ON 
  M                   0.300     0.3001     0.0789     0.0772     0.0062   0.939  0.966 
 
 M        ON 
  T                   7.000     7.0181     2.3648     2.3693     5.5924   0.948  0.842 
 
 Residual Variances 
  M                 212.750   209.9037    24.4369    23.8862   605.2332   0.924  1.000 
  Y                 204.750   202.3009    23.7784    23.0077   571.3833   0.923  1.000 

 
The column Population has the population value I specified for each parameter; the 

column ESTIMATES Average reports the average of the parameter estimates across the 
20,000 replications. The values in these two columns should be close to one another. In 
this case, for the p2 coefficient of M→Y, one value is 0.300 and the other is 0.3001. If they 
are close, this is evidence the parameter estimate is unbiased. Some researchers formalize 
the magnitude of bias by subtracting the population parameter value from the average 
parameter value, divide this number by the population parameter value, and then multiply 
the result by 100. For the effect T→M as captured by the regression of M on T, the bias is 

[(7.0181 - 7.000) / 7.000 ] (100) =  0.259%  

which is well below 1%. For the effect M→Y, the bias is 

[(0.3001 - 0.300) / 3.000 ] (100) =  0.002%  

which also is well below 1%. Standards vary for what is considered trivial bias; some 
methodologists suggest bias of 2.5% or less is acceptable (Bradley, 1978), but others set a 
standard of 5% or less, and still others suggest 10% or less is acceptable, although the 
criteria vary by context (Harwell, 2020).  

The column ESTIMATES Std. Dev. is the standard deviation of the parameter 
estimate across the 20,000 replications. For the effect of T on M, it equaled 2.3648 and can 
be interpreted as the true standard error of population parameter in question. The column 
labeled S.E. Average is the average of the estimated standard errors calculated across the 
20,000 simulation replications. The value of this average was 2.3693 for the effect of T on 
M. The discrepancy between it and the true standard error of the population parameter 
reflects the degree of bias in the estimated standard errors: 
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[(2.3693 - 2.3648) / 2.3648 ] (100) =  0.190%  

which, again, is small and within ±1% of the true standard error.  
If one doubles the true standard error, one obtains a sense of the margin of error that 

the sample size will yield for the parameter in question based on a 95% confidence interval. 
For the effect of T on M, the standard error on the output is 2.3648 so the estimate of the 
MOE that likely will result for N = 150 is about (2)(2.3648) = ±4.73. This estimate ignores 
assurance/tolerance probabilities. As such, across repeated samples about 50% of the 
MOEs will be lower than this value and 50% will be higher than this value. However, on 
average, the MOE for N = 150 will be about ±4.73. We thus garner some sense from the 
simulation about the MOE the sample size will produce.2         
 The column labeled M.S.E. is the mean square error for each parameter. It is the 
variance of the estimates across the 20,000 replications plus the square of the bias defined 
above. The column labeled 95% Cover is the proportion of simulation replicates for which 
the 95% confidence interval contained the true population parameter value. This should be 
near 0.95. For the effect of T on M, it equaled 0.948. Note that if the value deviates too 
much in either direction from 0.95, this suggests potential problems. For example, if the 
95% confidence interval coverage was close to 0.999, this suggests the estimated standard 
errors may be too large, making the intervals wider than they should be. Or, it might suggest 
the sampling distribution is ill-shaped. A common standard for 95% confidence interval 
coverage is that it should be within ±0.03 of 0.95 or between 0.92 and 0.98 to be 
satisfactory, although this standard can be adjusted upward or downward depending on 
context. Finally, the % Sig Coeff column is the proportion of times across the 20,000 
replications that the null hypothesis was rejected. For a non-zero population value, it is the 
power of the statistical test. For a sample size of 150, the estimated power for the effect of 
T on M is 0.842 and for the effect of M on Y it is 0.966.  

The power analysis simulation is based on a statistical test that uses robust maximum 
likelihood estimation grounded in asymptotic theory vis-à-vis SEM algorithms. In addition 
to statistical power, the simulation provides perspectives on bias of the parameter 
estimates, bias of the estimated standard errors of the parameters, the magnitude of margins 
of error, and confidence interval coverage, which is a strength of the approach.  
 The output also provides information for the omnibus indirect test in the model: 
 
 

 
2 The calculation also requires the estimator to be relatively unbiased and the sampling distribution to be normal in 
form. This may not be the case for variances, standardized coefficients, and indirect effects that are products of path 
coefficients. Also, some methodologists prefer to use the S.E.Average rather than the true standard error in the 
calculation. If the values are close, which is often the case, the choice is moot.  
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TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                              ESTIMATES                S. E.  M. S. E. 95%   % Sig 
                  Population   Average   Std. Dev.  Average            Cover   Coeff 
 
Effects from T to Y 
 
  Total               2.100     2.1071     0.9181     0.9102    0.8429  0.928  0.675 
  Tot indirect        2.100     2.1071     0.9181     0.9102    0.8429  0.928  0.675 
 
 Specific indirect 1 
  Y 
  M 
  T                   2.100     2.1071     0.9181     0.9102    0.8429  0.928 0.675 
 

    The population value of the indirect effect T→M→Y is 2.10, which is the product of 
7.00 times 0.30 or (p1)(p2). The average of the parameter estimates (ESTIMATES Average) 
was 2.1071 suggesting the estimator for the indirect effect is unbiased in this case. The 
average estimated standard error for the indirect effect was 0.9102, which is close to the 
true population value of 0.9181, indicating it also is unbiased. The margin of error for the 
indirect effect will typically equal about (2)(0.91) = 1.82, but this should be considered a 
back-of-the-envelope descriptor. The confidence interval coverage is a bit low, but within 
the ±0.03 standard, namely it is 0.93. The statistical power for the omnibus indirect effect 
from T→M→Y was 0.675.  

As discussed in Chapter 9, some methodologists argue that using bootstrapping for 
this test yields greater statistical power than the MLR method used in the simulation. I 
changed Line 10 to conduct bootstrapping in the simulation to the following: 

ESTIMATOR = ML ; boot=2000  ;    

and I added CINTERVAL(BOOTSTRAP) to the OUTPUT command. The power for the omnibus 
meditation test using bootstrapping changed upward to 0.782, with the values for power 
for the other parameter estimates staying about the same as they were in the MLR analysis. 
In this case, bootstrapping for the omnibus indirect effect was beneficial relative to 
increasing statistical power.3 
 I argued in previous chapters that the omnibus test of mediation often is of secondary 
interest in RET-based program evaluation. Given adequately powered tests of individual 
links in the mediational chain, there is useful information to be gained by analyzing the 
individual links even if the omnibus test is not adequately powered. To be sure, if I can 
pragmatically increase my sample size to obtain adequate power for the omnibus indirect 
test, then by all means, I do so. But I do not see power for the omnibus test as being essential 

 
3 Bootstrapping in simulations is computationally intense and can take considerable processing time. 
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to many of my program evaluations. Mind you, I would rather the test be sufficiently 
powered; but there are scenarios where practical constraints may not permit it. I re-ran the 
simulation with larger sample sizes using a trial-and-error process described below and 
found that a total sample size of approximately 180 (or 90 per group) is needed to bring 
the statistical power of the omnibus indirect effect test vis-à-vis the product of coefficients 
method to 0.80. In the document on my webpage called Simulation Variants in Mplus, I 
show you the Mplus code to calculate the statistical power of the joint significance test for 
the omnibus indirect effect. For N = 150, it equaled 0.814, which is somewhat higher than 
the product coefficient method, a result that is not atypical. 
 In sum, you can see that the local simulation strategy yields a wealth of information 
relevant to sample size selection compared to commercially available canned software for 
power analysis. I provides information about the viability of asymptotic theory, the 
accuracy of global fit indices, the use of a robust estimator, parameter bias, standard error 
bias, margins of error, confidence interval coverage and statistical power for every 
parameter in the model including direct and indirect effects. It should be your method of 
choice for sample size evaluation. 

Statistical Power for the Global Chi Square Test 

  In the current simulation, the model I tested is correctly specified relative to the population 
model. This means that statistical power for the global chi square test of fit cannot be 
evaluated for it. It is possible to conduct power analysis for the global chi square test using 
a simulation strategy in which you a priori posit specification error for a misspecified 
model and determine how sensitive the chi square test is to detecting the misspecification. 
I describe a strategy for doing so in the document Simulation Variants in Mplus on my 
website. With only one degree of freedom for the current model, the most theoretically 
coherent source of specification error is one that omits the dashed path c in Figure 28.1 
when, in the population, that path contributes to the outcome. In the current simulation this 
path was assumed to be zero and omitted from the model I tested. If I set the true strength 
of path c in the population to be 7.00 (the same as T→M) and I fit a misspecified model 
that ignores this path, what is the power I will have for an N of 150 to reject the misspecified 
model vis-à-vis the chi square test of fit? Using the methods discussed in Simulation 
Variants in Mplus, I found that it is approximately 0.86. 

Exploring Sample Sizes, Effect Sizes, and Model Parameter Values 

I usually conduct my initial simulation using as a reference the largest sample size I think 
I can pragmatically muster in my main study. I then explore smaller sample sizes in the 
simulation to see the implications of using smaller sample sizes. Also, as noted, I like to 
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think about power analyses using the concept of effect size sensitivity. For example, for 
the intervention to increase study skills using a sample size of 150, what is the effect size 
sensitivity for the effect of the intervention on study skills assuming power of 0.80 for an 
alpha level of 0.05 with a two tailed test. In the simulation reported above, the power for 
T→M when p1 equaled 7.0 was 0.842. To document effect size sensitivity, I need to  re-
run the simulation but lower the value of p1 in successive runs until the statistical power 
associated with the lowered p1 value is 0.80. Here are the original population parameters I 
used in the simulation: 

var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2) = 204.75, p1=7.0, p2 = 0.30 

I know I am close to having statistical power of 0.80 when p1 = 7.0, so I decide to rerun 
the simulation anew by setting p1 = 6.5. This, in turn, will affect var(d1). Recall that I 
calculated var(d1) as follows: 

var(M) = p12 var(T) + var (d1) 

225 =  (72)(0.25) + var(d1) 

var(d1) = 225 - (72)(0.25)  =  212.75    

With p1 = 6.5, this becomes 

var(d1) = 225 - (6.52)(0.25)  =  214.438. 

Here is the original syntax but with these new values: 

Table 28.3: Revised Syntax 1  

1. TITLE: LOCAL SIMULATION 1; 
2. MONTECARLO: 
3. NAMES ARE t m y ;  
4. CUTPOINTS = t(0); 
5. NOBS = 150 ;         !sample size 
6. NREPS = 20000 ;      !number of replicates 
7. SEED = 2222 ;        !random seed 
8. !SAVE = temp.dat; 
9. ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:   !specify population model 
12. [t*0] ;             !set mean when generating original continuous t  
13. t*1 ;               !set var when generating original continuous t 
14. [y*0]; [m*0];       !set intercepts to 0 
15. y ON m*.30 ;        !set effect of m on y 
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16. m ON t*6.5 ;        !set effect of t on M 
17. y*204.75 ;          !disturbance variance for y   
18. m*214.438 ;         !disturbance variance for m   
19. MODEL:              !specify analysis model 
20. y ON m*.30 ;        !outcome equation 
21. m ON t*6.5 ;        !mediation equation 
22. y*204.75 ;          !disturbance variance for y   
23. m*214.438 ;         !disturbance variance for m   
24. MODEL INDIRECT: 
25. y IND t ;           !evaluate omnibus mediation effect 
26. OUTPUT: TECH9 ; 

Here is the output for just the effect of T on M: 

                                 ESTIMATES             S. E.  M. S. E.   95%  % Sig 
                 Population    Average   Std. Dev.  Average            Cover Coeff 
 
 M        ON 
  T                   6.500     6.4862     2.4223     2.3722   5.8649  0.942 0.777    

 
The power is 0.777 when p1 = 6.5. Given statistical power was 0.842 when p1 = 7.0, my 
next educated guess is that I will probably obtain power of 0.800 (give or take) for the 
effect of T→M when p1 = 6.7. When I re-ran the simulation making the requisite changes, 
the estimated power was 0.805, affirming that the effect size sensitivity for an N = 150 for 
T→M is approximately 6.70 or greater.  
 My general point is that you can address most any question related to fluctuations in 
sample size, power, bias, asymptotic theory, margins of error, and confidence intervals by 
varying different parameters and/or sample sizes within the localized simulation. 
Experimenting with different sample sizes is particularly easy because it does not require 
changing any other parameters in the simulation.  

Checking Type I Error Rates 

My analyses to this point have focused on issues surrounding statistical power, but it also 
can be helpful to determine how your planned study conditions affect Type I error rates. 
As an example, suppose the true effect of the study skills on exam performance is zero, 
i.e., p2 is zero. Using an alpha level of 0.05, the proportion of times I should reject the null 
hypothesis when estimating the effect M→Y in my model should be close to 0.05. I find it 
helpful to verify that my planned sample size also will perform satisfactorily for Type I 
error rates, especially when I am using a statistical method that relies on asymptotic theory. 
Here are the population parameter values I would use in this case based on my original 
simulation but now where p1 = 7.0 and  p2 = 0: 
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var(T)=0.25, var(M)=225, var(Y)=225, var(d1)=212.75, var(d2)=225, p1=7.0, p2=0 

Note that var(d2) has changed to equal var(Y) because M explains no variation in Y. I made 
the corresponding changes in the syntax and here are the results for M→Y: 

                              ESTIMATES                S. E.    M. S. E.   95%   % Sig 
                 Population   Average   Std. Dev.  Average              Cover  Coeff 
 
 Y        ON 
  M                   0.000    -0.0010     0.0825     0.0811     0.0068   0.942  0.058   

The proportion of incorrect null hypothesis rejection was 0.058, which is reasonably close 
to 0.05. This also was true for p1 when I set p1 to 0 and p2 to 0.30. The Type I error rates 
seem to be in order for the simulation conditions I evaluated. 

Programming More Complex Models 

The model I used to develop the logic of simulations was unrealistic in that it consists of a 
single mediator and a single outcome with no covariates. The RET models you work with 
likely will be more complex with multiple mediators and multiple covariates. Setting up 
such simulations can be challenging. Here, I give you an appreciation for relevant issues 
by augmenting the model in Figure 28.1 to include covariates and a direct effect from the 
treatment to the outcome, per Figure 28.2. The covariates are each measured on a 0 to 100 
metric and take the role of baseline mediator/outcome measures. The baseline exam 
performance reflects how the student performed on the prior math exam s/he took. The 
figure omits correlations between exogenous variables to reduce clutter, but they are taken 
into account.  

Treatment vs. 
Control

Study 
Skills

Exam 
Performance

d1 d2

p1

p3

p2

Study Skills 
at Baeline

Prior Exam 
Performace 

p4 p5

 

FIGURE 28.2. Simulation Example with Single Mediator and Covariates 
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Here are the two equations that capture this model, per the discussion of model equations 
in Chapter 7:  
 
SS = a1 + p1 T + p4 SSB + d1                      [28.9] 

EP = a2 + p3 T + p2 SS + p5 EPB + d2                          [28.10] 

where SS = study skills at the posttest, SSB = study skills at baseline, EP = exam 
performance at the posttest, EPB = exam performance at baseline, and T is the treatment 
dummy variable.  
 For Equation 28.9, I need to specify for the simulation the variance of the criterion 
(SS), the variance of each of the predictors, the path coefficients p1 and p4, and the variance 
of the disturbance term, d1. For Equation 28.10, I need to specify the variance of the 
outcome (EP), the variance for each of the predictors, the path coefficients for p2, p3, and 
p5, and the variance of the disturbance term. As before the intercepts can be fixed to zero 
(i.e., ignored) as they do not enter into model analyses. In the original model in Figure 28.1, 
an equation I used to help me assign values was Equation 28.6 that described the 
relationships between variances in a linear equation Y = α + β X + ε as follows:        

var(Y) = β2 var(X) + var (ε)             

It turns out that when there is more than one predictor in the equation, the function for the 
variances is more complex. For the case of two predictors, X1 and X2, of an outcome Y, 
the linear equation is Y = α + β1 X1 + β2 X2 + ε and the variance equation becomes:   

var(Y) = [β12 var(X1) + β22 var(X2)] +  [(2)(β1)(β2)cov(X1,X2)] +  var(ε)                    [28.11] 

The first expression in brackets on the right side of the equation sums the square of the 
path/regression coefficients for each predictor times the variance of the predictor. The last 
term on the right hand side of the equation is the disturbance variance, var(ε). The middle 
bracketed term takes into account the covariances between the predictors, also known as 
collinearity. In a single predictor model, the middle term drops out because there is no 
collinearity. When working with a linear equation with more than one predictor, we must 
take it into account.  

I can write the above variance function using more formal statistical notation for the 
general case of k predictors and using population notation as follows:   

2 2 2 2

1 1 1
[ 2 cov( , )]

k k k

m j m jY j j
j m j

X X εσ σ σ 

= = >

=   β ]   +   [ β β    +   ∑ ∑∑                  [28.12] 
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Equation 28.12 may appear intimidating but there are simple workarounds for using it to 
formulate your simulation. Because the details are somewhat cumbersome, I do not 
develop them here. They are described in the document Simulation Variants in Mplus on 
my webpage.  

At this point, I have described the fundamental concepts for conducting a localized 
simulation for power analysis using Mplus. I apply these concepts to many different 
scenarios in the document Simulation Variants in Mplus on my webpage. I urge you to 
look at that document to help you master how to conduct localized simulations. In the next 
sections, I show you how to conduct a localized simulation using an existing data set, which 
I often find to be helpful. I then describe how to discuss sample size simulations with clients 
and incorporate them into publications and grant proposals. The final section of this chapter 
is titled Small Sample Statistical Tests.  It provides guidance on how to approach analytics 
when you are faced with small sample sizes and must use specialized small sample tests.  

Post Hoc Localized Simulations 

An exercise I sometimes find helpful is to perform a localized post hoc simulation using 
the data I have collected in my main study but only after I feel I have isolated what I believe 
is a satisfactory explanatory model for the data, i.e., I have isolated my “final” SEM model. 
As noted earlier, post hoc power analysis is generally frowned upon, but my goal in 
conducting this simulation is not to evaluate power but instead to increase the confidence 
I have in the analytics I have used (e.g., the applicability of asymptotic theory, adequate 
confidence interval coverage). The analysis is simple to implement and often better maps 
onto the realities of the data than a traditional simulation.  
 Suppose I collect data for an N of 130 individuals for an RET study that randomly 
assigns individuals to an intervention versus control condition (about 65 per group). 
Suppose I have three mediators and a single outcome. All the variables except the treatment 
condition are measured on  muti-item scales with total scores ranging from 0 to 15 in the 
form of discrete integers. The treatment condition is dummy coded, 0 = control group, 1 = 
intervention group. Figure 28.3 presents the model I used for my main analysis. The model 
does not include covariates to make my exposition simpler but the presence of covariates 
will be typical. Suppose I posited the model a priori and it ultimately provided good fit to 
the data. Based on the data and prior theory, I believe the model represents a reasonable 
accounting of the causal dynamics at play. The figure also presents the unstandardized 
coefficients for key parameters in the fitted model to the data. The intercepts for each 
endogenous variable are shown in brackets beneath the respective endogenous variable. 
The disturbance terms for the three mediators are correlated with one another to account 
for unmeasured common causes of them. 



                                                                                                             Sample Size 55 

 
 

  

M1

M2

M3

Intervention 
versus Control

10.858

6.625

6.592

105.17

.7003.892

-1.486

.601

.956

[4.292]

[5.215]

[4.123]

[16.753]

Y

 

FIGURE 28.3. Post hoc simulation example 

 For my SEM data analysis, I might be concerned that my sample size (N = 130) is 
too small to satisfy the requirements of asymptotic theory. When I conducted analyses on 
the data, I also noted that M1 had a distinctly non-normal distribution that was close to 
being uniform in nature. Although I used a robust estimator (MLR) in my analysis, I am 
unsure if the robust estimator can overcome this type and amount of non-normality given 
the somewhat small sample size. Finally, each of the endogenous measures is scored from 
0 to 15 using discrete integers. Technically, these are not continuous measures. A 
continuous measure has an infinite (or large) number of possible points between any two 
locations on the scale (e.g., a measure of time, in theory, has an infinite number of values 
between 1 and 2 seconds). Perhaps my measures are too crude for SEM to function 
reasonably (although prior research reviewed in Chapter 3 suggests that using measures 
with 7 or more discriminations should be adequate). I seek reassurance that my model and 
analysis is reasonable under the simultaneous operation of all of these conditions and I do 
so using the specialized post hoc simulation method. The method assumes the target model, 
in this case the one in Figure 28.3, is correctly specified and reasonably captures the 
underlying causal dynamics, which I believe is the case here. The population model is not 
assumed to fit the data perfectly, i.e., it does not necessarily produce a zero residual matrix 
of all zeros. But the model is deemed to be a “close enough” fit in the population to be 
descriptive of the core causal dynamics.     
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 To execute the simulation, I first treat the data I have collected as population data and 
I generate 1,000 random samples of size N = 130 from it by using sampling with 
replacement from my sample data, much like we do in bootstrapping. By using sampling 
with replacement, I essentially treat my collected data as population data coming from a 
population that is infinite in size but that results from a causal model having parameter 
values equal to those observed in Figure 28.3. I generate the 1,000 samples using the 
bootstrapping option in Mplus but as a data generation tool rather than as a means of using 
bootstrapping to estimate standard errors, p values, and confidence intervals. In other 
words, I ignore the results of the bootstrap per se but instead use it to generate data samples 
for eventual use in Mplus’ external simulation option. Table 28.4 presents the Mplus code 
I used to generate the samples. 
 
Table 28.4 Syntax for Post Hoc Simulation 
       
1.  TITLE: generate bootstrap samples ; 
2.  DATA: FILE IS c:\mplus\posthoc.txt ; 
3.  VARIABLE: 
4.    NAMES ARE treat m1 m2 m3 y ; 
5.    MISSING ARE ALL (-9999) ; 
6.  ANALYSIS: 
7.    ESTIMATOR = ML ; BOOTSTRAP = 1000 ;    
8.  MODEL:  
9.    y ON m1 m2 m3 ;  
10.   m1 ON treat  ;  
11.   m2 ON treat  ;  
12.   m3 ON treat  ;  
13.   m1 m2 m3 WITH  m1 m2 m3   ;   
14. SAVEDATA: SAVE=BOOTSTRAP; FILE IS bootreps*.dat ; 
15. OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL TECH4  ; 

 
 All of the syntax should be familiar except Lines 13 and 14. Line 13 is a shorthand 
way of telling Mplus to correlate all the variables on the left side of the WITH term with all 
the variables on the right side of it. In this case, because the mediators are endogenous, the 
syntax essentially tells Mplus to correlate all the disturbance terms of the mediators. Line 
14 tells Mplus to save each bootstrap sample in a separate file and the names to give to 
those files. The naming convention is the same as that for generating imputed data sets that 
I described in Chapter 26. Each data set will be named “bootreps” from the FILE IS 
subcommand (you can use any name you want) followed by a number from 1 to 1,000 (the 
number of requested data sets) with the tag “dat” attached to each data set (you can use any 
tag designation you want). Mplus also will generate a file called “bootreps”, which is the 
name you assigned to each data file but now the name will be followed by the word 
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“list.dat” instead of a number with the “dat” tag. This file contains the list of names of all 
the generated data sets in a single column for input into the program that ultimately 
conducts the simulation and which I show you next. All of the saved files will be in the 
same folder that the input syntax is stored in because I do not specify a folder path for them. 
 The data are written to the sample data files in an order that Mplus tells you at the 
end of the output from the run in Table 28.4: 
 
SAVEDATA INFORMATION 
 
Order of variables 
 
    M1 
    M2 
    M3 
    Y 
    TREAT 

 
Finally, Table 28.5 presents the syntax for the subsequent run that tells Mplus how to 
structure the simulation analysis and the population values to use, all taken from my final 
SEM analysis of the main data. 
 
Table 28.5 Syntax for Final Step of Post Hoc Simulation 
       
1.  TITLE: LOCAL SIMULATION ANALYSIS ; 
2.  DATA: FILE = bootrepslist.dat ; 
3.  TYPE = MONTECARLO ; 
4.  LISTWISE = ON ; 
5.  VARIABLE: 
6.    NAMES ARE m1 m2 m3 y treat  ;  
7.    MISSING = ALL(-9999); 
8.  ANALYSIS: 
9.  ESTIMATOR = MLR; 
10. MODEL:  
11.   y ON m1*1.151 m2*.700 m3*1.207 ;  
12.   m1 ON treat*6.154 ;  
13.   m2 ON treat*3.892 ;  
14.   m3 ON treat*5.446 ;  
15.   m1 WITH m2*-1.486 ; 
16.   m1 WITH m3*.601 ;  
17.   m2 WITH m3*.956 ;  
18.   [m1*4.292] ;  
19.   [m2*5.215] ; 
20.   [m3*4.123] ; 
21.   [y*16.753]  ; 
22.   m1*10.858  ; 
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23.   m2*6.625 ; 
24.   m3*6.592 ; 
25.   y*105.170 ; 
26. MODEL INDIRECT: 
27.   y IND treat ;  
28. OUTPUT: 

 
Most of the syntax should again be familiar. Lines 11 to 25 specify the model and the 
“population” values for each parameter. Again, these values were taken from the final 
model I had settled upon when applying the model to the sample data (per the values in 
Figure 28.3).  
 The global chi square test is a test of the null hypothesis that the population residual 
matrix is all zeros. This is not the state of affairs in the population because the population 
fitted model was deemed “close enough” but not “perfect” and produced a population 
residual matrix that was near zero but not exactly zero. I therefore ignore the simulation 
results for the global chi square test per se.  
 Here are the means and standard deviations across the 1,000 simulations for the other 
global fit indices I tend to rely on:  
 
RMSEA (Root Mean Square Error Of Approximation) 
 
        Mean                                 0.045 
        Std Dev                              0.069 
 
CFI 
 
        Mean                                 0.997 
        Std Dev                              0.008 
 
SRMR (Standardized Root Mean Square Residual) 
 
        Mean                                 0.008 
        Std Dev                              0.006 

 
The results for both the CFI and SRMR suggest these statistics are well behaved. The 
RMSEA mean is reasonable but the RMSEA standard deviation suggests more variability 
than ideal for this statistic.  
 Here are the simulation results for the model coefficients: 
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                              ESTIMATES               S. E.       95%       % Sig 
                 Population    Average   Std. Dev.   Average     Cover   Coeff 
 
 Y        ON 
  M1                  1.151     1.1525     0.2483     0.2331     0.929   0.993 
  M2                  0.700     0.6972     0.3040     0.3020     0.954   0.633 
  M3                  1.207     1.2023     0.3198     0.3098     0.936   0.964 
 
M1       ON 
  TREAT               6.154     6.1538     0.5885     0.5713     0.939   1.000 
 
M2       ON 
  TREAT               3.892     3.9056     0.4474     0.4493     0.957   1.000 
 
M3       ON 
  TREAT               5.446     5.4546     0.4448     0.4473     0.952   1.000 
 
 M1       WITH 
  M2                 -1.486    -1.4458     0.8068     0.8179     0.941   0.431 
  M3                  0.601     0.5896     0.7032     0.6958     0.954   0.135 
 
M2       WITH 
  M3                  0.956     0.9573     0.5414     0.5362     0.947   0.425 
 
 Intercepts 
  M1                  4.292     4.2866     0.3853     0.3599     0.923   1.000 
  M2                  5.215     5.2008     0.2973     0.2921     0.946   1.000 
  M3                  4.123     4.1153     0.3046     0.2932     0.932   1.000 
  Y                  16.753    16.8547     2.4335     2.3998     0.944   1.000 
 
 Residual Variances 
  M1                 10.858    10.6234     2.2140     2.1885     0.914   1.000 
  M2                  6.625     6.5292     0.7136     0.6912     0.925   1.000 
  M3                  6.592     6.4641     0.7482     0.7290     0.928   1.000 
  Y                 105.170   102.4545    13.4782    12.7649     0.914   1.000 
 

I focus here on the results for the regression of M3 ON TREAT to highlight what I look 
for throughout the output for the other core model parameters. First, the population mean 
difference on M3 as a function of TREAT was 5.446. The mean of the difference across the 
1,000 samples was 5.4546, which is quite close to the “population” value. This suggests 
the sample mean difference estimates across the samples are functionally unbiased. The 
standard deviation of the regression coefficients when M3 was regressed onto TREAT was 
0.4448 (the standard error of the coefficient). The typical standard error in the 1,000 
samples was 0.4473, which is quite close to the calculated standard error. This also is a 
desirable  property for estimators. The coverage rate of the 95% confidence interval was 
0.952, which is quite close to the theoretical expectation of 0.950. Statistical power is 
reported in the last column but this is not of interest because of the arbitrary nature of the 
operative meaningfully important effect sizes. Rather, I am more interested in performance 
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relative to parameter bias, bias in the parameter standard error, and the confidence interval 
coverage. These properties seem to be in order and this is true of all the other parameters 
in the model, with the possible exception of confidence interval coverage rates for some 
residual variances.   
 Here are the results for the analysis of the total and indirect effects using the same 
output format: 
 
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
 
                              ESTIMATES              S. E.        95%      % Sig 
                 Population   Average   Std. Dev.   Average      Cover     Coeff 
 
Effects from TREAT to Y 
 
  Total              16.381    16.4106     1.6446     1.6268     0.955     1.000 
  Tot indirect       16.381    16.4106     1.6446     1.6268     0.955     1.000 
 
 Specific indirect 1 
  Y 
  M1 
  TREAT               7.083     7.0889     1.6777     1.5652     0.921     0.993 
 
 Specific indirect 2 
  Y 
  M2 
  TREAT               2.724     2.7446     1.2647     1.2602     0.952     0.588 
 
 Specific indirect 3 
  Y 
  M3 
  TREAT               6.573     6.5770     1.9011     1.8411     0.942     0.959 
 

 The simulation results for this facet of the analysis also seem reasonable. Based on 
the above I feel better about the properties of my main analysis in terms of asymptotic 
theory, confidence interval coverage, bias, and margins of error as well as the global fit 
indices (excluding the chi square statistic) with the possible exception of the RMSEA.     
 In sum, I sometimes use the above post hoc simulation strategy to gain perspectives 
on the confidence I can have on facets of my modeling efforts. The approach is not without 
its limitations but I find it useful to alert me to potentially problematic issues when 
analyzing my data. The approach assumes the tested model lacks specification error or if 
specification error is present, it is inconsequential (see also an alternative approach 
described in West et al., 2023 and Wolf & McNeish,  2021, 2023).    
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Writing Up a Sample Size Decision Making Simulation 

Many clients for whom I evaluate programs have little sense of the concepts of statistical 
power, margins of error, effect size sensitivity, confidence interval coverage, parameter 
estimation bias, and robustness. However, they are keenly interested in sample size choices 
because of the cost implications. I find it easiest to explain intuitively the concepts of 
margins of error and effect size sensitivity to clients. Indeed, talking through these concepts 
with them is important so I can determine their tolerances for margin of error magnitudes 
and effect size sensitivity. In my final reports for clients, I invariably include a technical 
appendix that describes the simulations I conducted and their results to justify sample size 
selection. However, this is more for the benefit of readers who are technically oriented.  

For journal publications, most journals have page or word limits that do not allow me 
to describe my simulations in detail. However, most reputable journals maintain on-line 
supplements and I can provide the needed details there. My write ups typically include the 
parameter values that guided the simulation, justification for the selection of parameter 
values, and the simulation results. For the results, I emphasize what happened in terms of 
asymptotic theory, statistical power, margins of error, confidence interval coverage, Type 
I error rates, missing data, non-normality, and bootstrap viability, as appropriate.  

Most grant proposals address statistical power but the common practice is to rely on 
canned power analysis software rather than simulations. Space constraints often restrict the 
presentation of power analysis details and other factors I might consider that drive my 
choice of a sample size. As analytics have become increasingly complex and as NIH now 
often adds a “quantitative expert” to review proposals who may lack substantive expertise 
in one’s content area, it can be challenging to address sample size selection in the detail it 
deserves given space constraints. I find it helpful to frame sample size decisions in grant 
proposals using the effect size sensitivity framework in conjunction with margin of error 
analysis.    

Concluding Comments on Localized Simulations 

Localized simulations have many advantages. They force researchers to think through all 
of the assumptions they must make when evaluating statistical power and they address a 
much broader scope of sample size related issues than canned power analysis software. 
This includes statistical power, the applicability of asymptotic theory, margin of error 
analysis, parameter bias, confidence interval coverage, Type I error rates, robustness, 
missing data, the viability of bootstrapping, convergence issues, and covariance instability. 
Disadvantages are that they require acquiring simulation skills and they can be time 
consuming. I think having this tool in your analytic and design toolbox is a  desirable goal.  
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SMALL SAMPLE STATISTICAL TESTS 

At times, we must conduct RETs with small sample sizes because of financial, practical 
and/or logistical constraints. We still want to use quantitative tools from our toolbox but 
full information SEM (FISEM) may not be practical. One strategy in such scenarios is to 
use FISEM but with adaptations that can accommodate the smaller sample size. Another 
strategy is to move to limited information SEM (LISEM) that focuses on the separate 
equations of an SEM model but then apply well developed small sample methods (such as 
ordinary least squares or a robust regression counterpart of it) to each equation and then 
piece together the results of the individual equation analyses to form the larger model 
results. I discussed the strengths and weaknesses of FISEM versus LISEM in Chapter 8 
and have provided multiple illustrations of the viability of LISEM throughout prior 
chapters, even when latent variables are involved. In this section, I first review small 
sample FISEM approaches you might consider and then I describe small sample statistical 
methods that can be used in LISEM. None of these approaches solve the problem of low 
power and poor effect size sensitivity that so often accompanies small sample sizes. 
However, as discussed earlier in this chapter, low power and poor effect size sensitivity 
often can be countered by the strategic use of covariates and design considerations, albeit 
with some constraints/limitations.  
 How do you know if you have a “small sample?” It turns out this is not a simple 
question to answer. I agree with McNeish (2017) that such characterizations of sample size 
are relative; it depends on the absolute sample size, model complexity, model type, and the 
metric properties of the variables in the model, among other things. A sample can be 
considered small if it does not contain sufficient information to satisfactorily evaluate one’s 
model by virtue of the number of individuals in the sample. Judgments of “smallness” thus 
reflect the consideration of a range of factors, not just sample size per se.  
 Small sample size issues are related to what is known as the curse of dimensionality 
that I discussed in Chapter 17. The curse of dimensionality in the machine learning 
literature is when your data have too many features and you need to somehow reduce the 
number of features to make the situation workable and amenable to analysis. The current 
section does not focus on data reduction methods per se but on statistical methods that can 
be brought to bear to RET analyses that embrace the full RET design or to 
compartmentalizations of the RET design into sections each of which can be analyzed 
using small sample methods.  
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Small Sample Full Information SEM 

Many simulations have shown that maximum likelihood estimation with small samples can 
result in convergence problems, inadmissible parameter solutions, and biased estimates 
(e.g., Boomsma, 1985; Nevitt & Hancock, 2004). In FISEM, a number of corrections to 
the traditional chi square test of model fit have been suggested to compensate for the fact 
that the statistic often is not chi square distributed when the sample size is small relative to 
model complexity. Empirical evaluations of these corrections have operationalized model 
complexity differently, such as by the number of observed variables in the model, the ratio 
of the sample size to the number of observed variables in the model, the number of 
estimated parameters in the model, and the model degrees of freedom. Herzog, Boomsma, 
and Reinecke (2007) and Herzog and Boomsma (2009) concluded that for complete data 
that is multivariately normally distributed, a chi square correction proposed by Swain 
works well as long as the sample size is at least 50 and the ratio of the sample size N to the 
number of estimated parameters is at least 2:1. If data are non-normal, Boomsma and 
Herzog (2013) argue the correction can be applied to the robust maximum likelihood chi 
squares of MLR and MLM in Mplus to help mitigate the adverse effects of nonnormality. 
Shi, Lee, and Terry (2018) recommend the use of a correction proposed by Yuan et al. 
(2015) when the number of observed variables is large (e.g., greater than 90) but they also 
affirm the satisfactory performance of the Swain index as long as the number of variables 
is less than 90 and the sample size is at least 50 with a 2:1 N to number of estimated 
parameters ratio. 

McNeish (2020) recommends the use of an F statistic computed as the model chi 
square statistic divided by its degrees of freedom and found that it worked reasonably well 
with respect to the control of Type I error rates for sample sizes as small as 50 for a three 
factor, 15 variable CFA model. McNeish (2020) also suggests that one also can apply the 
F test to robust chi square statistics (e.g., MLM, MLR) rather than the just traditional chi 
square statistic.  

The program Small N SEM Corrections on my website allows you to apply all the 
aforementioned corrections. The F test (as well as the other tests) assume no missing data 
in the sense they require the sample size as input into the formulae they apply. With missing 
data, it is unclear what the sample size should be defined as being for the formulae. 
McNeish and Harring (2017) suggest an ad hoc approach for defining the N in such 
scenarios, but not enough is known about its utility. Another option is to define the 
operative N multiple times across a range of N reflect by the amount of missing data and 
then evaluate the robustness of conclusions across the different sample size scenarios in 
the spirit of a sensitivity framework.  
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The above corrections apply to the global chi square test of fit but they do not 
generalize to the standard errors for significance tests of individual parameter estimates nor 
to modification indices. McNeish (2020) suggests using a t distribution to define critical 
values for these single degree of freedom null hypothesis tests, but it is unclear if this 
strategy is viable. The approach clearly is more conservative than relying on the traditional 
critical ratios in SEM output, but its potential use and limitations needs further exploration.  

Another full information estimation approach for dealing with small sample sizes is 
to use Bayesian SEM (see Chapter 8). McNeish (2016b) as well as others (Smid, McNeish, 
Miočević & van de Schoot, 2020) argue that this strategy tends to work reasonably well 
with informative priors but if you use diffuse priors (which is common practice) with small 
sample sizes, the result can be non-trivial parameter bias, often as much or even more so 
than traditional SEM methods. Another problem is that with small sample sizes, the 
influence of the prior distribution on the posterior distribution can be substantial thereby 
overpowering the impact of the data per se on the conclusions one makes. Bayesian 
modeling is not a panacea for small sample size research despite claims you may 
sometimes encounter to the contrary. However, when coupled with well-conceived prior 
distributions, it can be useful. 

One strategy for specifying an informative prior is to reduce the parameter space in 
question so that it does not consider impossible values, i.e., values that are impossible do 
not receive any density mass in the prior distribution. Another approach is to restrict the 
parameter space from taking implausible values, i.e., values that receive very small density 
mass in the prior distribution but that could, in theory, be obtained after the prior has been 
updated with the data. As examples, variance parameters cannot take on values less than 
zero, so one might include this restriction into the prior distribution of a variance. If a 
continuous mediator, M, has a metric that ranges from 1 to 7 and it is regressed onto a 0-1 
dummy variable for the treatment condition, T, the intercept represents the mean on M for 
the control group, i.e., the mean on M when T = 0. This intercept value cannot be outside 
the range of 1 to 7, so the prior distribution for it can be specified to have these bounds.  

In Mplus, prior distributions are specified using the MODEL PRIORS command, which 
is placed just after the MODEL command and before the OUTPUT command. I illustrate 
relevant syntax using an example where I regress the above mediator, M, onto the binary 
treatment condition, T: 

 
1. MODEL:  
2. M ON T ; 
3. [M] (a) ;          ! specify intercept and give label 
4. M (varM);          ! specify disturbance variance of M and give label 
5. M ON T (p1) ;      ! specify path coefficient of M on T and give label 
6. MODEL PRIORS :     ! assign informative priors you want  
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7.   a~U(1,7) ; 
8.   p1~N(3, 1) ; 
9.   varM~IG(25, 50); 
10. OUTPUT: CINTERVAL(HPD) TECH8;  

 
Line 6 tells Mplus you will specify one or more prior distributions. Line 7 sets the prior 
distribution for the intercept to a uniform distribution using the letter U preceded by a ~ 
symbol. The number in parentheses, 1 to 7, are the distribution boundaries; it excludes 
values outside the 1 to 7 boundaries. The narrower the range, the more informative the 
prior is. The path coefficient, p1, translates in this example to a mean difference between 
the treatment and control group. It is not uncommon to set an informative prior distribution 
for a regression coefficient to a normal distribution with a specified mean and variance. On 
Line 8, I indicate that the prior distribution of p1 should be a normal distribution (indicated 
by the letter N) with a mean of 3.0 and a variance of 1.0. In practice, I would specify the 
value of the prior distribution mean based on past research, meta-analyses, expert opinions 
and/or common sense and the value of the variance to reflect my uncertainty about the true 
mean value; the larger the variance, the more uncertain I am (see Chapter 8). If my model 
included a covariate, Z, in the equation, then the values from past research and meta-
analyses from which I took the mean value for p1 must also take into account Z.    

The prior distribution for a disturbance variance often is specified as an inverse 
gamma distribution, denoted in Mplus by IG. It has two hyperparameters, α and β, which 
are the shape and scale parameters of the distribution, respectively. Suppose you use a prior 
study or a pilot study to determine the values of these hyperparameters. Gelman et al. 
(2013; see also the discussion at https://stats.stackexchange.com/questions/350924/why-
do-we-use-inverse-gamma-as-prior-on-variance-when-empirical-variance-is-gam) 
recommend setting α to half of the sample size of the previous study, and β to half the 
sample size of the previous study times the variance estimate from that study. Suppose 
based on a pilot study of N = 50 people, the disturbance variance equaled 2.0. I might then 
set α to (50)(.50) = 25 and β to (50)(.50)(2.0) = 50, which I have done in Line 9. You can 
increase the uncertainty in the prior distribution by using a smaller value for the previous 
study sample size when calculating the values of α and β and reduce the uncertainty by 
increasing the N. The following R code plots the inverse gamma distribution to give you a 
sense of its shape (note: you must install the R package bayesAB  for this code to work): 

 
library(bayesAB) 
shape <- 25  
scale <- 50 
plotInvGamma(shape, scale) 
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Here is the resulting plot:  
 

 

In Mplus, you can use mixtures of informative and uninformative prior distributions 
in the sense that Mplus will impose default uninformative prior distributions for all 
estimated parameters in the model but you then override selected defaults using the  MODEL 
PRIORS command. For some models, you will need to posit multivariate prior distributions 
to ensure that the MCMC draws in the yield a positive definite covariance matrix. The 
inverse Wishart distribution is a common prior distribution in such cases. For additional 
perspectives on specifying informative prior distributions, see Asparouhov and Muthén 
(2010b), Gelman, Carlin and Stern (2013), van de Schoot, Sijbrandij, Depaoli, Winter, 
Olff, & van Loey (2018), and Zondervan-Zwijnenburg, Peeters, Depaoli, & van de Schoot 
(2017). For the case of small sample sizes, see Van de Schoot, Broere, Perryck, Zondervan-
Zwijnenburg, and Van Loey (2015) and Smid et al. (2019). As a general rule, when 
working with informative prior distributions it is good practice to explore a range of 
different informative possibilities to determine how sensitive your results are to the prior 
values you chose.  

Reducing Model Complexity for Small Sample Analysis 

Another approach to making SEM amenable to small sample analysis is to simplify the 
model to the point that small sample statistics can be applied but without sacrificing the 
substantive or theoretical significance of the overall model. LISEM is one such approach 
where the model remains fully intact but estimation of parameter values and tests of model 
fit are pursued separately in different model segments. I discussed the strengths and 
weaknesses of this strategy in Chapter 8. It has both pluses and minuses.  

A different approach to model simplification is to target the measurement model by 
turning multiple indicator latent variables into single indicator latent variables. With the 
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complexities of the measurement model eliminated, one might be able to apply FISEM or 
some variant of LISEM. This approach can be problematic in that it discards potentially 
useful information from the model but if the alternative is to not analyze the data at all, the 
compromise might be necessary. I discuss in Chapters 3 and 8 strategies to help mitigate 
the loss of information when using this approach.  

A third strategy for reducing model complexity so that smaller sample sizes can be 
used is to eliminate variables from the model that are of lessor import or priority. I 
discussed strategies for mediator elimination in RETs in Chapter 17. Data reduction 
through factor analysis or principal components often is suggested as a way of reducing 
model complexity, but if all the measured variables are retained in the covariance matrix 
in order to derive factor or component loadings, then data reduction has not occurred, at 
least from the perspective of being amenable to small sample analysis; for elaboration, see 
Chapter 3. 
 For per equation analyses with single-indicator measures and a binary outcome, the 
classic methods of analysis in an LISEM framework are logit or probit regression. These 
methods rely on maximum likelihood, are based in asymptotic theory, and can be sample 
size demanding. The methods also can break down when the outcome is a rare event. A 
method known as Firth regression or penalized maximum likelihood regression 
(PMLE) has been suggested for logit and probit analyses with small samples or when the 
outcomes constitute rare events. An advantage of the PMLE method over another small 
sample approach, known as exact logistic regression, is that it is not as computationally 
intense, which sometimes mitigates against the use of the exact methods. PMLE deals with 
the small sample bias of traditional maximum likelihood by introducing (penalty) 
corrections to cancel the bias. For a primer on the method, see Cole, Chu and Greenland 
(2014). I provide a program for PMLE called Small N logit/probit on my website.  
 For continuous outcomes, OLS regression is the classic workhorse for many 
researchers in small sample LISEM scenarios, but a range of robust regression methods are 
viable competitors that better take into account outliers, do not make assumptions of 
normality or variance homogeneity, and that often have greater statistical power than OLS 
regression (Wilcox, 2021). I offer a program for one such method, MM regression, on my 
webpage but a host of other methods are described in Wilcox (2021), including robust 
variants for multi-level data, growth curves, analysis of covariance, robust logistic 
regression, and a range of other statistical approaches. 
 Small sample multi-level modeling methods outside of an SEM context have been 
described by McNeish (2017, 2017b) and McNeish and Stapleton (2016). I discuss them 
in Chapter 25. Small sample factor analysis methods have been reviewed by McNeish 
(2017c). 
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 In sum, SEM is often characterized as a large sample statistical technique, but the 
method can be used for small sample sizes. To be sure, one must make some sacrifices as 
one deals with small sample sizes, but a small sample size does not necessarily rule out the 
use of SEM or variants of it.  

CONCLUDING COMMENTS 

Many researchers associate sample size decisions with the concept of statistical power, but 
sample size decisions are more complex than this. Not only must we think about practical 
and logistical constraints when making sample size decisions, we also must consider 
statistical power, robustness, margins of errors, asymptotic theory, covariance matrix 
stability, model complexity, effects on estimation properties, missing data, non-normality, 
and effect size sensitivity. Canned software for power analysis is limited in that it fails to 
address most of these issues; it keeps your focus narrow by considering only statistical 
power per se. By contrast, localized simulations, which are relatively easy to implement in 
Mplus or R, have the potential to provide information on all the above facets of sample 
size decision making.  
 Statistical power is impacted by sampling error, the strength of the targeted effect in  
the population, and your tolerance for Type I errors. Sample size only affects sampling 
error and sampling error is impacted by factors other than sample size (e.g., the variability 
of scores in the population). These facts open the door to more ways to increase power than 
just by increasing sample size. As researchers shift emphases away from statistical 
significance and more towards effect size estimation and effect size uncertainty/sensitivity, 
statistical power is becoming but one piece of the puzzle that one considers when making 
sample size decisions. I prefer to think about sample size in terms of its impact on effect 
size sensitivity and margins of error rather than my ability to reject an uninteresting null 
hypothesis that an effect is exactly zero. To be sure, Type I and Type II errors enter my 
thinking but more in the spirit of wanting to avoid erroneously concluding a meaningful 
effect exists when, in fact, it does not, or my missing the presence of a meaningful effect. 
In this sense, I focus my energies on defining what constitutes the minimum value for a 
meaningful effect for the variables I target and then I ensure I have sufficient effect size 
sensitivity to detect it with a reasonably low margin of error. To me, a strict emphasis on 
classic null hypothesis testing in the context of power analysis for making sample size 
decisions is an outdated approach to good program evaluation.  
 Localized simulations are a state of the art tool for assisting sample size decision 
making. They provide far more information than canned power analysis software and, 
importantly, they force you to think more comprehensively about the parameters in your 
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model. I use the approach by exploring variations in parameterizations and the assumptions 
I make in the simulations, which gives me a fuller picture of the implications of the 
parameterizations I choose and the assumptions I make. Although it takes some effort to 
master the design and execution of such simulations, I encourage you to do so as they 
represent a powerful tool for helping you design program evaluations.  
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APPENDIX: STANDARDIZED METRIC POPULATION VALUES   

In this Appendix I describe how to choose population values for a simulation study using 
the standardized metric approach. I assume you have read the section in the main text on 
choosing population values for simulations for variables with raw metrics. I focus here on 
the model in Figure 28.1. An advantage of using standardized metrics (mean of zero and 
SD of 1) as raw scores is that they often make raw metric statistics more relatable while 
their patterns can produce the same power results as different metrics. For example, the 
statistical power for a two group (using, say, n1 = 65, n2 = 65) mean difference of 5.0 on an 
outcome that ranges from 0 to 100 with a pooled SD of 10.0 is the same as that for a two 
group mean difference of 0.50 with a pooled SD of 1.0. In both cases, the mean difference 
equals half a pooled standard deviation, hence the two cases produce identical statistical 
power. However, some researchers relate more to the latter case because the mean 
difference is analogous to a Cohen’s d and because the power results for the standardized 
metric will generalize to any metric scenario where the mean difference is half the size of 
the pooled SD coupled with the other assumptions of the standardized metric analysis.    

For the treatment dummy variable, T, scored 1 = the intervention group and 0 = the 
control group, the population variance and standard deviation is the same as in the main 
text for the standardized metric because the metric of T is unstandardized in all cases. For 
an equal number of participants per group, the population standard deviation of T always 
equals 0.50 and the variance is the square of this value, 0.25.  
 Because both study skills (which I will hereafter call M because it is the mediator) 
and exam performance (which I will hereafter call Y) are continuous variables, I arbitrarily 
set their standard deviations and variances to 1.0, per a standardized metric. 
 I next must decide how much of the variance in M that I want T to account for. This 
dictates both the value of the disturbance variance, d1, and the value of the path coefficient 
for T→M, or p1. Suppose I want the effect size or value of p1 to map roughly onto a medium 
effect size in Cohen’s framework. This would be about 5% of explained variance or an eta 
squared of 0.05. This means that the disturbance variance for M should equal 1 (the 
variance of M) minus 0.05 = 0.95. Using the equation 

var(M) = p12 var(T) + var (d1) 

I obtain 

1.0 =  p12 0.25 + 0.95 

and with simple algebraic manipulation of these numbers I find that  
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p12 = (1-.95) / 0.25 =  0.200   

and p1 = 0.447 

This exercise coupled with the previous steps yields the following population parameter 
values for the model thus far:  

var(T)=0.25, var(M)=1, var(Y)=1, var(d1)=0.95, and p1=0.447 

Next, I specify how much of the variance in Y that I want M to account for. Suppose 
I decide that the minimum effect size of M that I want to be sure to detect is one that reflects 
five percent explained variance in Y. If the proportion of explained variance in Y by M is 
0.05, this means the disturbance variance for Y must equal 1 – 0.05 = 0.95. Using the 
equation 

var(Y) = p22 var(M) + var (d2) 

I obtain 

1.0 =  p22 1.00 + 0.95 

and with simple algebraic manipulation I find 

p22 = (1-.95) /1.00 = 0.05  

and p2 = 0.223. 
 This gives me everything I need to conduct the simulation in terms of population 
parameters: 

var(T)=0.25, var(M)=1, var(Y)=1, var(d1)=0.95, var(d2) = 0.95, p1=0.447, p2 = 0.223 

I will evaluate power for a total sample size of 150.  
Table A.1 presents the Mplus syntax to conduct the simulation. You should be 

familiar with all of it.  

Table A.1: Local Simulation with Standardized Metric  

1. TITLE: LOCAL SIMULATION ; 
2. MONTECARLO: 
3. NAMES ARE t m y ;  
4. CUTPOINTS = t(0); 
5. NOBS = 150 ;        !sample size 
6. NREPS = 20000 ;     !number of replicates 
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7. SEED = 2222 ;       !random seed 
8. !SAVE = temp.dat; 
9. ANALYSIS:  
10. ESTIMATOR = MLR ;  
11. MODEL POPULATION:  !specify population model 
12. [t*0] ;            !set mean of treatment to 0 for cutoff  
13. t*0.25 ;           !define var of treatment variable 
14. [y*0]; [m*0];      !set intercepts to 0 
15. y ON m*.223 ;      !set effect of m on y 
16. m ON t*.447 ;      !set effect of t on M 
17. y*.95 ;            !disturbance variance for y   
18. m*.95 ;            !disturbance variance for m   
19. MODEL:             !specify analysis model 
20. y ON m*.223 ;      !outcome equation 
21. m ON t*.447 ;      !mediation equation 
22. y*.95 ;            !disturbance variance for y   
23. m*.95 ;            !disturbance variance for m   
24. MODEL INDIRECT: 
25. y IND t ;          !evaluate omnibus mediation effect 
26. OUTPUT: TECH9 ;  

 
The output follows the same formatting as that for the raw metric discussed in the main 
text. 


