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INTRODUCTION 

This chapter considers analytic strategies for dealing with people dropping out of 
treatment or not adhering to treatment protocols. Dropping out of treatment in a 
randomized trial is a form of treatment non-adherence because by dropping out, one 
prematurely ceases intervention exposure. People drop out of treatment for many reasons. 
Sometimes dropping out is random but other times it is related to variables in ways that 
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can undermine causal inference. In a multi-session intervention to reduce anxiety, people 
might drop out of treatment mid-treatment if the treatment is not working for them. If we 
do not assess and include anxiety scores at posttest for these dropouts, the mean posttest 
anxiety scores will be biased in ways that make the treatment seem more effective than it 
really is. In general, it is good practice to obtain posttreatment data on treatment 
dropouts. This can be challenging in some contexts but it greatly simplifies statistical 
analyses for effect size estimation and causal inference. In my initial discussion of 
dealing with treatment dropouts and non-adherence in this chapter, I assume we have 
access to posttreatment data for non-compliers (including dropouts). Later, I discuss how 
to deal with the simultaneous occurrence of dropping out of treatment and missing data.  

Some people assume that ignoring treatment dropouts leads to overestimation of 
treatment effects. However, treatment dropouts also can lead to underestimates of 
treatment effects. In a multi-session intervention for anxiety, some people drop out of 
treatment because they think they have recovered sufficiently and perhaps that they have 
even been “cured.” By excluding such people from posttest analyses, treatment effects 
will be underestimated.  

It also is possible that both of the above dynamics operate, canceling each other out. 
This can render dropout status uncorrelated with treatment response, the result being an 
unbiased estimate of treatment effectiveness despite the presence of dropouts.  

Dallal (2012) describes similar dropout dynamics in the context of weight loss 
programs. Suppose two diet-based weight loss programs are compared, one that is 
effective and the other that is ineffective. People on the effective diet will lose weight and 
stay in the study. For those on the ineffective diet, some will lose weight regardless and 
will stay in the study; those who fail to lose weight will be more likely to drop out of the 
program and lost to measurement. The result will be that the ineffective diet will look 
better than it is when weight loss posttest scores of treatment completers are computed. 
The effective diet will look less effective compared with the ineffective diet because the 
only people who remain in the study on the ineffective diet are those losing weight. 

To deal with problems like these, many researchers use what is known as intent-to-
treat (ITT) analysis. Data are collected on all individuals who are randomized to the 
different treatment conditions and all of them are included in the analysis of posttest 
scores (e.g., weight loss) regardless of whether they drop out of the treatment condition to 
which they were assigned and regardless of protocol adherence. If we measure and use 
posttest scores for everyone, the biasing effects discussed by Dallal will be taken into 
account. Because of this, many researchers argue that ITT analyses are the best way to 
analyze randomized trials and, indeed, insist on it. As I show in this chapter, I disagree 
with this orientation because it often fails to answer the question I seek to answer.  
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ANSWERING THE POSED QUESTION 

As noted in Chapter 4, efficacy trials seek to determine if an intervention affects an 
outcome given the intervention is properly implemented and individuals receive the “full 
dose” of the intervention, per protocol. Effectiveness trials, by contrast, seek to 
determine if an intervention affects an outcome based on how the intervention occurs in 
real-world settings where patient populations and clinic variables cannot be rigorously 
controlled. These two types of trials address different questions. Efficacy trials ask how 
well a treatment works if the treatment protocol is adhered to; effectiveness trials ask 
what happens to people who are prescribed or offered a treatment. As Dallal (2012) states 
more colloquially in the context of medication trials, one question asks “what happens if 
people take this stuff?” and the other asks “what happens if you hand this stuff to people 
and tell them to take it?” These are different questions.1 If I require inmates to take a four 
week program while in prison to help them acquire employment skills, I might ask how 
this affects recidivism in the population of inmates. If I offer inmates the option to take 
the four week program, I might ask how extending such an offer to members of the 
prison community affects recidivism. These are different questions.  

I find it useful to think of treatment effectiveness heuristically as a multiplicative 
function of (a) how efficacious a treatment is for changing an outcome when the 
treatment is executed per protocol, multiplied by (b) implementation fidelity, i.e., the 
extent to which the treatment is, in fact, executed per protocol: 

Effectiveness = (Efficacy) (Implementation Fidelity)      [27.1] 

The idea is that if a treatment is not efficacious (e.g., it takes on a value of zero in 
Equation 27.1), then it is not going to be effective in real life settings no matter how 
conscientious people or clinics are about implementing it. Similarly, even if a treatment is 
fully efficacious when applied per protocol, its impact will be diminished if it is not 
implemented correctly by clinics or patients/clients, at least in terms of those facets of 
implementation that matter. The multiplicative function in Equation 27.1 is an 
oversimplification, but it conveys the gist of the general operative dynamic and it sets the 
stage for many of the points I make in this chapter. 

One implication of Equation 27.1 is that effectiveness trials and the ITT analyses 
associated with them confound two questions, namely (1) is a treatment efficacious, and 
(2) do people/staff adhere to treatment protocols. As I discuss in Chapter 4, it is not 
uncommon for trialists to separate these questions and study them independently. For 

 
1 In some cases, the nature of an intervention is simple and full fidelity is guaranteed upon treatment administration, 
in which case fidelity is moot. In such cases, effectiveness equates to efficacy.  
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example, in early stage clinical trials, the focus on determining the efficacy of a vaccine, 
taken properly, at preventing COVID infections might be explored. Once the efficacy of 
the vaccine has been established, researchers then address implementation fidelity, i.e., 
what happens if the vaccine is made available to people in community settings - will 
people take the vaccine and take it properly per protocol (two shots spaced by a month). 
Effectiveness trials typically are carried out in the later stages of intervention 
development once we have a good handle on how to maximize efficacy and how to 
maximize protocol adherence from earlier trials. Having gained this knowledge, we then 
seek to determine if the intervention will work given the noise in real world settings  

As noted, many researchers state that ITT analyses to test for intervention 
effectiveness are the “correct” method of analysis for RCTs and RETs. I disagree. The 
appropriate method of analysis depends on the question being asked (see my quote at the 
opening of this chapter). If you are studying treatment efficacy and the determinants or 
generalizability of efficacy across settings and populations, then trial design and analyses 
should be driven by per protocol considerations. A common strategy for per protocol 
analysis is to eliminate individuals who do not achieve a pre-specified standard of 
adherence or  a prespecified “dose” of the treatment when analyzing data. An objection to 
this practice is that such elimination can undermine randomization to the intervention and 
control conditions, producing imbalance in them that biases causal inference. ITT 
analyses avoid this problem by including all randomly assigned individuals in the 
analysis. Such preservation of randomization is why many researchers insist on ITT 
analyses. 

Having said that, ITT analyses are oblivious to post-randomization events, such as 
treatment discontinuation, patient use of concomitant therapies prohibited by study 
protocols, and treatment protocol non-adherence. Such factors can bias estimates of 
treatment efficacy, hence they are unwelcome in efficacy trials. The solution to the 
problem of compromised randomization in an efficacy trial is not to shift the analytic 
strategy to ITT because doing so changes the question being addressed, i.e., it shifts the 
question away from treatment efficacy. Such a practice lets method dictate the questions 
we ask rather than vice versa. The solution to violation of randomization due to dropping 
out is not to change the question you seek to answer; it instead is to use modern methods 
of per protocol analysis that address compromised randomization (Dunn et al., 2003). 

WHY EFFICACY STUDIES ARE IMPORTANT  

Given perfect or near-perfect levels of adherence and implementation fidelity, differences 
between treatment and control groups on means or proportions of an outcome/mediator 
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probably can be attributed to the efficacy of the intervention, absent confounds. During 
the COVID pandemic, early trials focused on vaccine efficacy to determine if a vaccine 
candidate sufficiently killed the COVID virus in humans. To evaluate vaccine efficacy at 
this stage, studies ensured that people in the “vaccine” treatment condition were, in fact, 
exposed to the vaccination per protocol. In this case, one certainly would not want to 
include in the treatment condition people who failed to take the vaccine or who, say, took 
only half the dose they were supposed to take. If you did so, you run the risk of rejecting 
a viable, life-saving vaccine. In the behavioral sciences, researchers conducting efficacy 
studies often adopt practices that are unrealistic to use in applied, real-world settings but 
that permit a cleaner evaluation of treatment efficacy by maximizing implementation 
fidelity. Researchers might pay clinics to participate in their study; they might cover 
clinic costs of extra staff time; they might pay patients to be in their study; they might 
monitor clinicians in ways that are not possible in practice to ensure that clinicians 
implement the intervention correctly; they might send patient texts as reminders to come 
to sessions or to take their medications, reminders that might not be possible in situ; and 
so on. To the extent that such steps are taken, the data become increasingly ill-suited to 
evaluating effectiveness if the goal of the effectiveness trial is to estimate treatment 
response in real-life settings.  
 ITT analyses embrace non-adherence and implementation infidelity when 
evaluating interventions because, as noted, they ignore post-randomization phenomena. 
The primary result of using ITT analyses in an efficacy trial is to add noise to the efficacy 
signal that a per protocol (PP) analysis provides. As Dallal (2012) notes “if there's a 
moderate signal coming out of the PP analysis, an ITT analysis usually sprinkles in some 
random non-adherent subjects to attenuate it.” ITT analyses are inappropriate for efficacy 
trials unless one is confident that adherence/implementation fidelity are uniformly high in 
the trial. 
 One other characteristic about effectiveness trials should be noted. In real life 
settings, adherence and implementation fidelity are often context dependent. An ITT 
analysis estimates the effect of intervention versus control treatment assignment on the 
outcome in the context that the trial is conducted. A treatment can be equally efficacious 
across different populations or settings but may show weaker effects in one context 
because of context differences in implementation fidelity. By glossing over the 
distinction between efficacy and implementation fidelity, ITT analyses lessen our ability 
to gain insight into the causes of differential effects of treatments across populations and 
settings. Is it because the treatment is differentially efficacious for Blacks versus non-
Latino Whites, because of differential protocol adherence for these two groups, or both? 
If two medications are compared head-to-head in a randomized trial but one has lower 
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adherence due to, say, an easily remediated side effect, an ITT analysis might show a 
beneficial effect of the less efficacious medication purely because of what are easily 
reversible adherence dynamics. Such results might lead clinicians to recommend the less 
efficacious medication despite the availability of simple remediation of the sources of 
infidelity for the more efficacious medication. Informed medical and policy related 
decision making typically requires knowledge of both efficacy and effectiveness.  

The latter point raises ethical issues associated with focusing our science on 
effectiveness trials without concern for separating efficacy and implementation dynamics. 
If we focus exclusively on effectiveness per ITT analyses, we essentially withhold 
efficacy information from consumers. Suppose a patient has the choice of two options for 
treating a serious, life threatening disease. One treatment is nearly 100% efficacious in 
preventing death as long as it is adhered to per protocol. However, perfect adherence for 
the treatment is challenging, resulting in an overall effectiveness rate of about 60%. The 
other treatment is 75% efficacious but is much easier to adhere to, yielding an overall 
effectiveness rate near 68%. Because of the latter treatment’s superior performance in 
effectiveness trials analyzed using ITT, clinicians might decide it is the preferred method 
for treatment and steer patients to it accordingly. However, if you were the patient facing 
death, would you not want to at least know that there is the possibility of a sure cure as 
long as you take extra care to adhere to the treatment protocol that many people have 
difficulty with? If we rely only on ITT analyses, such information is lost.  

Many health care professionals as well as consumers want effect information that is 
not colored by adherence dynamics (Hernán & Robins, 2017). When young adults choose 
a contraceptive method, perfect use effectiveness of male condoms, one of the few 
contraceptive methods that protect against HIV, is about 98% in preventing pregnancies. 
However, typical use effectiveness rates are closer to 85%. Both the former per protocol 
efficacy information and the latter effectiveness information might be relevant to 
decisions people make about using condoms. Lodi et al. (2016) reanalyzed data from a 
well-known clinical trial that reported ITT estimates of the benefits of immediate versus 
delayed initiation of antiretroviral therapy (ART) for treating HIV. It turns out that about 
30% of individuals assigned to the deferred initiation condition in the randomized trial 
violated the instructions they were given and started ART earlier than they were 
supposed to. Using a modern method of per protocol analysis to correct for imbalance 
due to such infidelity, Lodi et al. found the ITT analyses significantly underestimated the 
benefit of immediate ART initiation by 23%, a result they argued could have policy 
implications for clinical practice. 

As a final example, suppose I offer a reemployment program in a community for 
people who have recently suffered job loss. I conduct a randomized trial in which I select 
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a sample of individuals who have recently lost a job. I first secure their agreement to  
participate in a longitudinal survey of employment. I then randomly assign half of the 
participants to a treatment condition in which they are invited to voluntarily participate in 
four weekly seminars on reemployment. The other half of the participants serve as a 
control group who merely complete a baseline and follow-up survey in parallel to the 
intervention group. The outcome variable is employment status 3 months after the 
intervention. Suppose I find that only about 50% of individuals in the intervention 
condition who agreed to complete surveys attended the seminars. In an ITT analysis, I 
would compare the posttest reemployment rates for all individuals who were invited to 
come to the seminars with rates for those in the control group, including those who never 
took the seminars despite being invited to take them. Suppose I find no statistically 
significant difference in these rates such that the program does not appear to be effective. 
However, suppose I also conduct a per protocol analysis and find that for those 
individuals who actually attended the weekly seminars, there was a notable effect on 
reemployment relative to the control group. What would you do in this scenario? Would 
you walk away from the program based on the ITT analysis or would you instead put 
future efforts into getting people to participate in the program per protocol? My own bias 
would be to do the latter and such a decision is informed by the per protocol analysis 
results. Ultimately, I might end up with a truly beneficial intervention that others might 
give up on based on a simplistic ITT analysis. How many promising programs have we 
walked away from by insisting on significant ITT results during intervention 
development rather than conducting ITT analyses after efficacy trials have run their 
course and efficacy has been thoroughly evaluated and maximized?         
     In sum, despite exhortations that ITT analyses are the “proper” way to analyze 
RCTs or RETs, the best way to analyze such data depends on the questions you are trying 
to answer. ITT analyses answer questions about treatment effectiveness but not treatment 
efficacy or adherence/implementation fidelity in their own right. If we seek to understand 
mechanisms that account for treatment efficacy, ITT analyses are not appropriate unless 
adherence/implementation fidelity is high. Building an intervention science based solely 
on effectiveness criteria is ill advised, sometimes unethical, and can lead scientists down 
blind alleys. When I conduct evaluation research for clients, my clients usually are 
interested in the effectiveness of their programs. However, clients also want to know how 
to improve their programs. Teasing out the contributions of treatment efficacy and 
implementation infidelity to effectiveness can be key to doing so. If I know a program is 
reasonable in terms of efficacy but weak on implementation fidelity, my 
recommendations to the client for program improvement might differ than if the program 
is weak in efficacy but reasonable in implementation fidelity. Also important is 
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identifying program active ingredients that drive efficacy as well as active ingredients 
that drive implementation fidelity. RETs using strong ITT and per protocol analytic 
strategies can help accomplish these goals.  

IMPLEMENTATION TRIALS 

There is a growing literature that focuses on the use of RCTs and RETs to understand 
implementation fidelity. This literature adopts a broad conceptualization of infidelity to 
include more than just patient/client adherence to a treatment protocol. Patient/client 
adherence is but one part of a broader system of implementation at multiple levels of an 
organization or system. For example, to maximize implementation fidelity for a 
medication, clinics must ensure that doctors are aware of the medication; doctors must 
make correct diagnoses for purposes of prescribing it; the medication must be available at 
relevant dispensaries; patients must acquire the medication; once acquired, patients must 
take the medication as prescribed; and so on. An implementation randomized trial is one 
in which some facet of implementation is explicitly manipulated with individuals being 
randomized to the different conditions for purposes of making causal statements about 
effects of implementation facets on substantive outcomes. One might seek to increase 
session attendance of a multi-session program for depression by presenting information 
to people at intake about multiple reasons or “positive nudges” to attend every session. 
This might be compared to people in a control condition who do not receive such 
information. The outcome is the number of sessions attended by the patient, a facet of 
information fidelity. As another example, one might examine the effect of clinicians 
using a checklist for key questions to ask patients as part of an anxiety therapy. The 
treatment and control conditions are the provision of the checklist to physicians versus no 
such provision. The outcome is patient anxiety at the conclusion of therapy. Note that the 
analyses for this implementation trial also might properly use per protocol rather than 
ITT analyses if one seeks to determine the efficacy of using a checklist, i.e., only include 
in the analysis physicians in the treatment condition who were actually given the 
checklist.  

In some effectiveness trials, we design the study to address both efficacy and 
implementation fidelity. These designs are called hybrid designs and would use both per 
protocol and ITT analyses. Mediators might include some that are key to understanding 
adherence/implementation and others that are key to understanding efficacy. Such 
designs can be complex. 

 



                                                                                                             Treatment Dropouts 10 

 
 

ESTIMANDS 

A relatively recent concept introduced into the literature on RCT design is that of an 
estimand, which refers to a specific statistical parameter that one seeks to estimate in the 
context of a randomized trial. One type of estimand is for the effectiveness of a treatment, 
which is the mean difference between individuals randomly assigned to the treatment and 
control groups independent of adherence. Another type of estimand is for the efficacy of a 
treatment, which maps onto a per protocol analysis of mean differences between 
treatment and control groups. In 2020, the International Council for Harmonisation 
published an addendum on the use of estimands in randomized trials (ICH, 2020) 
encouraging researchers to be explicit about the estimand one seeks to evaluate and why. 
According to the document, this requires, among other things, being explicit about the 
population of interest, the treatment conditions to be compared, the outcome measure, the 
parameter that will be used to represent the estimand, the statistical method used to 
estimate that parameter, and how nuisance factors (e.g., treatment discontinuation, non-
adherence, missing data) are addressed. In essence, ICH asks researchers to be clear 
about the questions they seek to answer, to justify the meaningfulness of the questions, 
and then to ensure that trial design and data analysis maps onto the questions. The  
concept of an estimand in RCTs has led to an articulation of many different questions 
beyond those associated with effectiveness and efficacy (Greifer & Stuart, 2021).  

A useful framework for specifying estimands in clinical trials is one that evolves 
from what is known as complier average causal effect (CACE) analysis. The framework 
takes into account the concepts of efficacy, effectiveness and adherence. It begins by 
making distinctions between patient/client compliers and non-compliers in a study. 
Compliers are defined as people who faithfully adhere to or comply with the prescribed 
treatment protocol; non-compliers are those who do not do so. Suppose I dichotomize 
compliance and score people as 1 = compliers and 0 = non-compliers. People with a 
score of 1 adhere to the protocol enough so that we believe the treatment can have its 
effect. People with a score of 0 fail to comply with the treatment protocol to the point that 
we believe the treatment will fail to have an impact. In a 12 session treatment for 
depression, a non-complier might be someone who, say, attends 6 or fewer sessions. This 
category represents people who are functionally treatment dropouts. In a medication or 
biologic trial, complier status might be defined as the extent to which people have taken 
the required dosages of the medication with an a priori threshold value specified to 
define sufficient dosage. Let T represent if someone has been randomly assigned to the 
treatment condition (a score of 1) or the control condition (a score of 0) and C represent 
his or her complier status. The CACE framework works with outcome means (or 
proportions) of four groups of individuals, per Table 27.1: 
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Table 27.1: The CACE Framework 
 
 Complier Non-Complier Marginal Mean 
    

Treatment μ|T=1, C=1       [a]  μ|T=1, C=0       [c] μ|T=1       [e] 
Control μ|T=0, C=1       [b]  μ|T=0, C=0       [d] μ|T=0       [f] 
 

The symbol | is read as “given that” to indicate a conditional mean and μ is the population 
mean (or covariate adjusted mean) of the outcome of interest. The expression μ|T=1 
refers to the mean outcome for those randomly assigned to the treatment condition 
ignoring complier status and μ|T=0 is the mean outcome for those randomly assigned to 
the control condition ignoring complier status, i.e., they are marginal means. I add labels 
a to f to the cells of the table to simplify later explication and notation.  
 There is a subtle distinction in the CACE framework that is important to keep in 
mind. The variable C refers to complier status when an individual is exposed to 
treatment. As such, cell b in Table 27.1 refers to control individuals who would be 
treatment compliers if they had been assigned to the treatment condition. Similarly, cell d 
refers to control individuals who would not be treatment compliers if they had been 
assigned to the treatment condition. As I will show later, methodologists have evolved 
creative ways of estimating the means (or proportions) in cells b and d for purposes of 
defining estimands that are rarely used in traditional RCTs.   
 In Chapter 8, I introduced the concept of an average causal effect (ACE), which is 
the mean posttest score for individuals in the intervention condition minus the mean 
posttest score for people in the control condition. In the CACE framework, classic ITT 
analysis calls an ACE and average treatment effect and defines an ATE estimand for 
purposes of program evaluation as cell e minus cell f in Table 27.1, or  

ATEITT = e – f  =  (μ|T=1)  -  (μ|T=0) 

Thus, ATEITT is the mean difference between the treatment and control conditions 
ignoring peoples’ complier status. Traditional per protocol analysis, by contrast, defines 
an estimand for the average treatment effect as cell a minus cell f, or 

ATEPP = a – f  =  (μ|T=1, C=1)  -  (μ|T=0) 

ATEPP is the mean difference between treatment compliers and everyone in the control 
condition irrespective of their complier status.  

The CACE framework also suggests an intriguing alternative possibility for an 
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estimand tied to per protocol effects, namely the comparison of those people in the 
treatment condition who complied with the treatment protocol (cell a) with those in the 
control condition who would have complied with the treatment protocol if they had been 
assigned to the treatment condition, or 

ATECACE = a – b  =  (μ | T=1, C=1)  -  (μ | T=0, C=1)   

I explore the CACE approach later in this chapter. In some literatures, the CACE effect 
sometimes is referred to as the local average treatment effect (LATE).  
 A final estimand sometimes used in randomized trials is known as the as treated 
average treatment effect. It compares treatment compliers (cell a) with all other groups 
combined (cells b, c and d), treating the latter group as individuals who have not been 
“treated” either because they were not offered the treatment (cells b and d) or because 
they failed to sufficiently adhere to the treatment protocol (cell c): 

ATEAS TREATED = (μ|cell a) - = (μ|cell b, c or d)    

  No one of these estimands (ATEITT, ATEIPP, ATECACE, ATEAS TREATED ) is “correct.” 
Rather, when computed, they represent different answers to different questions. The point 
of the International Council for Harmonisation is that different estimands require 
different approaches to study design and analysis and that researchers need to be explicit 
about the estimands they seek to document. The concept of estimands that has recently 
been introduced into the randomized trial literature is an important one and will have a 
central role in trial design and analysis in the future.  

TREATMENT CONFOUNDS 

Treatment dropouts and protocol non-adherence are often not problematic for obtaining 
unbiased estimates of ATEITT because randomization to condition is impervious to them 
and the focus of the investigator is on effectiveness not efficacy. If one fails to obtain 
posttest measures for treatment dropouts, then ITT analyses can suffer because of the loss 
of statistical power and because one sometimes must make untestable assumptions about 
the missing data (see Chapter 26 and my discussion of ITT analyses below). For 
traditional per protocol analyses, treatment dropouts and non-compliance can lead to 
estimation problems for ATEPP not only because of loss of statistical power when non-
compliers are eliminated from the data but also because randomization between treatment 
and control conditions can be compromised. For example, if females are more likely to 
drop out of the intervention arm of a study so as to create imbalance for biological sex 
between the intervention and control conditions, then ATEPP estimates can be biased if 
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sex impacts the outcome. 
In Chapter 4, I discussed the concept of imbalance between treatment and control 

conditions when imbalance arises by chance during random assignment. Such imbalance 
usually is not consequential but it is an annoyance. By contrast, imbalance due to 
eliminating non-compliers for purposes of per protocol analysis can be insidious. To be 
sure, if such imbalance occurs on variables irrelevant to the target outcome, then the 
imbalance will not bias efficacy estimates. However, if the imbalance occurs on treatment 
confounds that influence the target outcome, then inferences about treatment efficacy can 
be distorted. 

Figure 27.1a presents an influence diagram illustrating a case where a treatment has 
no impact on an outcome (depression) but where biological sex determines self-selection 
into the treatment condition in a per protocol analysis, with females being more likely to 
drop out of or be dropped from the treatment condition due to adherence violations than 
the control condition (path a). This dynamic creates an imbalance of biological sex for 
the intervention and control group with the intervention group having more males relative 
to the control group. (This imbalance, of course, would be detected by testing for sex 
differences as a function of treatment condition in the per protocol sample). If males have 
lower depression than females in general (e.g., at baseline), then the imbalance can bias 
results towards overestimating the efficacy of the intervention because of the 
preponderance of males in the intervention condition. The amount of imbalance that 
occurs in the intervention versus control conditions is essentially a function of the 
strength of path a.  
   The consequences of imbalance for making faulty inferences about the effects of a 
treatment also depends on the strength of path b in Figure 27.1a. If this path is weak, the 
imbalance may not be consequential. If it is strong, then the estimated intervention 
efficacy can be distorted given sufficient imbalance reflected in path a. I conducted a 
small scale simulation in which I varied the strength of paths a and b to evaluate the 
effect of such variation on Type I errors for treatment efficacy. I used an alpha level of 
0.05 and a two tailed test. I set up a scenario where the true mean difference between the 
treatment and control groups on depression is zero in the population. As such, the Type I 
error rate for the treatment versus control mean difference should be 0.05, the alpha level.  
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FIGURE 27.1. Effect of treatment dropout on treatment effect estimation 

For path a, a zero effect of sex on self-selection into the treatment condition occurs 
when the probability of being in the intervention group given one is male, P(T=1|sex = 
male), equals the probability of being in the intervention group given one is female, 
P(T=1| sex = female). In the simulation, I set each of these probabilities to 0.50. In 
addition to this scenario, I also evaluated a 60-40 conditional probability difference 
biased towards males being more prevalent in the intervention group as well as a 70-30 
conditional probability difference. These reflect stronger effects for path a. I also varied 
the strength of path b in terms of the population Cohen’s d for the effect of sex on 
depression with males having lower depression than females. I evaluated d values of 
0.00, -0.30, -0.50, and -0.80 based on subtracting the female mean from the male mean. 
Finally, I varied the total sample size after treatment non-compliant participants were 
eliminated, using sample sizes of 100, 200, and 300. Table 27.2 presents the Type I error 
rates for falsely concluding an intervention effect exists in each simulation condition.  

Table 27.2: Results of Simulation for Imbalance and Treatment Dropout 

                                        Effect of Sex on Posttest Depression 

 d = 0.00 d = 0.20 d = 0.50 d = 0.80 
     

50-50 diff      
     N = 100 0.052 0.058 0.057 0.057 
     N = 200 0.052 0.053 0.054 0.046 
     N = 300 0.048 0.051 0.051 0.055 
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60-40 diff 
     N = 100 0.060 0.061 0.086 0.118 
     N = 200 0.043 0.051 0.105 0.168 
     N = 300 0.046 0.062 0.132 0.245 
     

70-30 diff     
     N = 100 0.051 0.085 0.177 0.336 
     N = 200 0.051 0.083 0.282 0.575 
     N = 300 0.053 0.110 0.393 0.736 

When either path a or path b is zero or weak, the imbalance has minimal effect on the 
Type I error rate. The error rate inflates non-trivially when both paths a and b are 
sizeable. Clearly, RCTs can withstand some confound induced imbalance in per protocol 
analyses as long as it is not too strong and the confounding variables exert trivial 
outcome impact.  

Figure 27.1b illustrates a case where the treatment has an effect on the outcome 
(path c) but the efficacy estimate will again be biased depending on the strengths of paths 
a and b (see my discussion of confounding in Chapter 2). Thus, meaningful confounding 
is of concern not only because of its impact on Type I error rates but also because of its 
potential to distort effect sizes. Note that the confounding can be in either direction, 
namely the effect size can be biased upward or downward.  

Another form of confounding is shown in Figure 27.2. Here, the confounder causes 
the outcome but it does not formally cause imbalance (see Chapter 4 for examples). To be 
sure, it is correlated with the treatment condition a person is in, but it is not the cause of 
it. In this case, the correlated confounder represents a proxy for the causal confounder 
and it needs to be controlled as well, depending on the strengths of paths a and b.  

C

(b)

T Outcome

(a)

C

T Outcome

a a
b

c

b

 

FIGURE 27.2. Another form of imbalance 
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In sum, defining a per protocol sample in the traditional way of eliminating 
treatment non-compliers can introduce imbalance into the randomization process. This 
imbalance will be of little consequence if it is trivial in magnitude or if the variable on 
which the imbalance occurs has no or only a trivial causal impact on the outcome. If the 
imbalance is reasonably strong and if the variable on which the imbalance occurs has a 
non-trivial impact on the outcome, then corrective steps are required. The more modern 
methods of per protocol analysis that I describe below seek to take such corrective 
actions.   

NUMERICAL EXAMPLE 

Throughout the remainder of this chapter, I illustrate ways of dealing with treatment 
dropouts and noncompliance using data from the JOBS studies published by Price, van 
Ryn, and Vinokur (1992) and Vinokur, Price and Shul (1995). These studies sought to 
determine the effect of a job search intervention on depression and reemployment of 
unemployed workers. The program consisted of five 4 hour seminars that taught job 
search strategies coupled with the provision of a job search pamphlet. The control group 
received only the pamphlet. Potential participants were sent a baseline questionnaire and 
those who responded were randomized to one of the two conditions. In my analyses, 
depression measured at 6 months post intervention was the primary outcome. To parallel 
analyses reported by Price et al. (1992) and numerous re-analyses of the data (e.g., Little 
& Yau, 1998; Yau & Little, 2001; Jo 2002), I focus on a subgroup of individuals who 
were a priori classified as being at high risk for depression (N = 502). Depression was 
measured using the Hopkins Symptom Checklist, with scores ranging from -3 to +3 and 
higher scores indicating greater levels of depression. Possible covariates/predictors I 
make use of include baseline measures of age, years of education completed, marital 
status (0 = married, 1 = otherwise), race (1 = Black, 0 = otherwise), a measure of 
economic hardship, a baseline measure of depression (scored on a different metric from 
that of posttest depression), motivation to engage in job searches, and a measure of 
assertiveness. Non-compliance occurred in the study by virtue of a substantial number of 
no-shows (about 45%) to the seminar sessions in the intervention condition. 
 To keep matters simple, I explicate statistical methods for addressing efficacy and 
effectiveness estimands by focusing on outcome only analyses. After doing so, I discuss 
how they can be extended to randomized explanatory trials.  

EFFICACY (PER PROTOCOL) FOCUSED ANALYSES 

In this section, I consider approaches to conducting per protocol like analyses. These 
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approaches are distinct from what is sometimes called naïve per protocol analysis which 
consists of dropping non-compliant individuals from the analysis and then analyzing data 
using traditional methods with no correction for imbalance or confounding that might 
result from participant deletion. The approaches I consider are direct covariate methods, 
inverse probability treatment weighting methods, instrumental variable/CACE methods, 
G and targeted maximum likelihood estimation, and formal dosage analysis. Keep in 
mind that each method is designed to estimate treatment efficacy, not effectiveness. Also, 
the “naïve” approach to per protocol analysis is not necessarily “naïve” if there is no 
consequential imbalance due to confounds in the per protocol population. In my opinion, 
it is somewhat unfair to refer to the approach as naïve because there are scenarios where 
this is not the case and the method works just fine. 

All of the strategies I discuss make use of measures of confounders that are sources 
of imbalance. Unmeasured confounders are the bane of clinical trials which is why you 
need to heed the messages from Chapter 2; anticipate as best you can when planning a 
study the likely major sources of imbalance or confounding, in this case due to dropping 
out of treatment, and then measure them to the best of your ability.  

The Direct Covariate Approach 

One strategy for addressing imbalance resulting from elimination of treatment non-
compliers is to include a measure of the confound associated with the imbalance as a 
covariate in one’s model. This is probably the most straightforward approach to dealing 
with imbalance. I refer to it as the direct covariate approach. The strategy is grounded 
in analysis of covariance (ANCOVA) logic for RCTs and most of the statistical 
assumptions of ANCOVA apply to it.  
 The direct covariate approach uses the per protocol estimand, ATTPP. Interest is in 
comparing a population of treatment compliers with a population of individuals who have 
not been exposed to the treatment irrespective of what people in the latter population 
would do relative to adherence if they were exposed to the intervention. This is not a 
conceptually unreasonable estimand, although as elaborated below in my discussion of 
the CACE approach, some methodologists argue otherwise.  

Choosing Covariates 
The choice of covariates in per protocol analyses is important and must be made 
carefully. One should be cautious about including long laundry lists of covariates that are 
not theoretically screened, in part, because estimation efficiency can deteriorate with 
increasing numbers of covariates and because some covariates can amplify rather than 
reduce coefficient bias (see my discussion of “good” and “bad” covariates in Chapter 2). 
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For example, research suggests that including what is known as an instrumental variable 
as a covariate and treating it as a confound can create coefficient bias (Ding, 
Vanderweele & Robins, 2017; Myers et al., 2011a, b; Pearl, 2011) because such variables 
take on suppressor characteristics. Typically, we want to select covariates that have non-
trivial imbalance and that have non-trivial causal effects on the outcome.   

For the JOBS study, Table 27.3 presents a comparison of those in the treatment 
condition with those in the control condition on baseline variables after eliminating 
individuals in the treatment condition who were non-compliers. If I choose covariates for 
per protocol analyses based on those covariates that show statistically significant 
differences between the treatment compliers and controls, I would select baseline 
depression, age, motivation, and education. However, both age and motivation were 
correlated near zero with posttest depression (r = 0.01 and -0.03, respectively), suggesting 
caution about using these variables as covariates because of potential bias amplification.  

Table 27.3: Treatment Condition Comparisons on Possible Covariates 
                   
 All Randomized 

to Control 
Only Treatment 

Compliers 
   

Baseline depression 2.49 2.42* 
Age 36.17 39.68* 
Motivation 5.32 5.50* 
Education 13.34 13.79* 
Assertiveness 3.03 2.96 
Marital status  0.58 0.65 
Economic hardship 3.47 3.60 
Non-white 0.18 0.15 

 
Note: * treatment compliers different from controls, p < 0.05 
 

Some methodologists question data-driven covariate selection (Austin & Stuart, 
2015). The idea is that significance tests are influenced by sample size and that studies 
with small sample size may mistakenly suggest omitting a covariate that is bias reducing 
due to lack of statistical power. In addition, small effects for many covariates can 
cumulate to create a non-trivial collective effect. Sometimes empirics and theory or past 
research conflict in what they suggest one do. For example, although the proportion of 
non-Whites for treatment compliers and controls were fairly close in the JOBS study 
(0.15 versus 0.18), there is compelling theory and research to suggest that adherence 
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differences may be larger than what was observed for these groups. Reputable 
methodologists differ in their recommendations about how to handle such situations (see 
Myers et al., 2011a, b and Pearl, 2011). One strategy is to perform sensitivity analyses 
with and without the controversial covariates to determine if doing so affects conclusions. 
Hopefully, the results of the analyses will converge but if not, one moves forward one 
way or the other but with caution. 

Some methodologists also caution against covariate control of post-randomization 
variables and state you should restrict the pool of covariates to baseline variables. 
Hesitations about such controls derive from the potential of biasing effects of collider 
covariates (see Chapter 2 and Chapter 11). However it is difficult to anticipate the biases 
that such variables will produce in complex models. In my view, there is nothing 
inherently wrong with using post-randomization controls as long as they are substantively 
appropriate and you empirically explore collider bias issues for covariates that meet 
collider criteria, per Chapter 11. For example, if I want to know the overall per protocol 
effect of a treatment on an outcome, it makes little sense to control a post-randomization 
mediator because the mediator carries with it a mechanism by which the treatment affects 
the outcome. Statistically holding constant such a post randomization mediator would be 
shooting myself in the foot by controlling the very mechanism through which the 
treatment affects the outcome. However, if I seek to answer the question of whether the 
treatment has an effect on the outcome independent of a post-randomization mediator, 
then it makes sense to statistically control that mediator.  

My own preference when making covariate choices is to prioritize theory and past 
research when deciding what covariates to include in a per protocol analysis but I also 
examine the data itself to help me make coherent choices. Again, the idea is to focus on 
covariates that (a) are non-trivially imbalanced when comparing the treatment and control 
conditions after eliminating treatment non-compliers, and that also (b) are causally 
related to the particular dependent variable in the analysis.    

Per Protocol Analysis of the JOBS Intervention 
For the per protocol analysis of the JOBS intervention, I used as covariates the baseline 
measures of depression, education, and economic hardship, all of which were associated 
with posttest depression. I also included non-white status to illustrate programming 
principles for binary covariates. The Mplus syntax for the per protocol analysis is shown 
in Table 27.4. Much of the syntax is already familiar to you based on prior chapters. I 
highlight lines that may be new or that are noteworthy. 
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Table 27.4: Mplus Syntax for Direct Covariate Approach 
 
1. TITLE: EXAMPLE DIRECT COVARIATE PER PROTOCOL ; 
2. DATA: FILE IS c:\mplus\ret\jobs.dat ; 
3. DEFINE: 
4. CENTER depbase educ econ nonwhite (GRANDMEAN) ;  
5. VARIABLE: NAMES ARE depress risk Tx depbase age motivate educ assert  
6. single econ nonwhite x10 c1 c2 tncomply depchang prob; 
7. USEVARIABLES ARE depress Tx depbase educ econ nonwhite ; 
8. USEOBSERVATIONS tncomply EQ 0 ; 
9. ANALYSIS: ESTIMATOR = MLR ; 
10. MODEL: 
11. depress ON Tx depbase educ econ nonwhite ; 
12. OUTPUT: Samp StdYX Mod(All 4) Residual Cinterval Tech4 ; 
 

Line 3 invokes the DEFINE command to transform the covariates. Line 4 mean centers 
each of the covariates and stores the results back into the same variable. Line 8 tells 
Mplus to do the analysis for a subset of the observations, namely those who have a score 
of 0 on the variable called tncomply. This is a variable I created in the input data to 
identify the per protocol sample; individuals with a score of 1 were randomized to the 
treatment condition and failed to comply with the study protocol; individuals with a score 
of 0 were either in the control condition or were in the treatment condition and complied 
with the study protocol. Note that this variable is not listed on the USEVARIABLES 
command because technically, it is not part of the model; it is only used as a screener.  
 The model is just identified so model fit indices are moot. The total sample size 
after non-complier elimination was 350. The core Mplus output is as follows: 

MODEL RESULTS 
  
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.  P-Value 
 
 DEPRESS  ON 
    TX                -0.193      0.080     -2.420      0.016 
    DEPBASE           -0.844      0.135     -6.241      0.000 
    EDUC              -0.026      0.019     -1.400      0.162 
    ECON               0.115      0.047      2.458      0.014 
    NONWHITE          -0.040      0.109     -0.367      0.714 
 
 Intercepts 
    DEPRESS           -0.350      0.059     -5.917      0.000  
 
The per protocol effect of the treatment on depression was estimated to lower depression 
by -0.193 units (MOE = ± 0.16, critical ratio (CR) = 2.42, p < 0.02). The intercept is the 
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mean depression value when all predictors equal 0. Because I mean centered all 
predictors except the treatment condition, the intercept, - 0.350, is the mean depression 
for the control group when each covariate is held constant at its “typical” value. The 
mean depression for the treatment group was -0.350 + (-0.193) = -0.543. You can isolate 
the predicted means and margins of error for any predictor profile of interest using the 
profile analysis methods described throughout prior chapters, beginning in Chapter 6. 
Parenthetically, the unadjusted ITT analysis yielded an effect that equaled -.074, which 
was statistically non-significant (MOE = ±0.15, CR = 0.99, p < 0.32). If people 
participate in the program and adhere to its protocol, the program does indeed tend to 
lower depression. However, if you just offer the program to people in general, there is not 
good evidence that it will make a difference vis-à-vis traditional ITT analysis. As a policy 
maker, how would you act on this information?  
 A variant of the direct covariate approach that you may encounter in the 
randomized trial literature is known as principal stratification, variants of which I 
introduced in Chapter 4. When executed as part of study design and before data are 
collected, stratification requires that you block or create a factor for an anticipated source 
of imbalance and then randomly assign individuals to the treatment and control 
conditions in equal proportions for groups defined by that factor, thereby removing 
imbalance. For per protocol analyses, some researchers perform the blocking after data 
have been collected and then use covariate-like analytic methods to render any residual 
imbalance moot (Rosenberger & Lachin, 2015). Continuous confounds usually are 
divided into strata (e.g., if the prognosticator is age, three age groups might be defined), 
which yields a degree of analytic crudeness because we essentially turn a many-valued 
continuous construct into a crude few-valued one, thereby throwing away potentially 
useful information (see Chapter 3). As well, blocking on many variables can be 
challenging in some contexts. Because I believe there almost always are better 
approaches for per protocol analysis than such stratification, I do not delve into this 
strategy here (see VanderWeele, 2011, 2012). However, I recognize that as an a priori 
sampling strategy and for purposes of addressing moderator questions, stratification has 
positive features. It is just not very strong as a way of addressing per protocol questions 
in the direct covariate approach.  

A weakness of the direct covariate approach is that one must anticipate potential 
sources of imbalance due to protocol infidelity when designing one’s study and then 
obtain measures of those sources/variables so that one can control for them during the 
modeling enterprise. Good trial design requires giving considerable thought to the matter. 
Another weakness of the direct covariate approach is one I mentioned for principal 
stratification, namely that when adherence/compliance is continuous or many-valued, 
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researchers often reduce it to a dichotomy of “compliers” versus “non-compliers” to 
define the per protocol sample, thereby throwing away potentially useful information. 
Nevertheless, the approach is often superior to naïve per protocol analyses. 

Inverse Probability Treatment Weighting 

Inverse probability treatment weighting (IPTW) is a covariate based strategy that uses 
propensity scores. A propensity score is a person’s probability of being in the 
intervention versus control condition given one’s scores on a set of (usually baseline) 
covariates. It reflects one’s propensity to be in one treatment condition or the other based 
on characteristics of the individual and the context. For the JOBS study, it is the predicted 
probability using the per protocol subsample for being in the intervention group as 
derived from a logistic (or probit) regression that regresses the binary per protocol 
treatment dummy variable (1 = in the intervention condition, 0 = in the control condition) 
onto the covariates that you desire to control imbalance on. From Table 27.2, the possible 
predictors in the logit model are baseline depression, age, motivation, education, 
assertiveness, marital status, economic hardship and ethnicity.2 Austin and Stuart (2015) 
suggest not selecting just any variable that shows imbalance for IPTW analysis but 
instead argue that variable selection should be judicious following the same logic I 
described for the direct covariate approach; you select predictors that first and foremost 
have non-trivial imbalance and that non-trivially impact the outcome. One then uses the 
individual-based predicted probabilities that results from the logistic analysis as a 
covariate to statistically adjust for the imbalance in the per protocol analysis. The 
adjustment strategy can use either formal matching between the intervention and control 
groups on the propensity scores, stratification on the propensity scores, direct covariate 
adjustment using the propensity scores, or inverse probability of treatment weighting 
(Austin, 2013). The assumption for each of these methods is that individuals with 
comparable propensity scores have similar baseline profiles on the relevant covariates. 
The idea is that one can work with propensity scores directly rather than the individual 
covariates to reduce imbalance (Rosenbaum & Rubin, 1983). It turns out that this is 
indeed the case but under somewhat restrictive conditions (see King & Nielsen, 2019). 
The advantage of using propensity scores is the reduction of the number of covariate 
dimensions to deal with during the formal modeling of the effect of the treatment on an 
outcome/mediator because the covariates have been reduced to a one-dimensional score. 
From among these different methods, my focus here is on inverse propensity treatment 

 
2 In principle, any appropriate binary regression method can be used to derive the predicted probabilities, including 
methods from machine learning (McCaffrey et al., 2004, 2013). Chapter 15 presents a Bayesian Additive Regression 
Tree method that can handle linear and non-linear functions and is quite flexible.  
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weighting. It tends to perform best relative to the other propensity based methods, but 
there are exceptions.  

IPTW adjusts for measured confounder imbalance using statistical weighting. To 
provide some intuition for this method, consider the traditional formula for the sample 
mean, which is the sum of the scores divided by the sample size. A more general formula 
for the mean can be written that incorporates weights. It is: 

MX  =  Σ wi Xi  /  Σ wi 

where MX is the estimate of the population mean for variable X, w is a weight assigned to 
each individual i, and the summation occurs across individuals. Each individual’s score 
on X is multiplied by his or her “weight value” and the sum of these weighted scores is 
divided by the sum of the weights. Suppose I assign everyone a weight of 1. The sum of 
the weights (the denominator) will equal N (the sample size) and the sum of the weighted 
X scores will be the sum of the X scores. The result is the traditional sample mean. In this 
sense, the traditional formula for a sample mean is a special case of the above 
formulation, namely the case where all the individual weights are 1.0. 

The IPTW approach was first proposed by Robins (1986). Conventional IPTW 
weights for each individual in the treatment condition are set equal to 1.0 divided by the 
propensity score (PS) for that individual, i.e., one divided by the probability of being in 
the intervention condition based on the logistic regression. For individuals in the control 
group, the weight equals 1 divided by (1-PS) or one divided by one minus the probability 
of being in the intervention condition. These weights are then applied to the sample data 
to yield an estimate of the average treatment effect, per protocol (see Robins, 1986). You 
may encounter other weighting schemes in the IPTW approach Greifer & Stuart, 2021) 
but the above is considered standard for traditional per protocol populations/analyses.  

In some scenarios, a few individuals in the intervention group may have propensity 
scores near 0 or a few individuals in the control group may have propensity scores near 1. 
Such cases can make the IPTW analysis unstable. A stabilized inverse probability 
treatment weight is sometimes used to deal with this problem that further multiplies the 
IPTW by the probability of receiving the actual treatment received, i.e., by the overall 
proportion of people in the intervention group when calculating the weight for those in 
the intervention group and the overall proportion of people in the control group when 
calculating the weight for those in the control group (Austin & Stuart, 2015). An 
alternative strategy is to use trimmed or truncated weights in which a threshold is set at 
the two ends of the distribution such that weights that exceed the upper threshold or are 
lower than the lower threshold are set to the value of the upper or lower threshold, 
respectively (Cole & Hernán, 2008; Lee, Lessler & Stuart, 2011). The threshold typically 
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is based on weight quantiles, such as the 1st and 99th quantiles or quantiles that are 
empirically determined (Cole & Hernán, 2008).3 A third strategy is to coarsen the 
propensity scores into a few categories and assign individuals who fall into a given 
category the weighted mean propensity score for that category, or some variant thereof. 
With this approach, if you coarsen too much, it reduces estimation efficiency and can 
create bias by not adequately resolving imbalance. On the other hand, moderate 
coarsening can reduce the impact of extreme weights and introduce weight stability. At 
present, we do not have good guidance on strategies for weight coarsening (Kang & 
Schafer, 2007; Cole & Hernán, 2008). Below, I show you how to use stabilized inverse 
probability treatment weights in Mplus.  
 The IPTW approach assumes (a) that no unmeasured confounders have been 
excluded from the logistic model used to generate the PS scores (often called the 
exchangeability assumption or ignorability) and (b) that the logistic model is correctly 
specified. It also makes what is known as a positivity assumption or common support 
which is that there are both intervention exposed and intervention unexposed individuals 
at every level of the confounders. In practice, it likely is impossible to include all relevant 
confounders when applying the IPTW approach, suggesting that the exchangeability 
assumption is rarely met. The methods I described in Chapter 2 on covariate choice can 
be used to help prioritize covariates to include in IPTW. Some researchers try to 
compensate for exchangeability violations by including a large laundry list of covariates 
in the hopes that relevant ones are included. My discussion of good controls versus bad 
controls vis-à-vis atheoretical partialling in Chapter 2 questions this practice.  
 When using the IPTW method, it is recommended that one perform checks on the 
weighted data to ensure reasonable covariate balance has been achieved. I describe 
methods for doing so below. When evaluating group differences on balance, some 
researchers rely on significance tests (e.g., Rosenbaum & Rubin, 1984); others argue that 
one should eschew significance tests in favor of effect size analysis (Imai, King & Stuart, 
2008). One rationale for not relying on significance tests is that they may have low 
statistical power when working with small N.  
 Both the direct covariate approach and the IPTW approach assume their respective 
models are correctly specified. Some researchers recommend combining the two 
approaches to form what they call doubly robust methods for per protocol analysis 
(Robins et al., 2007; Funk et al., 2011; Wang, Ogburn & Rosenblum, 2019). I describe 

 

3 If you also need to use sampling weights in a complex design, you can multiply the sampling weight and the 
propensity score weight and use the product weight in the analysis; see DuGoff et al., (2014). 
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these methods below.  

Analysis of the JOBS Intervention   

I applied IPTW analyses to the JOBS data for a per protocol analysis using the same data 
and covariates as that for the direct covariate approach. I used stabilized PS-based 
weights for estimating the per protocol ATE. In the sections that follow, I first illustrate 
preliminary analyses that evaluate the achieved covariate balance and the weight 
distributions. I then estimate the ATEPP. 

Preliminary Analyses of the JOBS Intervention. The first set of analyses 
determined how well the weights minimized imbalance between the intervention and 
control groups. In Table 27.3, I found that the unweighted index of education (years of 
education) was statistically significantly larger in the treatment complier group than in 
the control group, 13.79 versus 13.34, a difference of 0.45. The pooled within group 
standard deviation for the two groups was approximately 2.0, yielding a Cohen’s d of 
0.23. Table 27.5 presents the Mplus syntax that compares the treatment complier and 
control group means and variances on education but using the weighted data in a multi-
group model in Mplus (see Chapter 20).  

Table 27.5: Mplus Syntax for Weighted Data for Covariate Balance 
 
1. TITLE: COVARIATE BALANCE ; 
2. DATA: FILE IS c:\mplus\ret\jobs.dat ; 
3. VARIABLE:  
4. NAMES ARE depress risk Tx depbase age motivate 
5. educ assert single econ nonwhite x10 c1 c2 tncomply  
6. depchang prob wght stabwght ; 
7. USEVARIABLES ARE educ stabwght  ; 
8. USEOBSERVATIONS tncomply EQ 0 ; 
9. WEIGHT = stabwght; 
10. GROUPING is Tx (0 = control, 1 = treat) ; 
11. ANALYSIS:  ESTIMATOR = MLR ; 
12. MODEL: 
13. [educ] ; educ ; 
14. MODEL CONTROL: 
15. [educ] (meanc) ; educ (varc) ; 
16. MODEL TREAT: 
17. [educ] (meant) ; educ (vart) ; 
18. MODEL CONSTRAINT: 
19. NEW (MEANDIFF VARRATIO) ; 
20. MEANDIFF = meant - meanc ;  
21. VARRATIO = vart/varc ; 
22. OUTPUT: Samp StdYX Residual Cinterval Tech4 ; 
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The variable prob in the NAMES ARE statement is the predicted probability of being in the 
treatment group that I calculated using a logistic regression before inputting the data into 
Mplus. I also calculated the IPTW weights and stored them  in the variable wght and the 
stabilized version of the weights in the variable stabwght using the first method of 
stabilization described earlier. Line 8 eliminates treatment non-compliers from the 
analysis. Line 9 tells Mplus to do a weighted analysis using stabwght as the weight 
variable. Line 10 identifies the two comparison groups, the treatment and control 
conditions. Line 13 tells Mplus to estimate the weighted means and variances for educ 
for all groups and Lines 14 to 17 also make this request but add labels to each parameter 
using parentheses. These labels are referenced later in the MODEL CONSTRAINT command. 
Lines 18 and 19 ask Mplus to conduct two contrasts. Line 21 tests the weighted mean 
difference between the treatment and control groups and Line 22 calculates a variance 
ratio of the variances of the two groups. If the group distributions are perfectly balanced 
for educ, this ratio should equal 1.0. Here is the core output for this just identified model: 
 
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.   P-Value 
 
Group CONTROL 
 
 Means 
    EDUC              13.562      0.159     85.236      0.000 
 
 Variances 
    EDUC               3.994      0.360     11.089      0.000 
 
Group TREAT 
 
 Means 
    EDUC              13.579      0.157     86.446      0.000 
 
 Variances 
    EDUC               4.359      0.415     10.516      0.000 
 
New/Additional Parameters 
    MEANDIFF           0.016      0.224      0.074      0.941 
    VARRATIO           1.091      0.143      7.630      0.000   

 
The weighted mean years of education is 13.562 for the control group and for the 

treatment group it is 13.579, a difference of 0.016. From the New/Additional 
Parameters section of the output, the margin of error for the difference is 0.45, the 
critical ratio (CR) is 0.07, and the p value is < 0.95. The pooled within group standard 
deviation is the square root of the weighted average of the two variances (3.99 and 4.36) 
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which is approximately 2.05. This yields a Cohen’s d of  0.016/2.05 = 0.01. The weighted 
group mean difference on this covariate seem trivial and affirms the use of the IPTW 
weights. McCaffrey et al. (2013) suggest that standardized mean differences less than 
0.20 for IPTW propensity modeling is reasonable, but this is somewhat arbitrary. 
 The variance ratio of the two weighted variances, 4.36 and 3.99, was 1.09. From the  
confidence interval section of the output, the 95% CI was 0.81 to 1.37.4 The variances in 
the two groups seem reasonably close, as are the standard deviations (2.09 and 2.00). I 
obtained comparable results for the other covariates when I evaluated them.  
 If the covariate is binary, I can evaluate balance using the syntax in Table 27.6 that 
uses a single group solution. 

Table 27.6: Mplus Syntax for Weighted Data for Binary Covariate Balance 
 
1. TITLE: BINARY COVARIATE BALANCE ; 
2. DATA: FILE IS c:\mplus\ret\jobs.dat ; 
3. VARIABLE:  
4. NAMES ARE depress risk Tx depbase age motivate 
5.  educ assert single econ nonwhite x10 c1 c2 tncomply  
6.  depchang prob wght stabwght; 
7. CATEGORICAL ARE nonwhite ; 
8. USEVARIABLES ARE nonwhite Tx stabwght  ; 
9. USEOBSERVATIONS tncomply EQ 0 ; 
10. WEIGHT = stabwght; 
11. ANALYSIS:  ESTIMATOR = MLR ; 
12. MODEL: 
13. nonwhite ON Tx (p) ; 
14. [nonwhite$1] (a) ; 
15. MODEL CONSTRAINT: 
16. NEW (PTREAT PCNTRL DIFF) ; 
17. PTREAT = exp(-a+p*1)/(1 + exp(-a+p*1)) ; 
18. PCNTRL = exp(-a+p*0)/(1 + exp(-a+p*0)) ; 
19. DIFF = PTREAT - PCNTRL ; 
20. OUTPUT: Samp StdYX Residual Cinterval Tech4 ; 

 
Line 7 defines the target variable as binary using the CATEGORICAL command. The use of 
MLR on Line 11 tells Mplus to analyze the data using logistic regression. On Lines 13 and 
14, I label the logit coefficient (p) and the threshold (a), with the latter representing the  
intercept of the logit equation if it is multiplied by -1 (see Chapter 12). I use the MODEL 
CONSTRAINT commands to calculate the weighted proportion of cases that are non-white 
in the treatment group (PTREAT) and the control group (PCNTRL) and the difference 
between the proportions (DIFF). I convert the predicted log odds to odds and then convert 

 
4 For variance ratios, confidence intervals can be asymmetric, so bootstrapping might be preferable in this case.  
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these odds to probabilities (see Chapter 5). Here is the core output: 
 
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.  P-Value 
 
NONWHITE   ON 
    TX                -0.002      0.292     -0.006      0.995 
 
 Thresholds 
    NONWHITE$1         1.586      0.205      7.731      0.000 
New/Additional Parameters 
    PTREAT             0.170      0.029      5.783      0.000 
    PCNTRL             0.170      0.029      5.874      0.000 
    DIFF               0.000      0.041     -0.006      0.995 

 
The weighted proportion of non-whites in the intervention group is 0.170 and in the 
control group it is 0.170, a trivial difference (difference = -0.001, CR = 0.006, p < 0.996).  
 As a further check, I also examined the distribution of the stabilized weights. Cole 
and Hernán (2008) note that stabilized weights that have a mean near 1.0 and a small 
standard deviation tend to yield smaller standard errors in the final model. Weight 
variability also can help you choose between different models for generating the PS 
probabilities; the model that produces the lowest standard deviation of weights might be 
preferable, although how well the algorithm balances the covariates also should be 
considered. If the stabilized weights are highly variable, this might give you pause about 
IPTW because it suggests the underlying assumptions may be questionable. For the JOBS 
data, the mean stabilized weight was 0.99, SD= 0.18. The minimum/maximum values 
were 0.66 and 1.61. These results are reasonable.  

Per Protocol Analysis of the JOBS Intervention. I next performed an IPTW 
analysis on the per protocol sample using the Mplus syntax in Table 27.7.  

Table 27.7: Mplus Syntax for IPTW Per Protocol Analysis 
 
1. TITLE: PER PROTOCOL IPTW ANALYSIS ; 
2. DATA: FILE IS c:\mplus\ret\jobs.dat ; 
3. VARIABLE:  
4. NAMES ARE depress risk Tx depbase age motivate 
5. educ assert single econ nonwhite x10 c1 c2 tncomply  
6. depchang prob wght stabwght; 
7. USEVARIABLES ARE depress Tx stabwght  ; 
10. USEOBSERVATIONS TNCOMPLY eq 0 ; 
11. WEIGHT = stabwght; 
12. ANALYSIS:  ESTIMATOR = MLR ; 
13. MODEL: 
14.  depress ON Tx ; 
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15. OUTPUT: Samp StdYX Mod(All 4) Residual Cinterval Tech4 ; 
 
Here is the core output for this just-identified model: 
 
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.  P-Value 
 
 DEPRESS  ON 
    TX                -0.190      0.087     -2.179      0.029 
 
 Intercepts 
    DEPRESS           -0.341      0.067     -5.056      0.000 

 
The per protocol effect of the treatment on depression was estimated to lower depression 
by -0.190 units (MOE = ± 0.17, critical ratio (CR) = 2.18, p < 0.03). The intercept is the 
mean depression value when all predictors equal 0 and it estimates the mean depression 
for the control group, -0.341. The mean depression for the treatment group was -0.341 +(-
.190) = -0.531. These results closely align with those of the direct covariate approach. 

Earlier I mentioned the doubly robust strategy to per protocol analysis that 
combines the direct covariate approach with the IPTW approach. There are several 
variants of this method. One early strategy was to use IPTW but to also include the 
covariates from the direct covariate approach in the model analysis if the covariate 
showed non-trivial imbalance in imbalance diagnostics after weighting. A newer variant 
has been proposed by Lunceford and Davidian (2004; see also Funk et al., 2011). Here 
are the steps to execute after isolating the per protocol sample: 

Step 1: Fit a logistic regression model predicting the treatment arm from the desired 
covariates to yield a propensity score for each individual, PS, per usual IPTW methods.  

Step 2: Regress the outcome, Y, onto the covariates for the intervention group only. Use 
the resulting equation to obtain a predicted outcome value for each member of the entire 
sample. I call this predicted value for a given individual ŶTREAT.  

Step 3: Regress the outcome on the covariates for the control group only. Use the 
resulting equation to obtain predicted values for each member of the entire sample. I call 
this predicted value for a given individual ŶCNTRL.  

Step 4a: For each individual in the intervention, define DR1 as Y/PS – [ŶTREAT*(1-
PS)]/PS and DR0 as ŶCNTRL  

Step 4b: For each individual in the control group, define DR1 as ŶTREAT and DR0 as 
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Y/(1-PS) – [ŶCNTRL*PS]/(1-PS)  

Step 5: Calculate the difference score DR1-DR0 and run the Mplus syntax in Table 27.8. 

Table 27.8: Mplus Syntax for Doubly Robust Per Protocol Analysis 
 
1. TITLE: DOUBLE ROBUST ANALYSIS ; 
2. DATA: FILE IS c:\mplus\ret\jobs.dat ; 
3. DEFINE: 
4. Y0=1.593 + (-0.922)*depbase + (-0.011)*educ +  
5. (0.135)*econ + (0.004)*nonwhite ; 
6. Y1=1.578 + (-0.751)*depbase + (-0.040)*educ +  
7. (0.081)*econ + (-0.098)*nonwhite ; 
8. IF (Tx EQ 1) THEN DR0 = Y0 ; 
9. IF (Tx EQ 1) THEN DR1 = depress/prob - (Y1*(1-prob))/prob ; 
10. IF (Tx EQ 0) THEN DR1 = Y1 ; 
11. IF (Tx EQ 0) THEN DR0 = depress/(1-prob) - (Y0*(prob))/(1-prob) ; 
12. VARIABLE:  
13. NAMES ARE depress risk Tx depbase age motivate 
14. educ assert single econ nonwhite x10 c1 c2 tncomply  
15. depchang prob wght stabwght; 
16. USEVARIABLES ARE DR1 DR0  ; 
17. USEOBSERVATIONS TNCOMPLY eq 0 ; 
18. ANALYSIS:  ESTIMATOR = MLR ; 
19. MODEL: 
20.    [DR1] (mtreat)  ; 
21.    [DR0] (mcntrl)  ; 
22.    DR1 WITH DR0  ; 
23. MODEL CONSTRAINT: 
24. NEW (DIFF) ; 
25. DIFF = mtreat-mcntrl ; 
21. OUTPUT: Samp StdYX Residual Cinterval Tech4 ; 
 
Lines 3 to 11 use the DEFINE command to execute steps 1 to 4 of the doubly robust 
method. Line 21 asks Mplus to estimate the mean of DR0 and DR1 and models the 
covariance between them (and by default their variances). The MODEL CONSTRAINT 
command calculates the mean difference between DR1 and DR0 using the label statements. 
Here is the core output for this just identified model: 
 
                                                     Two-Tailed 
                    Estimate       S.E.  Est./S.E.   P-Value 
 
 Means 
    DR0               -0.344      0.064     -5.365      0.000 
    DR1               -0.534      0.053     -9.990      0.000 
 Variances 
    DR0                1.439      0.264      5.453      0.000 
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    DR1                1.000      0.142      7.033      0.000 
 
New/Additional Parameters 
    DIFF              -0.190      0.081     -2.355      0.019 

 
 The estimated per protocol mean depression at the posttest was -0.534 ±0.11 and for 
the control group it was -0.344 ±0.13. The difference between the means was -0.190 
±0.16, CR = 2.36, p < 0.02. 

I now offer commentary on this latter version of the doubly robust test. One 
advantage of the test over other variants of the double robust strategy is that it allows for 
interaction effects between the covariates and the treatment condition when deriving 
predicted Y scores. This is because a separate equation is used to construct ŶTREAT and 
ŶCNTRL (see steps 2 and 3), hence the coefficients can differ for the intervention and 
control groups. At a  more general level, the doubly robust method uses two models to 
correct for confounds, (a) one that models selection into the treatment condition and (b) 
one that models the relationship of confounds to the outcome per se. When both of these 
models are correctly specified, the doubly robust estimator is semiparametric efficient. 
When both the exposure and outcome models are non-trivially misspecified, the doubly 
robust estimate will be biased, making the approach of limited value; two wrong models 
do not make a right. In such cases, it is unclear if it’s better to use a single moderately 
misspecified model in the context of traditional IPTW analysis or the doubly robust 
model. Finally, if one of the models is correctly specified but the other is not, the doubly 
robust estimator often yields unbiased coefficients. However, the standard errors can be 
misbehaved in some contexts, especially with small N (see Funk et al., 2011).  

The Mplus program in Table 27.8 used a robust maximum likelihood standard error 
based on Li and Shen (2020, see their supplement). Several researchers have found that 
bootstrapped standard errors perform better than theoretically derived standard errors 
(Funk et al., 2011) but more research is needed on the best form of bootstrapping to use. I 
tend to rely on the doubly robust method primarily as a sensitivity check because it can 
be difficult to fully implement in models with mediation and moderation (see below). I 
discuss other forms of double robust estimation below in the context of G estimation and 
targeted maximum likelihood estimation. 

As a technical aside, the traditional IPTW approach and the direct covariate 
approach are reasonably (but not perfectly) aligned for ATEs when the outcome in a 
randomized trial is continuous. For randomized trials where the outcome is binary, a 
count, or some other form that invokes a non-linear model, estimand correspondence 
between the approaches can break down because of the issue of noncollapsibility 
discussed in Chapter 12. For elaboration of this point and an application of Mplus to a 
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binary outcome using the IPTW approach, see the document IPTW Analysis of a Binary 
Outcome on my webpage.  

In sum, for the JOBS data, each of the IPTW methods yielded similar per protocol 
conclusions and these conclusions mapped closely onto the conclusions from the direct 
covariate approach. This is not to say such correspondence always will occur. However, 
the fact that it does so increases our confidence in the result. For additional methods that 
use propensity scores, see the section on BART modeling in Chapter 15.  

CACE and Instrumental Variable Analysis 

The CACE framework evaluates per protocol effects by identifying individuals in the 
control group who likely would be intervention compliers had they been assigned to the 
intervention condition. The ATECACE is the difference between the average outcome for 
these individuals as compared to individuals who were actually assigned to the 
intervention condition and who complied with the intervention protocol. Many 
researchers believe this is the best estimand for making inferences about intervention 
efficacy because it controls for compliance confounds but in an innovative way. The 
challenge for CACE analysis is identifying likely intervention compliers from the control 
group had they been assigned to the intervention group. If we had a direct measure of this 
construct for control group individuals, the analysis would be straightforward; but usually 
we do not. CACE strategies use indirect methods to obtain the estimate of ATECACE.  

Several approaches have evolved for estimating the CACE average treatment effect 
(Little & Rubin, 2000; Dunn, Maracy & Tomenson, 2005). One approach uses 
instrumental variables (Angrist & Imbens, 1995; Angrist & Pischke, 2008), others are 
based in maximum likelihood analysis (Dunn et al., 2005; Sobel & Muthén, 2012), and 
still others are tied to Bayesian modeling (Imbens & Rubin, 1997). I focus here on 
maximum likelihood methods that are grounded in mixture modeling (Sobel & Muthén, 
2012). All of the approaches make assumptions in order for the underlying mathematics 
to work. The assumptions are reasonable in many intervention contexts but not all such 
contexts. Most of the assumptions deal with the adequacy of the random assignment to 
the intervention versus control condition and to different forms of contamination that can 
arise once the study has begun. Let me discuss the latter phenomena first.  

Angrist et al. (1996) distinguish four types of people in a randomized trial. 
Compliers are people who follow whatever their treatment assignment is - if assigned to 
the intervention condition, they do the intervention per protocol; if assigned to the control 
condition, they don’t do the intervention. These individuals are disposed to fully comply 
with whatever they are told to do in the study. Always takers are people who receive or 
seek out the intervention regardless of their treatment assignment - if they are assigned to 
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the intervention condition, they do the intervention; if they are assigned to the control 
condition, they still manage to do the intervention by one means or another. Never takers 
are people who do not receive nor seek out the intervention regardless of condition 
assignment - if they are assigned to the intervention condition, they don’t do the 
intervention; if they are assigned to the control condition, they also don’t do the 
intervention. Finally, defiers are people who do the opposite of whatever their treatment 
assignment is - if assigned to the intervention condition, they don’t do the intervention; if 
assigned to the control condition, they do the intervention. Although there are some 
randomized trials where all four types of such contamination occur, randomized trials 
usually are structured so that always takers, never takers, and defiers are minimized.  

If one assumes there are no defiers in a study (a reasonable assumption), Angrist et 
al. (1996) have shown that with proper random assignment, the intent to treat average 
treatment effect that researchers often focus on can be decomposed into the sum of three 
weighted average treatment effects representing the above groups: 

ATEITT = πC ATECACE + πA ATEALWAYS-TAKERS + πN ATENEVER-TAKERS     [27.2] 

where πC is the proportion of people who are compliers, πA is the proportion of people 
who are always takers, and πN = the proportion of people who are never takers, and the 
ATE terms are the average treatment effects for the three different subgroups. The goal is 
to isolate ATECACE., namely the effect of the treatment for people who are disposed to 
compliance. The idea is that by equating the groups on the tendency to comply, then 
differences between them must be due to the treatment condition they were assigned to. 
To make this work, researchers must make some assumptions. First, we need to assume 
that for always takers, the effect of being assigned to either the intervention or the control 
condition does not, on average, affect their outcome. This is reasonable because, in 
theory, always takers are exposed to the intervention regardless of the treatment condition 
they are assigned to. As such, the mean outcome difference between the treatment and 
control conditions for just these individuals should be zero, or ATEALWAYS-TAKERS = 0. 
This assumption results in the ATEALWAYS-TAKERS term dropping out of Equation 27.2.  

The same is true for ATENEVER-TAKERS. These individuals are not exposed to the 
intervention regardless of the treatment condition they are assigned to. As such, the mean 
outcome difference or value of ATENEVER-TAKERS also should be zero because they 
essentially have the same lack of intervention exposure no matter which treatment 
condition they are exposed to.  

The result of these two assumptions about ATEALWAYS-TAKERS and ATENEVER-TAKERS 
is that these ATEs drop out of Equation 27.1, yielding: 
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ATEITT = πC ATECACE + 0 + 0 =  πC ATECACE 

If we divide both sides of the above equation by πC, we isolate the value for ATECACE, 
which is what we seek: 

ATEITT / πC = ATECACE           [27.3] 

The ATECACE is simply the classic ATEITT (which is straightforward to compute given no 
missing data) divided by the proportion of individuals who are disposed towards 
compliance in the study.  

The key to CACE analysis, then, is to obtain a reasonable estimate of πC. It turns 
out that there are non-trivial technicalities in doing so and I do not want to get sidetracked 
into them here (see Angrist et al., 1996, for the details). The main point of the above 
exercise is to illustrate that coupled with some working assumptions, estimation of the 
ATECACE is viable.  

In practice, calculating significance tests and confidence intervals for ATECACE can 
be complicated. I show you here a mixture modeling approach. The mathematics of the 
mixture modeling strategy are described in Jo et al. (2008) and Sobel and Muthén (2012) 
and I leave the mathematical details for you to consider in those references. Here, I focus 
more on the conceptual foundations and the pragmatics of estimation.  

The conceptual bases of mixture based CACE modeling is captured in the influence 
diagram in Figure 27.3. To keep things simple, I omit disturbance terms but they are part 
of the model, as appropriate. Exogenous variables also are assumed to be correlated.  
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FIGURE 27.3. The CACE Model  
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The path for the overall average treatment effect that subtracts the control group 
mean from the intervention group mean is path a. The strength of this path is moderated 
by a latent variable called “complier class” (path b), which, has two classes or groups of 
people, (a) people who are disposed towards compliance or, more simply, “compliers” 
and (b) people who are disposed towards non-compliance or, more simply, “non-
compliers.” The effect of the treatment condition (intervention versus control) on 
outcome for people in the non-complier class/group is assumed to be zero because by 
grossly non-complying with the intervention, no individuals assigned to the intervention 
condition in this class are exposed to the intervention, hence it cannot have an effect on 
the outcome. For people in the complier class, by contrast, the intervention can have an 
effect so the ATE for this group or class is the ATECACE.  

Technically, the complier class latent variable is unmeasured but it turns out we 
have information in the data set that can help us classify individuals into the two classes. 
These are called training variables and are used by Mplus to make informed 
classifications of the individuals into the two groups. For example, in the JOBS study, we 
have information for people in the intervention condition about whether they complied 
(showed up to the seminars) or failed to comply with the intervention protocol and this 
information can be used as “training data” when forming the complier class latent 
variable. The training data are omitted from Figure 27.3, and I will explain how we use it 
within Mplus shortly.  

The causal model also includes a set of variables, usually measured at baseline, that 
are thought to impact the complier class that an individual is in (path c). By default, 
Mplus assumes a logistic function that regresses the binary complier class variable onto 
its hypothesized determinants using logistic regression. The path coefficients associated 
with path c are of interest because they give us insights into the type of people who 
comply or do not comply with protocols. Note that if it is appropriate, a given 
determinant of the complier class can be modeled to also have a direct effect on the 
outcome (see path e), but there are some cases where doing so will result in an under-
identified model.  

Table 27.9 presents the Mplus syntax for a CACE model as applied to the JOBS 
data. The syntax is inefficient and does not make use of Mplus defaults but it is written to 
allow me to make certain programming points. The full data set of 502 cases is used 
without “selecting out” per protocol cases as I did with the direct covariate and IPTW 
approaches.  

Table 27.9: Mplus Syntax for CACE Analysis 
 
1. TITLE: CACE ANALYSIS ; 
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2. DATA: FILE IS c:\mplus\ret\jobs.dat ; 
3. VARIABLE: NAMES ARE depress risk Tx depbase age motivate 
4. educ assert single econ nonwhite x10 c1 c2 tncomply  
5. depchang prob; 
6. USEVARIABLES ARE depress Tx depbase age motivate educ 
7.  assert single econ nonwhite c1 c2; 
8. CLASSES = c(2);      !specify number of classes 
9. TRAINING = c1 c2;    !specify training variables 
10. ANALYSIS: TYPE = MIXTURE; MITERATIONS = 30; 
11. MODEL: 
12. %OVERALL% 
13. depress ON Tx depbase educ econ nonwhite; 
14. c#1 ON age educ motivate econ assert single nonwhite depbase ; 
15. %c#1%   !c#1 is the complier class 
16. depress ON Tx depbase educ econ nonwhite (c1p1 p2 p3 p4 p5) ; 
17. [depress] (c1int) ; 
18. depress (dvar) ; 
19. %c#2%  !c#2 is the noncomplier class 
20. depress ON Tx@0 depbase educ econ nonwhite (c2p1 p2 p3 p4 p5) ; 
21. [depress] (c2int) ; 
22. depress (dvar) ; 
23. OUTPUT: Samp StdYX Mod(All 4) Residual Cinterval Tech4 ; 

 
Line 8 is the CLASSES subcommand and tells Mplus the label you will use for the 

classes and the number of classes. The number of classes is contained in parentheses (in 
this case, 2). I use the letter c as the label for each class, but you can use a different label 
if you want. The label occurs just before (2). Mplus will add a # followed by a 
sequential integer to the label to give a unique name to each class. In this case, the classes 
are c#1 and c#2. I conceptualize in the program c#1 as the complier class and c#2 as the 
non-complier class and I write the rest of the syntax accordingly.  

Line 9 specifies the training variables in the input data set. The number of training 
variables must equal the number of classes. Because there are two classes in the current 
example, I have two training variables. The training variables are variables I created in 
the input data file. They are called c1 and c2 (see the NAMES subcommand) but I can use 
other labels if I want. The variable c1 refers to the “complier” class and the variable c2 
refers to the non-complier class. Each person receives a score on c1 and a score on c2 in 
the data set, either a 1 or a zero. A zero means the person is not allowed to be in the class; 
a one means the person could, in principle, be in the class. Individuals in the intervention 
group have a known class based on their complier/adherence score. A person in the 
intervention group who is a “complier” receives a 1 on c1 and a 0 on c2. A person in the 
intervention group who is a “non-complier” receives a 0 on c1 and a 1 on c2. A person in 
the control group could be in the complier class or s/he could be in the non-complier 
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class. As such, all individuals in the control group are assigned a 1 on c1 and a 1 on c2.  
Line 10 tells Mplus to conduct a mixture model and MITERATIONS is the number of 

iterations to use in the underlying EM algorithm. In the MODEL section starting on Line 
11, I specify an overall model that applies to each class/group (in the %OVERALL section) 
and then I specify deviations from the overall model within each class, first the c#1 or 
complier class on Line 15 and then the c#2 non-complier class on Line 19. On Line 13 in 
the %OVERALL section, I tell Mplus to regress depression onto the treatment condition and 
its associated covariates. On Line 14, I tell Mplus to conduct a binary logistic regression 
that regresses the complier class variable onto the predictors of class membership. By 
specifying c#1 as the dependent variable, it will be re-scored 1 and c#2 will be re-scored 
0 for the logistic analysis.  

Within the %c#1% model section on Line 16, I restate the within class equation from 
the %OVERALL section but I add labels to each of the path coefficients. I also provide 
labels to the intercept of the equation (Line 17) and the disturbance/residual variance for 
depression (Line 18). I do the same for the c#2 model on Lines 19 to 22. Note that by 
using the same labels to refer to a given parameter in each class I impose an equality 
constraint for the parameter across the classes. The equality constraints I imposed are 
commonly used in CACE analysis but if you want, you can remove one or more of them 
(but be careful of under-identification). Note also that I fixed the effect of the treatment 
dummy variable at 0 in the non-complier class, consistent with my earlier discussion of 
CACE assumptions. The disturbance/residual variances are set to be equal across the 
classes, but this assumption also can be relaxed.  

The output provides information about model fit as well as parameter estimates. I 
consider the model fit results and ancillary parameter information in the Appendix. Here 
is the core output for the ATECACE, taken from the MODEL RESULTS section:   

 
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.   P-Value 
 
Latent Class 1 
 
 DEPRESS    ON 
    TX                -0.353      0.131     -2.689      0.007 
    DEPBASE           -0.908      0.105     -8.655      0.000 
    EDUC              -0.029      0.017     -1.765      0.078 
    ECON               0.121      0.039      3.120      0.002 
    NONWHITE           0.076      0.088      0.864      0.388 
 
 Intercepts 
    DEPRESS            1.996      0.385      5.183      0.000 
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 Residual Variances 
    DEPRESS            0.500      0.036     13.906      0.000 
 
Latent Class 2 
 
 DEPRESS    ON 
    TX                 0.000      0.000    999.000    999.000 
    DEPBASE           -0.908      0.105     -8.655      0.000 
    EDUC              -0.029      0.017     -1.765      0.078 
    ECON               0.121      0.039      3.120      0.002 
    NONWHITE           0.076      0.088      0.864      0.388 
  
 Intercepts 
    DEPRESS            1.705      0.368      4.639      0.000 
 
 Residual Variances 
    DEPRESS            0.500      0.036     13.906      0.000 

The ATECACE was -0.353 ±0.26, CR = 2.69, p < 0.01. Note that this estimate differs from 
those of the direct covariate approach and the IPTW approach described earlier because it 
represents a different estimand. The direct covariate and IPTW approaches estimate the 
per protocol estimand. The CACE approach, by contrast, estimates the average difference 
between intervention compliers and control individuals who would have complied with 
the intervention protocol had they been assigned to the intervention group. Note also that 
the treatment effect for non-compliers in the section Latent Class 2 equals zero 
because I fixed it to be so based on CACE assumptions.  

The output does not include the estimated posttest mean depression values within 
the complier class for the intervention and control groups. I can obtain these by re-
running the syntax but adding the following MODEL CONSTRAINT commands just before 
Line 23 (I assume you are familiar with the use of MODEL CONSTRAINT commands from 
prior Chapters): 
 
22a. MODEL CONSTRAINT: 
22b. NEW(MTREAT MCONTROL) ; 
22c. MTREAT = c1int+c1p1*1+p2*2.45+p3*13.57+p4*3.54+p5*.1657 ; 
22d. MCONTROL = c1int+c1p1*0+p2*2.45+p3*13.57+p4*3.54+p5*.1657 ; 

 

Line 22c calculates the predicted mean for the complier intervention group and Line 22d 
does so for the complier control group. All terms refer to labels used in the complier class 
linear equation for depression. The predicted mean is the sum of the intercept plus the 
five path coefficients (p1 through p5) multiplied by a constant of my choosing. The 
constant represents the profile score on the variable the path label is associated with. In 
the current case, I multiplied each predictor/covariate by its grand mean value for the 
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total sample, i.e., the mean of the predictor calculated across all individuals. For example, 
the mean number of years of education across all 502 individuals was 13.57. Note for the 
model treatment condition coefficient (labeled c1p1), I multiplied it by 1 for the 
intervention group and 0 for the control group, consistent with the dummy variable that 
represented it. You, of course, can calculate the predicted means for any predictor profile 
using the methods described in previous chapters (see, for example, Chapters 6 and 11). 
Here is the output for the above MODEL CONSTRAINT commands: 
 
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.   P-Value 
 
New/Additional Parameters 
    MTREAT            -0.542      0.052    -10.472      0.000 
    MCONTROL          -0.189      0.119     -1.586      0.113 

 
The predicted mean depression for compliers in the intervention group was -0.542 ±0.10 
and in the control group it was -0.189 ±0.24. 
 The output from the first run also reports the estimated proportion of people in each 
of the two complier classes, c#1 and c#2. Here is the output: 
 
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES 
BASED ON THE ESTIMATED MODEL 
 
    Latent 
   Classes 
 
       1        271.06984          0.53998 
       2        230.93016          0.46002    

  
The estimated proportion of people in the complier class was 0.54 and in the non-
complier class it was 0.46.  

Finally, the output for the first run I performed contains information about the 
predictors of complier status (class c#1 versus class c#2). Here is the logistic output: 

 
Categorical Latent Variables 
 
 C#1        ON 
    AGE                0.079      0.015      5.220      0.000 
    EDUC               0.308      0.068      4.499      0.000 
    MOTIVATE           0.672      0.157      4.278      0.000 
    ECON              -0.161      0.150     -1.072      0.284 
    ASSERT            -0.378      0.145     -2.605      0.009 
    SINGLE             0.514      0.280      1.838      0.066 
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    NONWHITE          -0.531      0.323     -1.644      0.100 
    DEPBASE           -0.424      0.415     -1.025      0.305 
 
 Intercepts 
    C#1               -7.812      1.839     -4.244      0.000 

 
and here are the relevant odds ratios: 
 
LOGISTIC REGRESSION ODDS RATIO RESULTS 
 
                                                95% C.I. 
                    Estimate       S.E. Lower 2.5% Upper 2.5% 
 
 C#1      ON 
    AGE                1.082      0.016      1.051      1.115 
    EDUC               1.360      0.093      1.190      1.556 
    MOTIVATE           1.958      0.308      1.439      2.664 
    ECON               0.851      0.128      0.634      1.142 
    ASSERT             0.685      0.099      0.516      0.911 
    SINGLE             1.673      0.469      0.966      2.896 
    NONWHITE           0.588      0.190      0.312      1.107 
    DEPBASE            0.654      0.272      0.290      1.477 

 
Statistically significant predictors of complier versus non-complier status included age, 
education, motivation, and assertiveness. Compliers tended to be older, more educated, 
more highly motivated to secure re-employment, and more assertive. I show in the 
Appendix how you can use the MODEL CONSTRAINT command to conduct profile analyses 
using probabilities in a logistic model, following guidelines outlined in Chapter 12.  
 The CACE based Mplus program offers much flexibility. As noted, applications 
typically impose equality constraints on the path coefficients across the classes vis-à-vis 
the use of the common labels p1 through p5 in Table 27.9 for both the complier and non-
complier classes. This restriction can be lifted for any given path by using a different 
label for the same path across classes. I might change the label (p3) on Lines 16 and 20 
to read c1p3 and c2p3 so they have different labels which would remove the equality 
constraint for them. Note that the disturbance variances also have an across class equality 
constraint. This also can be removed by using different labels for it in the two classes.  

Some researchers feel that CACE estimands are the most appropriate estimands for 
evaluating treatment efficacy. Other researchers believe they are of limited utility because 
people who comply to a treatment are not necessarily the same as people who are 
treatment eligible. The CACE estimate, the argument goes, is thereby limited in terms of 
its generalizability (Marbach & Hangartner, 2020). In my view, most per protocol 
estimands focus on hypothetical populations (and this also is true of ITT estimands) and 
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issues of generalizability and applicability to different subgroups ultimately must be 
addressed empirically. For interesting extensions and applications of the CACE method, 
see Jo (2000a, b; Jo, Asparouhov & Muthén, 2008; Jo, Ginexi &  Ialongo, 2010), Sobel & 
Muthén (2012), Stuart, Perry, Le, & Ialongo (2008), Peugh et al. (2017), Hesser et al., 
(2017), Hesser (2020), and Ashworth et al. (2020).  
 
G Computation and Targeted Maximum Likelihood Estimation 

Another modern approach for estimating per protocol efficacy is known as G 
computation or G estimation. The approach has been used less frequently than the 
approaches I have discussed, but it is gaining in popularity. After describing G 
computation, I consider an extension of it known as targeted maximum likelihood 
estimation.  
 There are many forms of G computation ranging from fairly simple parametric 
modeling with an outcome measured at a single time point to rather complex structural 
nested models (SNMs) that involve multiple observations over time with repeated 
administration of the treatment, such as cancer trials of responses to chemotherapy 
continuously delivered over periods of months with efficacy assessments made after each 
administration.5 In this section, I consider the most elementary forms of parametric G 
estimation to give you an intuitive feel of its logic (Snowden, Rose  & Mortimer, 2011; 
Vansteelandt & Keiding, 2011).  
 In simple parametric G-computation, the first step is to isolate the per protocol 
sample and then to fit a regression model that predicts the outcome from the treatment 
condition and the covariates that one believes should be controlled to deal with 
confounds that undermine per protocol inferences, much like the direct covariate 
approach. This first step regression model is called the Q model. It does not have to take 
the form of a linear model but it often does; recent applications sometimes use machine 
learning algorithms to assist predictor selection, but I have reservations about such 
strategies because of their atheoretical nature, as noted earlier.   

Once the Q model is estimated using the per protocol sample, the model is then 
used to generate counterfactual or potential outcome values for each individual as a 
function of the two treatment conditions. For example, a “potential outcome” value is 
generated for the first individual under the assumption the individual is in the 
intervention group and then another “potential outcome” value is generated for the same 
individual under the assumption s/he is in the control group. This is accomplished using 
methods similar to the calculation of average marginal effects for a dummy predictor that 

 
5 Some investigators view inverse probability weighting as a form of G computation, for reasons I describe shortly. 
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I described in Chapters 5 and 12. In the JOBS data, the regression equation (Q model) 
predicting depression from the dummy coded treatment condition (0 = control group, 1 = 
intervention group) and the covariates was 

Depress = 1.674 + -.193 Tx + -.844 Depbase + -.026 Educ + .115 Econ + -.040 Nonwhite 

For the first individual, I calculate that person’s predicted depression score by 
substituting in that person’s scores into the above equation on each of the covariates but I 
assign a score of 1 to the treatment condition variable, Tx, no matter what condition the 
person was in. This yields the predicted score for that person as if the person had been 
exposed to the intervention. It is one of the “possible outcomes” the person could have. I 
then repeat this process for the same individual but now I assign a 0 to Tx no matter what 
condition the person was in. This yields the predicted score for that person as if the 
person had not been exposed to the intervention. It is the other “possible outcome” for the 
person. The difference between the two calculated possible outcomes is the marginal 
effect of the intervention on depression for that particular person. I repeat this process 
for every case/person in the sample, calculating an individualized marginal effect for 
each one. Finally, I compute the average of these individualized marginal effects across 
all individuals. The result is a sample estimate of the per protocol average treatment 
effect.  

If I use this method I am, in essence, comparing two populations, one population in 
which every person has been exposed to the intervention as compared to a population in 
which these same people have not been exposed to the intervention. By definition, each 
population has the same distribution of values on the covariates or other predictors 
because, after all, they are the same individuals in both populations. Given that the only 
difference between the two populations is their “exposure” to the intervention, the 
intervention must be the source of their mean outcome differences. In the JOBS data, the 
estimated ATEPP using G computation was -0.193 ±0.16. When the outcome is binary, the 
Q model can take the form of a logit, probit or modified linear probability model and the 
two potential outcomes for a given individual are operationalized using predicted 
probabilities for each individual based on the Q model.  

Calculating the estimated standard error, p values, and confidence intervals for 
ATEPP in G computation is not straightforward and one usually resorts to bootstrapping 
to do so. I provide a program on my website called G computation that does the 
calculations for either binary, continuous, or count outcomes. The video associated with 
the program provides examples with binary and continuous outcomes. 

There is a subtle difference in the way G computation conceptualizes average 
treatment effects compared to how traditional regression does in the direct covariate 
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approach. The direct covariate approach uses a conditional regression model. In the JOBS 
study, the per protocol equation predicts depression from the following equation: 

Depress = a + b1 Tx + b2 Depbase + b3 Educ + b4 Econ + b5 Nonwhite 

The estimated average treatment effect is b1, which is the mean depression difference 
between the intervention and control groups conditional on values of  the other predictors 
being held constant at a specific set of values (such as Educ = 13, Nonwhite = 1, and so 
on). In a linear main effect model with a continuous outcome such as the above, it turns 
out the value of b1 will be the same for any set of predictor profile values defined by the 
other predictors. In G estimation, by contrast, the reported average treatment effect is the 
mean difference between the intervention and control potential outcomes calculated 
across the distributions of the other predictors rather than at specific values of those 
predictors. The G computation approach is more compatible with the philosophy of 
average marginal effects discussed in Chapters 5 and 12. Technically, G computations are 
a hybrid because the Q model is a conditional model. However, there is a subtle 
difference at work that has analytic implications in some contexts, such as with binary 
outcomes.  
 Recently, attempts to improve G computation have been suggested in the form of a 
method known as targeted maximum likelihood estimation (TMLE). As noted earlier, 
confounding can be addressed by “breaking” or eliminating the association between the 
outcome and the confounding variables and/or by “breaking” or eliminating the 
association between the confounders and selection into the treatment condition. 
Traditional G-computation uses the former. TMLE addresses both and in this sense, it is a 
doubly robust method. The technique was first proposed by van der Laan and Rubin 
(2006) and also has been extended to include machine learning methods for variable 
selection, if desired. TMLE computes potential outcomes much like G computation but it 
introduces a “targeting step” that also addresses imbalance between the intervention and 
control conditions vis-à-vis propensity score methods. Using a complex iterative 
algorithm, the method simultaneously seeks to minimize treatment condition imbalance 
while also addressing the function relating the outcome to the confounders. For tutorials 
on TMLE, see Schuler and Rose (2017), Luque‐Fernandez, Schomaker, Rachet & 
Schnitzer, (2018) and Oang et al. (2016). An R package tmle implements the method. 
Balzer et al. (2019) have extended the method to clustered designs. The advantages of 
TMLE over more traditional G computation and IPTW methods need further exploration 
but the method has promise given its doubly robust nature. I provide a program on my 
web page for conducting TMLE analyses.  
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Dosage Analysis 

Compliance or adherence to protocols is central to efficacy analysis because protocol 
adherence ultimately affects the “dosage” of the intervention a person receives. In all of 
the prior examples, compliance or adherence was treated dichotomously in the sense that 
a minimum dose threshold was set that was deemed necessary for the intervention to 
work. Dropping out of a treatment affects intervention dosage as does remaining in 
treatment but failing to follow treatment protocols does. In the behavioral sciences, many 
interventions consist of multiple sessions and the threshold for meaningful exposure is 
defined as the number of sessions participants complete. The criteria are based on past 
research, common sense, or logical criteria, although often the choices seem arbitrary. 
Stuart, Perry, Le & Ialongo (2008) considered two multi-faceted interventions, one 
consisting of eight classes participants were to attend and another consisting of 66 take 
home activities that participants were to complete. For the former, researchers deemed 
attending at least four of the eight classes to be the minimum number a participant should 
attend in order to benefit from the intervention. For the second intervention, completing 
45 of the 66 take-home activities was defined as “full” participation. It is not uncommon 
in the per protocol analytic strategies described earlier for researchers to perform 
sensitivity analyses under different adherence thresholds. For example, one can evaluate 
what the estimated ATECACE is if the threshold for defining compliers is set to attending 4 
or more classes; what is it if the threshold is set to attending 5 or more classes; and so on. 

Some scientists treat adherence and dose exposure as a continuous or many valued 
quantitative construct and seek to determine the relationship between the amount of 
adherence/exposure and the outcome. Sometimes this takes the form of making dose a 
formal design factor in which individuals are randomly assigned to different dosage 
groups. Other times, adherence (and consequently dose) are simply measured and treated 
as any other variable in an RET, perhaps as a mediator, a moderator, or a covariate.  

A common strategy for exploring the relationship between adherence and treatment 
response is to construct a model of the link between them focusing only on individuals in 
the intervention group. In some contexts, such as the taking of placebos over time in a 
biologic trial, one can include the intervention group in such analyses (thereby 
advantaging the total N of the study) because one has an index of the extent to which the 
controls have completed their placebo-infused regimen. Despite this, intervention 
protocols can present different challenges to participants than control protocols (e.g., side 
effects might be more prevalent or severe in the intervention group) so that compliant 
subgroups in the two conditions are not comparable. CACE analyses are intended to 
address this matter. Nevertheless, researchers often deal with the intervention-control 
complier non-equivalence by studying compliance-outcome links for just those 
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individuals in the intervention group.  
Such a practice removes randomization from the picture and turns the enterprise 

into a purely correlational/observational analysis with all the limitations that go with it. 
Covariate and confound controls become crucial. Some researchers correlate indices of 
compliance with baseline to posttreatment change scores, but this practice is ill advised 
for reasons I discussed in Chapter XX. Where possible, using the baseline outcome as a 
control covariate when relating compliance to the outcome at posttest is likely a better 
strategy. A host of propensity score methods have been proposed for working with such 
observational data but consideration of these methods is beyond the scope of this book. 
Many of the methods work with concepts I outlined for IPTW adjustments. See DuGoff, 
Schuler, & Stuart (2014) and Guo, Fraser & Chen (2020) for tutorials.  

I like to think of the adherence construct not so much in terms of participant 
protocol compliance but rather in terms of intervention dosage. Doses can differ in 
frequency, duration, and amount, each of which represents a distinct facet of dosing that 
can contribute independently to the outcome. Non-adherence might affect some of these 
facets but not others. Interventions often can be decomposed into different subparts; a 
part that addresses mechanism A, another part that addresses mechanism B, and a third 
part that addresses mechanism C. Often the components are addressed sequentially in the 
intervention, so the timing of dropping out of treatment or of skipping a session impacts 
the particular components one is exposed to. These qualitative differences in dosing also 
can differentially affect the outcome. Factors that impact the frequency, amount, duration 
and nature of intervention doses can include patient-centered factors, therapy-related 
factors, social and economic factors, healthcare system factors, and disease factors. The 
bottom line is that mapping adherence, compliance or dosing onto treatment outcomes is 
far more complex than simply relating the number of sessions attended or the number of 
homework assignments completed to outcomes. In some ways, popular per protocol 
analytic strategies are limited because they treat the construct of “per protocol” so 
crudely.  

Efficacy Analyses with Missing Data 

My discussion of analytic methods for dealing with per protocol non-adherence has 
assumed there is no missing data. In many program evaluations, missing data can occur 
and this is especially true for treatment dropouts who are unable to be contacted for 
purposes of outcome assessment at the scheduled time of the posttest. For efficacy 
analyses, treatment dropouts are eliminated from the per protocol sample so no additional 
steps are needed to deal with them. In the control group, you may have individuals who 
provide baseline data but not posttest data and the question becomes the best ways to deal 
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with them.  
One way to approach such missing data is to use listwise deletion but this assumes 

the missing data are missing completely at random (MCAR) and that violations of 
MCAR are not sufficient to create meaningful bias (see Chapter 26). If one assumes data 
are missing at random (MAR) rather than MCAR, then standard full information 
maximum likelihood (FIML) analyses can be applied for both the direct covariate 
approach and for the CACE approach.6 However, in CACE analyses, if compliance is 
assessed only in the intervention condition, then addressing the MAR assumption is 
messy because missingness is assumed to depend on compliance status plus the measured 
covariates in the intervention group but only on the measured covariates in the control 
group (see Frangakis & Rubin, 1999, 2002). For example, in a family intervention, a low 
level of completion of intervention activities may be due to family instability, such as the 
tendency to move to a new residence or having to deal with financial stress. Such non-
compliers also may be harder to reach for posttest assessments, meaning that missingness 
will be higher among well-complying individuals, including those in the control group 
who would have complied with the treatment protocol had they been assigned to the 
intervention condition. Missingness is thus impacted by unobserved compliance status in 
the control condition which violates MAR. The violation can introduce bias if the degree 
of violation is non-trivial.  

For CACE modeling, Jo, Ginexi & Ialongo (2010) suggest ways of dealing with this 
dilemma by using a variant of CACE that makes weaker assumptions than MAR. They 
used the framework of Frangakis and Rubin (1999) who describe a missing data 
mechanism called latent ignorability. Latent ignorability assumes that potential 
outcomes and indicators of potential outcome missing data are independent within each 
level of the latent compliance variable. Jo et al. (2010) describe ways of addressing this 
mechanism in CACE modeling that require only minor modifications to Mplus syntax. I 
describe the modifications as applied to Table 27.9 in a document on my web page titled 
CACE and Missing Data.  

For IPTW and G estimation, some methodologists recommend the use of multiple 
imputation to deal with missing data (Seaman, White & Copas, 2012; Seaman & White, 
2014). These methods also assume data are MAR or that violations of MAR are not 
sufficient to meaningfully bias estimates. 

In the final analysis, and as I stated in Chapter 26, the best method for dealing with 
missing data is not to have any or to have so little that it is not of consequence under 
listwise deletion. Do your best to minimize missing data.  

 
6 FIML is the default used in Mplus for both of these methods. 
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Concluding Comments on Efficacy Focused Analyses 

Efficacy-based randomized explanatory trials are important. They provide us with 
insights into the relationships between outcomes and potential determinants of those 
outcomes while at the same time giving us a sense of our ability to change those 
determinants, all without the clutter of non-adherence and poorly implemented protocols. 
This is particularly important in the early stages of intervention development and 
refinement. Issues of non-adherence and poor intervention implementation can and 
should be addressed at the design stage of an efficacy trial with the idea of minimizing 
implementation infidelity. However, as hard as we try, there often will be slippage in 
implementation fidelity and adherence to protocols. In these cases, there are an array of 
modern analytic tools that can be brought to bear to keep the focus on treatment efficacy. 
These include the direct covariate approach, IPTW weighting, CACE analysis, G 
computations, and TLME. Each method has strengths and weaknesses and it probably is 
best to approach one’s data from multiple analytic perspectives in the spirit of a 
sensitivity framework. A poor strategy for dealing with unavoidable non-adherence in an 
efficacy trial is to shift to ITT analyses. Such a shift changes the research questions. As 
the eminent statistician John Tukey notes, it is “far better to have an approximate answer 
to the right question than an exact answer to the wrong question.” Dallal (2012) takes the 
matter further by referring to ITT analyses in such contexts as “fraudulent.”  

Critics are not wrong when they say that traditional per protocol analyses can 
compromise randomization. They can. The question is whether in a given study 
randomization has, in fact, been compromised by focusing on a per protocol sample (it 
may or may not be) and, if so, does the nature of the imbalance that results between the 
treatment and control groups lead to inaccurate inferences? We can test for imbalance 
between the treatment and control conditions on variables we have measured but we have 
no idea if imbalance has been created on variables we have not measured. And, 
imbalance that might occur on some unmeasured or measured variables (e.g., shoe size, 
to give a tongue in cheek example) don't matter if those variables are unrelated to or do 
not impact the outcome. Imbalance is only relevant to variables that matter.  

All this means that a researcher who is planning a study needs to think long and 
hard about identifying nuisance variables that (a) impact the outcome in non-trivial ways, 
and (b) that might be subject to imbalance between the treatment and control conditions 
when a per protocol sample is defined for purposes of analyzing efficacy. After making a 
list of such variables, the researcher should be sure to measure them (or the most 
important ones) because the newer, more modern methods of per protocol analysis that 
adjust for consequential imbalance typically require that we have measures of the biasing 
variables. If variables that create significant bias are unmeasured, then this is potentially 
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problematic. Of course, we can't measure everything, so instead we must measure those 
variables that we a priori think will matter the most. With those measures in hand, we 
then can (a) evaluate the extent of imbalance that occurs for them and (b) if imbalance 
exists, we can apply a modern method (direct covariates, IPTW, CACE, g computation, 
targeted maximum likelihood) to negate their impact and make more accurate efficacy 
statements. 
 Having said all that, program administrators typically want to know if their 
programs are effective and how they can make their programs more effective. They are 
not so much interested in advancing science as they are with helping their clients vis-a-
vis their particular program. As I already noted, the best advice for increasing the 
effectiveness of a program is garnered by pursing both efficacy and effectiveness 
analyses in one’s evaluation effort because depending on their results, you might make 
different recommendations for program improvement. A program that is ineffective 
because it lacks efficacy requires different remedial actions than a program that is 
efficacious but lacks effectiveness. To be sure, the design of hybrid studies that provide 
perspectives on both efficacy and effectiveness is challenging because efficacy analysis, 
in principle, necessitates designs that create high levels of adherence even at some cost to 
what is realistically possible in applied contexts. Good hybrid design requires a careful 
balancing of what might be versus what is. Hybrid designs benefit from a focus on both 
efficacy based and adherence based mediators and moderators and they require 
researchers have in their analytic toolbox a strong set of tools for addressing both efficacy 
and effectiveness questions. The present chapter describes such tools.    
 Proper per protocol analyses have been extended to more complicated designs than 
the ones I have considered here, including survival modeling and treatments that are 
administered and can vary across time (e.g., Toh & Hernán, 2008; Toh, Hernández-Díaz, 
Logan, Robins & Hernán, 2010; Lodi et al., 2016). See my website for additional 
extensions of analytic strategies. I discuss later in this chapter extensions to trials with 
mediators and moderators.  

EFFECTIVENESS (INTENT TO TREAT) FOCUSED ANALYSES 

ITT analyses are relevant to questions of treatment effectiveness. They compare outcome 
means or proportions for the intervention versus control groups for all individuals who 
were randomized to condition irrespective of any contamination or non-compliance that 
may have occurred after randomization. The idea is that contamination and non-
compliance operate in real world settings so one should not adjust for them if one wants 
to determine the effectiveness of the intervention in applied settings. Of course, it is 
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possible that contamination and non-adherence in an artificial randomized trial may not 
be reflective of the nature and amount of contamination and non-adherence in real world 
settings. To the extent that such generalizability is lacking, without covariates or design 
adjustments to make contamination/non-compliance representative of real-world 
contamination/compliance, ITT results can be misleading.  
 As examples, suppose, as a lay person, I enroll myself in a randomized trial and I 
am compensated for participation. Could the fact that I am compensated for participation 
impact my motivation to adhere to the intervention protocol? (The answer is “yes.”). I 
might know that I am in a trial that can improve a program/intervention for others in my 
community and might infer that my failing to adhere to the intervention protocol can 
affect the validity of the trial. Could such knowledge affect my adherence to protocols? 
(The answer is “yes.”). Is the type of person who fails to adhere to the intervention 
protocol under RCT/RET participation the same as the type of person who would not 
adhere to intervention protocols outside the context of a randomized trial? We do not 
know. Suppose in a family intervention I learn a truly valuable parenting tip that I think 
would benefit my closest friend who is the parent of a troubled adolescent. Would I be 
just as likely to share that information with my best friend if I knew I was formally 
enrolled in a randomized trial and had been told not to share information as compared to 
if I was not in a randomized trial and gained this information in a parenting program I 
attended at my daughter’s school? ITT analyses of an RCT or RET permit “noise” to 
enter conclusions about treatment effectiveness but what if that noise is unrepresentative 
and unrealistic? 
 Despite the preference for ITT analyses by many researchers, such analyses often 
are misunderstood or poorly implemented. In this section, I consider three matters about  
treatment dropouts and ITT analyses, (1) the timing of dropping out of treatment in a pre-
post control group design, (2) the use of full information maximum likelihood analysis to 
deal with missing data due to treatment dropouts, and (3) imputation strategies to deal 
with missing data due to treatment dropouts. In my discussion, I assume you are familiar 
with the material on missing data in Chapter 26. 
 An underappreciated fact about ITT analysis is that proper ITT analysis requires 
having posttreatment data for treatment dropouts. In many randomized trials, when a 
person drops out of a study, such data are not available. This includes dropouts in the 
intervention condition as well as the control condition if the control condition is an active 
control. Missing posttest data for intervention dropouts must be dealt with in light of the 
points I made at the outset of this chapter. If treatment dropouts are relatively few or if 
treatment dropout is completely random for both treatment and control groups, then 
listwise deletion of cases will yield unbiased estimates of the ITT average treatment 
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effect but with reduced statistical power relative to the no missing data case. If the sample 
size is large enough, power reductions will not be problematic. If these conditions do not 
hold, then the missing data must be dealt with by other means, which I describe below. 

The Timing of Treatment Drop Out Relative to Baseline Assessment 

Some researchers use trial designs where baseline assessments are taken prior to 
randomization; others randomize participants first and then take baseline assessments 
prior to the commencement of intervention activities. I have encountered cases where 
randomization is pursued initially only to have a subset of people drop out of the study 
before completing the baseline assessments. In such cases, there are no data for the 
dropouts whatsoever, so not much can be done about it analytically. I try to incentivize 
such dropouts for exit interviews to help me understand their drop out dynamics, I ask 
them to complete a brief assessment to allow selected baseline comparisons between 
them and those who continue with the study. Some researchers in such scenarios replace 
pre-baseline dropouts by randomly selecting a new individual from the population to take 
the person’s place. That replacement then completes the baseline and the rest of the study 
protocol to which the dropout had been assigned. Technically, randomization is 
compromised by the use of such replacement participants but it may be that the degree of 
bias, if it occurs, is not consequential.  
 For designs where individuals complete baseline assessments but who fail to 
commence treatment, randomization can be preserved for ITT purposes by retaining them 
in the study and treating their posttest data as missing if such data have not been 
collected. Such dropouts are conceptualized as non-compliers. 

Full Information Maximum Likelihood Analysis and ITT Analyses 

Many researchers apply traditional full information maximum likelihood (FIML) 
algorithms for ITT analyses that have missing data due to treatment dropouts who could 
not be followed up at posttest. FIML may or may not be misleading in such cases. If the 
missing outcome posttest data is MCAR or MAR, then estimates of ATEITT using FIML 
will indeed be unbiased. If, for example, some people miss a single session intervention 
due to bad weather and do not complete the post-intervention survey at the posttest 
assessment session because of that bad weather, the posttest missing data are likely 
MCAR and can be handled by FIML. If, on the other hand, missing data due to dropout 
are not MAR, estimation bias can result. Stated another way, certain conditions must be 
present for the FIML strategy to adequately handle treatment dropouts. Let me illustrate 
this dynamic by revisiting the weight loss example by Dallal (2012) that I provided at the 
outset of this chapter. 
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Recall that Dallal described a study comparing two diets, one that, unbeknownst to 
the investigator, was effective and the other ineffective. Dallal characterized a dropout 
mechanism in which people who were not losing weight as the diet progresses stop the 
diet and then drop out of the study, thereby providing no post-diet weight data. For those 
on the ineffective diet, some participants lose weight regardless of the ineffectiveness of 
the diet and they stay in the study. Others gain weight and drop out. The result is that the 
effective diet (where people lose weight) appears less effective than the ineffective diet 
because the only people who remain in the study on the ineffective diet and who provide 
posttest data are those losing weight. 

I simulated a large data set to minimize sampling error for my demonstration of the 
bias dynamic at work. I sampled 500,000 women who were then randomly assigned to 
one of the two programs, D1 (the effective diet) or D2 (the ineffective diet). The baseline 
weight of the women was normally distributed with a mean of 165 pounds and a standard 
deviation of 7 pounds. Assuming everyone provided posttest data in the population, the 
true average difference in weight loss between those randomly assigned to D1 versus D2 
was -10 pounds, i.e., D1 was, on average, 10 pounds more effective than D2. This is the 
true ATEITT in my simulation.  

Now, suppose I introduce a version of Dallal’s treatment dropout rule: For both D1 
and D2, if a woman failed to lose weight by serendipitously gaining half a pound or more 
halfway through the intervention, she stopped the diet, dropped out of the study, and did 
not provide posttest data. When I created my simulation, I created a mid-treatment 
assessment of weight that reflected, on average, a -5 pound change in weight in the D1 
condition i.e., half the true total effect of diet type, -10, plus some random noise. For the 
D2 condition, there was no average change in weight at midtreatment, but some women 
changed upward and others downward because of the random noise that was operating in 
D2. I then applied the above drop-out algorithm to the data based on the midtreatment 
data: If a woman in either condition gained 0.5 or more pounds at midtreatment, I 
changed her observed score at the posttest to missing data. The result was that 43.3% of 
the women in D2 dropped out of the study following the midtreatment assessment but 
only 3.4% of women in D1 did so. The differential dropout rate was due to the fact that 
D1 was indeed effective for the vast majority of women in reducing weight midway 
through treatment (by about -5 pounds) whereas D2 was not. Note that in theory I do not 
know what the treatment dropouts in either condition did with respect to their eating or 
lifestyle habits after dropping out of the study; all I know is that when it was all said and 
done, if I measured the posttest weight for all the women who initially enrolled in the 
study, women randomly assigned to D1 were, on average, 10 pounds lighter than those 
randomly assigned to D2 at posttest, i.e., ATTITT = -10.  
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In this scenario, the missing data are NMAR. Dropping out of treatment, and hence 
having no posttest data, is impacted by a women’s weight halfway through the program 
given their baseline weight. I listwise deleted the cases with missing data at the posttest 
and then regressed the posttest data onto the treatment condition (D1=1, D2=0) and 
baseline weight using the following Mplus syntax: 
 
1. TITLE: Diet program simulation 
2. DATA: FILE IS weightM.txt; 
3. LISTWISE = ON ; 
4. VARIABLE: NAMES ARE id treat basew mid post ; 
5. USEVARIABLES ARE treat post basew ; 
6. MISSING ALL (-9999) ;   
7. ANALYSIS: ESTIMATOR = MLR; 
8. MODEL: 
9. post ON treat basew ; 
10. OUTPUT: Samp StdYX Residual Cinterval Tech4 ;  
 

All of the syntax should be familiar to you. The path coefficient for the treatment dummy 
variable treat in this analysis was -8.15 which, as Dallal suggested, underestimates the 
true average ITT treatment effect of -10.00 by almost 2 pounds. Using listwise deletion in 
the face of missing data that are MNAR is not a good idea in this case.  

I next applied FIML to the data by eliminating Line 3 from the syntax and making 
use of the Mplus default to apply missing data FIML to the endogenous variables in the 
model. The path coefficient for treat in this new analysis was again -8.15. Applying 
FIML does not help. The reason FIML fails is because the data are not MAR, which 
violates FIML assumptions.  

As I discussed in Chapter 26, one way of dealing with missing data that are NMAR 
is to identify the systematic source of missingness and then to bring into the modeling 
effort a measured variable that reflects that source in order to control for it, i.e., turn the 
NMAR case into a MAR case. In the simulated data, the variable mid is the assessed 
midtreatment weight of women in D1 and D2 and reflects, more or less, the source of the 
missingness in the statistical model conditional on one’s baseline weight. I can formally 
bring this variable into my model as a covariate or, if it is not of substantive interest, I can 
use a saturated correlates approach in conjunction with the AUXILIARY command in 
Mplus to address the NMAR (see Chapter 26 for discussion of this method). I used the 
latter approach by adding the following command just after Line 6 in the above syntax:      

6a. AUXILIARY = (m)  mid ;  

The path coefficient for treat in this new analysis was -10.00, which reflects the true 
ATEITT.  
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 In sum, FIML can be used to address treatment dropout missing data in ITT 
analyses in cases where some of the treatment dropouts do not provide posttest data as 
long as the statistical model formally takes into account sources of NMAR so as to make 
the missing data MAR or MCAR. The FIML approach yields reduced statistical power 
relative to the case where one is able to obtain posttest assessments on all or most 
treatment dropouts, but it often remains viable under such circumstances. This means 
when planning an RET one should give careful thought to the sources of treatment 
dropout so that they can be measured and brought under control analytically. For cases 
where one is concerned about people dropping out because the intervention is ineffective 
or because of adverse side effects of a medication, a strategically placed “during 
treatment” assessment might provide a means for addressing the resulting NMAR 
through the use of the saturated correlates auxiliary command in Mplus, as I showed for 
the case of the variable mid in the above example. If you have measures of mechanisms 
producing problematic missing data for loss to follow-up as discussed in Chapter 26 and 
measures of other mechanisms producing treatment dropouts as discussed in the present 
Chapter, then you can include both sets of variables in the saturated correlates auxiliary 
command to control for all of them.   
 In the literatures I follow, many RCTs apply FIML in the context of ITT analysis 
but they mention nothing about possible bias due to MNAR at the posttest for purposes of 
controlling covariates associated with treatment dropout nor do they include any 
covariates in their modeling efforts. Or, they engage in practices in which they claim they 
are conducting ITT analyses when, in fact, they are unwittingly using per protocol 
analyses. Here is an  example. In one study, no posttest data were obtained on treatment 
dropouts. The study conducted “ITT” analyses by using traditional FIML for missing 
data per Chapter 26 as applied to the data at hand. FIML seeks to construct an estimate of 
the population means and covariance matrix of all variables in the analysis in light of 
missing data but in this case, the population (and sample) matrix includes no information 
about the posttest scores of treatment dropouts. This is analogous to doing the study with 
no treatment dropouts in it, i.e., it functionally is a per protocol analysis. We need to be 
more rigorous about such analyses and this, at a minimum, requires that we make a good 
faith effort to get substantial amounts of data at posttest for treatment dropouts.  

Imputation Strategies and ITT Analyses 

A second approach to dealing with missing data from treatment dropouts in ITT analyses 
is to use some form of imputation. Two commonly used single imputation strategies in 
RCTs are the last observation carried forward (LOCF) and the worst case (WC) 
imputation methods. LOCF imputes a score for the missing data that equals the value of 
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the same variable measured at the closest time point prior to the occurrence of the 
missing data. In a pre-post control group design with no mid-treatment assessments, this 
means imputing the baseline score for an individual into the posttest score, essentially 
producing no change in the outcome for that individual. If a mid-treatment assessment is 
taken, then the mid-treatment score on the outcome is imputed to the posttest missing 
data. If a variable is relatively stable over time and one expects little change in it from 
one time period to the next in the real world, then variants of LOFCs may be a reasonable 
imputation strategy. For example, chronic pain patients often feel the same level of pain 
across extended periods of time and it is not unreasonable to assume that their pain levels 
remain constant from baseline to posttest if they have dropped out of treatment. However, 
in a pre-post control group design, use of LOCF generally will inflate the correlation 
between the pretest and the posttest because one uses the same score to represent the 
outcome values at the two time points. This presumed stability, if false, can bias 
coefficients when the baseline is used as a covariate and it also can bias standard errors. 
Lachin (2016) has shown that LOCF requires data that are MCAR and that for pretest-
posttest designs where the values at time 1 are used to impute the missing values at time 
2 by LOCF, the result is a mixture of the time 1 and time 2 distributions that almost 
always yields biased average treatment effects unless the two time periods have identical 
distributions. Despite the Food and Drug Administration embracing LOCF in some 
circumstances (Lachin, 2016), statisticians generally recommend against its use because 
of these types of bias (see Kenward & Molenberghs, 2009; Li & Stuart, 2019). Indeed, 
some leading biomedical journals have a formal policy of not accepting articles that use 
LOCF (Little et al., 2012; Newgard & Lewis, 2015). The Panel on Handling Missing 
Data in Clinical Trials of the National Academy of Sciences recommends that methods 
like LOCF should not be used as a primary approach to treat missing data unless the 
underlying assumptions are scientifically justified (National Academy of Sciences, 2010).  
 In contrast to LOCF, the WC imputation method imputes to treatment dropouts with 
missing posttest data the worse possible score on the outcome at posttest. A variant of it 
sometimes used for sensitivity analyses is best case (BC) imputation in which the best 
possible score on the outcome is imputed to treatment dropouts with missing posttest 
data. The selection of best or worst values to impute can be based on different criteria, the 
specification of which can be controversial; researchers define them in ways they think 
are most appropriate to the study context and goals. The WC and BC methods typically 
are invoked in sensitivity analyses to identify worse-case and best-case scenarios for 
estimating the ATEITT. Another variant of the WC imputation method is the jump to 
reference imputation approach (Cro, Morris, Kenward & Carpenter, 2016). This method 
imputes the outcome mean of the control group into the scores of intervention dropouts 
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with missing data. All three of these methods are known to potentially produce biased 
estimates of ATEITT and biased standard errors so they are of questionable utility as a 
strategy for dealing with missing data.  

Some researchers use variants of the above methods by introducing a small degree 
of random noise into the imputation so that multiple imputation can be used to obtain 
better estimates of the relevant standard errors. However, the bottom line is that other 
forms of imputation typically yield results that are less biased for estimating the true 
ATEITT than LOCF, BC or WC strategies.  
 A promising multiple imputation strategy for estimating ATEITT when there are 
treatment dropouts with NMAR missing data is the retrieved dropout imputation 
method (James, 2012; Wang & Hu, 2022). In this approach, you isolate all cases of 
individuals who dropped out of treatment, including (a) those dropouts who failed to 
provide data at the posttest and (b) those who you made special efforts to track down and 
were able to obtain posttest assessments despite the fact they dropped out of treatment, 
i.e., retrieved dropouts. For this subpopulation of retrieved and unretrieved dropouts 
combined, you use either the chained equation multiple imputation approach or the 
Bayesian H1 multiple imputation approach described in Chapter 26 to generate multiple 
imputations of posttest data for the unretrieved dropouts using the retrieved dropouts as 
the donor pool. The imputation model should include a full range of thoughtfully 
identified covariates including the baseline outcome measure. For treatment completers 
with missing data, you do a separate but parallel multiple imputation process for them 
and then merge their imputed data with the imputed data for the treatment dropouts into a 
single imputation sample. You repeat this process to generate, say, 100 imputation 
samples and then apply the analytic model to each of these imputed data sets. You then 
combine the results into a single ATEITT estimate per standard multiple imputation 
methods, per Chapter 26. Wang and Hu (2022) found support for the approach given the 
number of retrieved dropouts was not small and the amount of missing data in the 
dropout population was not large (less than about 30%).   

When using the retrieved dropout method one typically assumes that retrievable 
individuals are representative of treatment dropouts more generally, an assumption that 
may be questionable in some contexts. Interestingly, in research that has studied retrieved 
dropouts, improvements in outcomes relative to the control group are sometimes 
observed (Farlow, Potkin, Koumaras, Veach & Mirski, 2003). This result might be due to 
partial exposure to the intervention, to off-protocol compensatory activities on the part of 
the dropouts, or to confounds of the retrieval process.  
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Mixed Effects ITT Analyses 

As noted in Chapters 16 and 26, an approach to analyzing treatment effects in 
longitudinal randomized trials is mixed effects modeling. In a two group pretest-posttest 
control group design, the primary question of interest in a mixed effect analysis is 
whether the groups have different average improvements in the outcome from baseline to 
posttest. This is typically evaluated in terms of the treatment by time interaction effect. A 
touted advantage of mixed effect modeling is that it can estimate treatment effects in the 
presence of treatment dropouts who did not complete the posttest without recourse to 
imputation, relying instead on variants of the FIML method described in Chapter 26. Like 
FIML, these methods require that the missing data be MAR or MCAR. The same 
challenges I described above for FIML when applied to ITT analyses with treatment 
dropouts apply to mixed effects modeling; if the missing data due to treatment dropouts 
are NMAR, then the ATEITT can be biased. Strategies are needed to bring covariates into 
the model that turn the NMAR properties into MAR or MCAR properties. In Mplus, this 
can be accomplished using the saturated correlates approach with FIML. The retrieved 
dropout multiple imputation strategy also can be used in mixed effects modeling. 

Concluding Comments on ITT and Effectiveness Analysis 

ITT analyses of randomized trials can provide useful insights into program effectiveness. 
The method is best applied when data have been collected on all study participants who 
were randomized to condition. Unfortunately, complete data are not always available, 
especially for treatment dropouts who researchers lose contact with. If dropping out of 
treatment is completely random (i.e., the missing data are MCAR), then analyses are 
straightforward and viable strategies for dealing with the missing data due to dropouts 
include listwise deletion, FIML, or traditional multiple imputation. If the missing data are 
NMAR, such as in the study described by Dallal (2012), then ITT analyses must be more 
thoughtful. These cases requires careful analysis of the causes of treatment dropout 
associated with missing data and then introducing statistical controls to turn NMAR 
properties into MAR properties. To be sure, ITT analyses likely can tolerate some degree 
of assumption violations of MAR without meaningful effects on conclusions, but care is 
required in this regard.  
 In the final analysis, you should make heroic efforts to obtain posttest data on 
treatment dropouts rather than making guesses about how dropouts would fare had you 
followed them up. ITT analyses are much more straightforward in cases of the former.  

EXTENSIONS TO RANDOMIZED EXPLANATORY TRIALS 
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To make things manageable, my discussion of modern methods of efficacy and 
effectiveness analysis has focused only on links between the treatment condition and the 
outcome. In practice, RETs include the analysis of mediation, moderation and sometimes 
multiple outcomes. All of the methods I discussed can be applied to RETs in 
straightforward ways if one uses limited information SEM (LISEM, see Chapter 8), 
analyzing the equations implied by an influence diagram one equation at a time. For full 
information SEM (FISEM), use of FIML and multiple imputation is straightforward 
using Mplus (see Chapter 26) although one must now think about one’s entire model 
when making choices about auxiliary variables and which covariates to use for each 
equation. G estimation and targeted maximum likelihood are not amenable to FISEM. 
IPTW can be used in FISEM but, again, the choice of variables to use in the weighting 
process must be done with care and with the full model in mind. One would define the 
list of variables to use in the weighting process using all relevant covariates across all the 
equations. 

CONCLUDING COMMENTS 

Treatment dropouts and non-adherence to treatment protocols are common in everyday 
life just as they are common in randomized trials. This does not mean that the frequency 
and nature of dropping out of treatment and non-adherence are equivalent in the two 
settings. Participating in a randomized trial and all that goes with it is not necessarily the 
same as being exposed to treatments or being offered treatment in everyday life. In a 
randomized trial, people often complete questionnaires that they would not normally 
complete, they  know they are participating in an experiment that ultimately can impact 
both them and larger communities, and they often are compensated for their efforts. They 
have contact with and can form relationships with trial staff. They sometimes are given 
incentives to remain in the study and are given explicit instructions to participate in ways 
that respect study and treatment protocols. The fact that dropping out of treatment and 
non-adherence occur in both real life settings and randomized trials has led some 
researchers to naively think that knowledge gains require that analyses of randomized 
trials embrace the presence of dropping out of treatment and non-adherence by using ITT 
analyses. I have had reviewers stubbornly demand ITT analyses and reject per protocol 
analyses even when my trial is efficacy focused, when I am trying to understand the 
determinants of efficacy (not effectiveness) and when I seek to explore the 
generalizability of the mechanisms of efficacy (not effectiveness) across subgroups and 
contexts. Inevitably, reviewer insistence comes down to statements that ITT preserves 
randomization, hence the need to analyze data using it. This conclusion lets methodology 
dictate the questions we ask rather than letting the questions we ask dictate the methods 
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we use to answer those questions. 
Clinical trials typically ask questions about mediation (mechanisms), moderation 

(the generalizability of the intervention across populations and contexts), neither 
mediation nor moderation (an outcome only trial), or both mediation and moderation in 
the same trial. The outcome in any of the above four types of trials can be either (1) 
patient adherence, (2) clinic/provider implementation faithfulness, (3) a clinical or 
behavioral state (such as depression, anxiety or whether a vaccine was obtained), or (4) 
some combination of the above. Researchers can approach the above two facets from 
either (1) an efficacy orientation (where an intervention, no matter what its purpose and 
focus, is implemented as it was intended to be implemented, i.e., per protocol) or (2) an 
effectiveness orientation (where a treatment is implemented in real world settings where 
it may not be implemented faithfully and where patients may or may not do what they are 
supposed to do). In the big scheme of things, if you have adopted an efficacy focus, it 
does not matter what the other facets of your study are (be it mediation, moderation, an 
outcome focused on patient adherence, an outcome focused on anxiety, or whatever), you 
need to pursue per protocol analyses. By contrast, if you have an effectiveness focus, it 
does not matter what the other facets are, you need to pursue ITT analyses. If you are 
interested in both efficacy and effectiveness, you need to do both.   

A problem in intervention science is that many people seem to think ITT analysis is 
the appropriate tool for all of the different research combinations, which is not the case. I 
argue that ITT analyses are not always appropriate; that per protocol analyses have been 
unfairly denigrated and this is unfortunate because there are indeed viable (but not 
perfect) modern methods of per protocol analysis that can be used. 

I have argued in this chapter that both efficacy trials and effectiveness trials have 
their rightful place in program development, program revision, and program evaluation. 
Hybrid designs that explore both efficacy and effectiveness are desirable but they also are  
challenging given that (a) there often is misalignment between the dynamics of stopping 
treatment/non-adherence in real life settings as opposed to a randomized trial setting and 
(b)  efficacy analysis requires high levels of adherence and treatment completion.  

Good program evaluation means providing feedback and suggested revisions to 
program administrators about both the efficacy of their program per se as well adherence 
and dropping out dynamics relative to their program. Fortunately, trialists have evolved a 
host of modern analytic methods that allow us to gain perspectives on these matters. 
Coupled with the incorporation of mediation and moderation dynamics into program 
evaluations and thoughtful RET design, these methods allow us to raise the bar 
considerably on the quality of evaluation efforts.      

To me, the dynamics of analyzing missing data are somewhat different if the source 
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of that missingness is dropping out of a treatment as opposed to failing to show up for a 
scheduled post-treatment assessment session. The variables that impact these two types of 
events can be different, meaning that the covariates we address to deal with NMAR 
missingness can differ depending on the context. As I stated at the outset of Chapter 26, 
the best strategy for dealing with missing data is not to have any and that holds as much 
for dealing with missing data due to treatment dropouts as it does to other missing data 
scenarios.  
 
  



                                                                                                             Treatment Dropouts 60 

 
 

APPENDIX: DETAILED CACE OUTPUT 

In this appendix I review in more detail output for CACE modeling when programmed 
using Mplus as well as additional programming strategy. I use the JOBS numerical 
example from the main text. The JOBS output provides several indices to evaluate model 
fit, although many of the traditional fit indices are not supported by Mplus. The output 
reports the model loglikelihood, the model AIC, and the model BIC: 
 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       17 
 
Loglikelihood 
 
          H0 Value                        -727.379 
          H0 Scaling Correction Factor      1.0432 
            for MLR 
 
Information Criteria 
 
          Akaike (AIC)                    1488.759 
          Bayesian (BIC)                  1560.475 
          Sample-Size Adjusted BIC        1506.515 
            (n* = (n + 2) / 24) 

 
The BIC can be used to compare nested models using the methods discussed in Chapter 
7. An example might be if you want to compare a model that imposes equality constraints 
for path coefficients across classes versus one that does not.  
 In the output section called RESIDUAL OUTPUT, Mplus reports the differences 
between the predicted and observed covariances of the input variables. These differences 
also can give you a sense of model fit, although some people find covariances difficult to 
interpret. Mplus also reports modification indices for each class, which can be diagnostic 
of ill fit at a localized level. See Chapter 7 for details.  

When determining the class that a person belongs to (in this case, complier vs. non-
complier) Mplus calculates a probability that the person is in each of the two classes. For 
example, the probability individual 1 is a complier might be estimated to be 0.92 and the 
probability that individual 1 is a non-complier might be estimated to be 0.08. Thus, there 
is a degree of uncertainty about whether a person is in or not in a given class. This 
uncertainty is taken into account in the overall statistical treatment of the data by the 
underlying algorithms. Mplus reports three different ways of estimating the proportion of 
people in each class, as follows: 
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FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES 
BASED ON THE ESTIMATED MODEL 
 
    Latent 
   Classes 
 
       1        271.06984          0.53998 
       2        230.93016          0.46002 
 
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES 
BASED ON ESTIMATED POSTERIOR PROBABILITIES 
 
    Latent 
   Classes 
 
       1        270.83819          0.53952 
       2        231.16181          0.46048 
 
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES 
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP 
 
Class Counts and Proportions 
 
    Latent 
   Classes 
 
       1              268          0.53386 
       2              234          0.46614 

 
The first set of estimates are based on the final fitted model and are reported in the 
section FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED 
ON THE ESTIMATED MODEL. The second set of estimates are based on Bayesian methods 
and are reported in the section FINAL CLASS COUNTS AND PROPORTIONS FOR THE 
LATENT CLASSES BASED ON ESTIMATED POSTERIOR PROBABILITIES. The third set of 
estimates assigns people to the class that the person has the highest estimated probability 
of being in. These estimates are reported in the section FINAL CLASS COUNTS AND 
PROPORTIONS FOR THE LATENT CLASSES BASED ON THEIR MOST LIKELY LATENT 

CLASS MEMBERSHIP. In the JOBS data, all three estimates were quite close so it is moot 
which one is reported. I tend to prefer the estimated model estimates, but convincing 
arguments can be made for each type. 
 Mplus also provides information about the quality of the classification enterprise, 
which is used by some as an indirect index of model fit. If the indices reflecting 
classification quality are ill-behaved, it raises doubts about the model. One diagnostic 
forms a two-way table that has as rows the class a person is most likely to be in based on 
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the one with the highest probability for that person and as columns the mean probability 
result for class 1 (compliers) and the mean probability for class 2 (non-compliers):  
 
Average Latent Class Probabilities for Most Likely Latent Class Membership 
(Row) by Latent Class (Column) 
 
           1        2 
 
    1   0.916    0.084 
    2   0.108    0.892  

 
For example, of those individuals whose most likely class was class 1 (complier), their 
mean probability of being in class 1 was 0.916 and their mean probability of being in 
class 2 was 0.084. There is good separation between the two classes for these individuals. 
Of those individuals whose most likely class was class 2 (non-complier), their mean 
probability of being in class 1 was 0.108 and their mean probability of being in class 2 
was 0.892. There also was good separation between the two classes for these individuals. 
This increases our confidence in the viability of the classification dynamics. This type of 
matrix is sometimes referred to as a confusion matrix. 
 The output also provides an index of classification quality using an entropy index: 
 
CLASSIFICATION QUALITY 
 
     Entropy                         0.734 

 
The statistic is a summary of how well differentiated the confusion matrix is. It ranges 
from 0 to 1, with higher scores indicating more unambiguous classifications (i.e., the 
closer the value to 1, the better). Values greater than 0.80 are deemed good, but there is 
controversy about this (e.g., Ramaswamy et al., 1993); lower values are sometimes fine. 
For more details, see Chapter X. 
 Mplus output also reports within each class the squared multiple correlation for 
predicting the outcome (depression) from the treatment condition dummy variable and 
the covariates (baseline depression, education, economic hardship, and ethnicity). These 
are located in the section STANDARDIZED MODEL RESULTS and the subsection STDYX 
Standardization: 
 
R-SQUARE 
 
Class 1 
 
    Observed                                          Two-Tailed 
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    Variable        Estimate       S.E.  Est./S.E.  P-Value 
    DEPRESS            0.174      0.036      4.798      0.000 
Class 2 
 
    Observed                                          Two-Tailed 
    Variable        Estimate       S.E.  Est./S.E.  P-Value 
 
    DEPRESS            0.172      0.030      5.662      0.000   

 
The squared correlation in Class 1 was 0.174 and in Class 2 it was 0.172. 
 In the main text, I reported the results of a binary logistic regression where the 
outcome was complier class 1 versus complier class 2 and the predictors were age, 
education motivation, economic hardship, assertiveness, marital status, ethnicity and 
baseline depression. I repeat the odds ratios here: 
  
LOGISTIC REGRESSION ODDS RATIO RESULTS 
 
                                                95% C.I. 
                    Estimate       S.E. Lower 2.5% Upper 2.5% 
 
Categorical Latent Variables 
 
 C#1      ON 
    AGE                1.082      0.016      1.051      1.115 
    EDUC               1.360      0.093      1.190      1.556 
    MOTIVATE           1.958      0.308      1.439      2.664 
    ECON               0.851      0.128      0.634      1.142 
    ASSERT             0.685      0.099      0.516      0.911 
    SINGLE             1.673      0.469      0.966      2.896 
    NONWHITE           0.588      0.190      0.312      1.107 
    DEPBASE            0.654      0.272      0.290      1.477 

 
As discussed in Chapter 12, I prefer to work with probabilities and profile analyses 
instead of odds ratios and I use the MODEL CONSTRAINT command in Mplus to do so. 
Consider the motivation predictor, namely the motivation to secure employment as 
measured at baseline. This scale ranged from 1 to 7 with the bulk of people scoring 
values of 4, 5 or 6. I used MODEL CONSTRAINT commands to explore this predictor while 
holding the other variables constant at values close to their modal values. For the syntax 
in Table 27.9, I first added labels to the intercept and coefficients in the logit model on 
Line 14, like this: 
 
     c#1 ON age educ motivate econ assert single nonwhite depbase (lc1-lc8) ; 
     [c#1] (ic1) ; 
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Then I added the following syntax just before the OUTPUT command:   
 
22a. MODEL CONSTRAINT: 
22b. NEW(LODDS1 LODDS2 LODDS3 PROB1 PROB2 PROB3 DIFF23 DIFF24 ) ; 
22c. LODDS1 = ic1+lc1*37+lc2*13+lc3*4+lc4*3+lc5*3+lc6*1+lc7*1+lc8*2 ; 
22d. LODDS2 = ic1+lc1*37+lc2*13+lc3*5+lc4*3+lc5*3+lc6*1+lc7*1+lc8*2 ; 
22e. LODDS3 = ic1+lc1*37+lc2*13+lc3*6+lc4*3+lc5*3+lc6*1+lc7*1+lc8*2 ; 
22f. PROB1 = EXP(LODDS1)/(1+EXP(LODDS1)) ; 
22g. PROB2 = EXP(LODDS2)/(1+EXP(LODDS2)) ; 
22h. PROB3 = EXP(LODDS3)/(1+EXP(LODDS3)) ; 
22i. DIFF23 = PROB2 - PROB1 ; 
22j. DIFF24 = PROB3 - PROB1 ; 

   
Note in lines 22c, 22d, and 22e, I calculate the predicted log odds for three different 
profiles that vary the value of the motivation predictor to be 4, 5, and 6 while holding the 
values of the other predictors constant at their modal values (I can use any profile values I 
want and that are of substantive interest). Lines 22f, 22g, and 22h convert these predicted 
log odds to probabilities and Lines 22i and 22j calculate substantively interesting 
differences between the predicted probabilities. (For the broader logic of this type of 
profile analysis, see Chapter 12). Here is the resulting output: 
 
MODEL RESULTS 
 
                                                      Two-Tailed 
                    Estimate       S.E.  Est./S.E.  P-Value 
 
New/Additional Parameters 
    LODDS1            -0.676      0.425     -1.588      0.112 
    LODDS2            -0.004      0.365     -0.010      0.992 
    LODDS3             0.668      0.368      1.817      0.069 
    PROB1              0.337      0.095      3.546      0.000 
    PROB2              0.499      0.091      5.464      0.000 
    PROB3              0.661      0.082      8.023      0.000 
    DIFF23             0.162      0.035      4.690      0.000 
    DIFF24             0.324      0.070      4.609      0.000   

 
The predicted probability of being in the complier class was 0.337 ±0.20 when 
motivation = 4, it was 0.499 ±0.18 when motivation = 5, and it was 0.661 ±0.16 when 
motivation = 6. If I increase baseline motivation from  4 to 5, the proportion of people 
who become compliers is estimated to increase by 0.162 (± 0.07, CR = 4.69, p < 0.01). If 
I increase baseline motivation from 4 to 6, the proportion of people who become 
compliers is estimated to increase by 0.324 (± 0.14, CR = 4.61, p < 0.01). This suggests 
that one way of increasing compliance with the protocol (e.g., attending the four 
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seminars) is to increase motivation to be re-employed at baseline. I find this type of 
profile analysis to be more meaningful than simply documenting odds ratios.  


