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INTRODUCTION 

Cluster randomized trials randomly assign clusters of individuals to treatment versus 
control conditions rather than randomly assigning individuals per se to these conditions. 
For example, I might randomly assign classes within a school to treatment or control 
conditions, with the effect that every student within a class is assigned to one of the two 
conditions. In this case, each class is viewed as a “cluster” and is subject to the random 
assignment process. As another example, I might administer a therapy to each of 50 small 
groups of individuals, with each group consisting of 5 members. My control group also 
might have 50 groups of 5 individuals each, with the members of the control group 
engaging in a group activity unrelated to the intervention topic. This is a cluster randomized 
design where the different groups are conceptualized as “clusters” and the clusters are 
randomized to one of the two the treatment conditions. Finally, a researcher might 
randomly assign 30 clinics to either a treatment or control condition and then randomly 
sample 100 clients from each clinic to participate in the study. This also is a cluster 
randomized trial with clinics as clusters.  

When we analyze data at the individual level, the standard independence assumption 
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is that the disturbance scores for the outcome variable are uncorrelated. However, in 
clustered designs such independence cannot be assumed. If a group of individuals or a class 
of students contains a particularly disruptive individual, then the outcome scores for all 
members of that cluster are likely to be affected — inducing a dependency among their 
observations. However, members of other clusters will not be directly affected since the 
other groups are not exposed to the disruptive member. Alternatively, a group might have 
a particularly good group therapist/teacher/leader, and all of the members of that group 
would benefit accordingly. In these cases, the presence of such clustering creates 
dependency among the disturbances of the outcome variables, and if the dependencies are 
strong enough then adjustments need to be made in statistical estimation and testing to 
accommodate them. Applying conventional structural equation modeling (SEM) to 
individual-level analyses of clustered data but ignoring such clustering can result in 
downwardly biased standard error estimates. The net result could be rejecting null 
hypotheses inappropriately, which could include rejecting valid models based on global 
chi-square tests as well as rejecting null hypotheses associated with causal effects that are 
estimated within a model. 

In this chapter, I consider issues in the analysis of cluster randomized RETs. I first 
distinguish clustering in the context of respondent sampling versus experimental designs. 
I then consider two orientations towards clustering: either as a nuisance or as something 
that is theoretically and/or substantively interesting. I next consider the hierarchical 
structure of clusters in order to introduce two-level and three-level clustering. I then tie 
these concepts to the specification of multilevel equations. I introduce intraclass correlation 
coefficients and design effects, followed by a numerical example that I use throughout the 
chapter to illustrate analytic methods for RETs with clusters. I consider pseudo-maximum 
likelihood, multilevel SEM, Bayesian methods, and specialized tools for the analysis of 
RETs with a small number of clusters. I conclude with a discussion of methodological 
issues that can arise with clustered designs.  

The literature on cluster randomized trials is vast and I can’t cover all of the ins and 
outs of designing and analyzing such studies. For useful summaries, see Turner, Prague, 
Gallis, Li and Murray (2017) and Turner, Li, Gallis, Prague and Murray (2017). The current 
chapter is long and not easily processed in a single sitting. You likely will need to read it 
in parts over time.   

SAMPLING/EXPERIMENTAL DESIGN AND CLUSTERING   

You will encounter statements about the importance of cluster adjustments when analyzing 
data, but decisions to adjust for clustering and how to do so can be complex. One of the 
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most common reasons given for making such adjustments is that individuals within the 
same cluster might be subject to a shared, cluster-focused “random shock” (e.g., a 
disruptive member) that then creates score dependencies among people in the same cluster. 
A core dilemma is how researchers justify making cluster distinctions on some population 
partitions but not others. If a researcher conducts a study in a school and applies traditional 
statistical methods to evaluate a model, then they implicitly assume the model disturbances 
are independent. But surely it is possible that the behavior of one student in the school can 
affect the behavior of another student in that class, creating disturbance dependencies.  

To provide additional context, consider that there are often naturally occurring 
cliques of students within a school (e.g., athletes) that are ignored in single-school studies, 
raising the possibility of ignored dependencies. In a multi-school study, failing to adjust 
for the existence of such cliques may be more consequential than failing to adjust for 
membership in a given school per se. Yet, we often cluster-analyze data using different 
schools as clusters while ignoring potentially consequential clusters within schools. The 
reality is that dependencies are likely a fact of life in most data modeling. The key question 
is not whether dependencies exist but rather whether the operative dependencies are 
sufficiently large and consequential to lead us astray in the inferences we make. I discuss 
below ways of gaining perspectives on this question. 
  Abadie et al. (2017) conceptualize decisions to adjust for clustering as a matter 
of sampling design, experimental design, or both. Clustering is a matter of sampling 
design when sampling formally follows a two-stage process in which, at the first stage, a 
subset of clusters is randomly sampled from a population of clusters (e.g., middle schools 
from all possible middle schools in the United States) and, in the second stage, individuals 
are randomly sampled from these randomly selected clusters (e.g., a random sample of 
students is taken from each of the selected schools). Clustering is a matter of experimental 
design when clusters of lower-level units rather than units per se (e.g., classes as opposed 
to individual students) are randomly assigned to treatment versus control conditions, but 
analyses are pursued at the lowest level of analysis. Abadie et al. (2017) argue that cluster 
adjustments usually are needed when clusters are a formal part of the sampling design or 
the experimental design. Other sources of disturbance dependencies are seen as resulting 
from more traditional modeling matters, such as omitted variable bias or specification 
error, that should be addressed by more standard modeling methods for doing so. Cluster 
randomized trials typically (but do not always) involve clustering vis-a-vis experimental 
design, so such cases are my primary focus in the current chapter. 
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CLUSTERS AS A NUISANCE OR AS THEORETICALLY MEANINGFUL 

In some randomized trials, clustering is not of substantive interest per se. Rather, the 
clusters are viewed as nuisance parameters whose impact must be taken into account when 
calculating p values and confidence intervals for making statistical inferences. In such 
cases, one analyzes data across individuals with appropriate clustering corrections 
(potentially including differences in cluster means that could otherwise confound results). 
In other scenarios, the clusters are of substantive interest in their own right; one seeks to 
build models that incorporate characteristics of the clusters into the research questions. For 
example, in a randomized trial that assigns classes of students to treatment versus control 
conditions, a researcher might want to know if class size affects treatment versus control 
mean differences on the study outcome. In this case, the researcher tests moderation of 
intervention effectiveness as a function of a cluster level characteristic, class size (i.e., a 
class size X intervention interaction). As will become apparent, one’s approach to data 
analysis can differ depending on whether clusters are seen as a nuisance or as theoretically 
meaningful. 

HIERARCHICAL STRUCTURES OF CLUSTERS 

In survey research that uses clustered designs, the clusters often are called primary 
sampling units (PSUs) because they are the primary target of random selection. 
Individuals within each cluster are called elements or secondary sampling units (SSUs). 
In the literature on multilevel modeling, clusters and cluster-level measures often are 
referred to as Level-2 data whereas data collected on individuals within clusters are 
referred to as Level-1 data.  

There are cluster designs where clustering has complex hierarchical structures. I 
might randomly sample census tracts from the United States (one level of clustering) and 
within each census tract, randomly sample schools (a second level of clustering); then, I 
randomly sample, say, 100 students from each selected school for purposes of conducting 
an RET on student achievement but where I randomly assign schools as opposed to 
students per se to either a treatment or control condition. In this design, the individuals 
represent Level 1-data that are nested within schools (i.e., each student occurs in a different 
school), the schools represent Level-2 data that are nested within census tracts, and the 
census tracts and data we collect on them represent Level-3 data. Cluster randomized trials 
can incorporate such hierarchical structures but it is not possible for me to address the many 
variants of such three or four level cluster designs here. My focus in this chapter will be on 
two level cluster randomized trials.  
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MULTILEVEL MODELS 

In this section, I describe how researchers often represent multilevel data in equation form. 
I then use the equations in later sections to frame the analysis of cluster randomized trials. 
To develop core concepts, I use a hypothetical study of 50 high schools in which the 
outcome variable of interest is youth physical activity. Adolescence is often associated with 
declines in physical activity. School-based interventions have been developed to slow the 
decline. In general, it is recommended that high school aged youth engage in about 60 
minutes of moderate-to-vigorous physical activity (MVPA) per day. The trial randomly 
selected 50 schools from a broader population of schools and randomly assigned 25 of 
these schools to an intervention condition and 25 schools to a treatment as usual (TAU) 
control group. The outcome variable was the number of minutes of MVPA per day engaged 
in by a student as measured for two weeks at the end of the school year using an 
accelerometer for 20 randomly selected students from each school. The clusters are schools 
and the elements within the cluster are the random sample of students within each school. 
Indices of school characteristics reflect Level-2 data and measures of individual student 
physical activity and other such variables represent Level-1 data. Keep in mind that the 
population of schools I am working with is much larger than the 50 sampled schools  and 
that the total number of students in each sampled school is more than the 20 students 
sampled from each school 
 When introducing population parameters that researchers often reference when 
invoking multilevel models, I will make several simplifying assumptions for the sake of 
pedagogy. I relax many of them later. Also, when estimating population parameters from 
sample data, we need to invoke statistical theories that allow us to take into account 
different forms of sampling error. I elaborate these statistical theories below.   

I begin by representing mathematically selected facets of the population from which 
the 50 schools and 20 students per school are randomly selected.. In theory, I can express 
the within-cluster (Level-1) MVPA minutes per day in the population data as an intercept-
only equation, as follows: 

Yij = αj + εij             [25.1] 

where Y is the number of minutes of MVPA per day for individual i in school j, αj is the 
intercept for school j and εij is the disturbance or error score for individual i in school j. 
When there are no predictors in a linear equation, as is the present case, it turns out the 
intercept will equal the mean of the outcome for a given school, so in this case, α1 is simply 
the average number of minutes of MVPA for all students in School 1, α2 is the average 
number of minutes of MVPA for all students in School 2, α3 is the average number of 
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minutes of MVPA for all students in School 3, and so on.1 Suppose the average number of 
minutes of MVPA for students in School 1 is 42 minutes per day. If I encounter a student 
from this school, I would predict that his or her physical activity is 42 MVPA minutes per 
day, which is the value of the school mean as reflected by the intercept in Equation 25.1.  

Suppose that the student, who I will refer to as Student 1, engages in 40 minutes of 
MVPA per day. My prediction would be off by 2 minutes and this is reflected in the error 
or disturbance term εij in Equation 25.1. The value of ε11 is 42 - 40 = 2. In theory and at the 
population level, I can calculate such error scores for every student in School 1. I might 
then calculate the standard deviation of the error scores across all the students in School 1 
and find that it equals 23.0. This reflects the amount of variability in MVPA minutes per 
day within School 1. I also can calculate the standard deviation of the within school errors 
across all schools/clusters to obtain an index of the within school variation in MVPA 
minutes across schools. I symbolize this parameter as σε. Note that there is no subscript j 
for this expression because the index is calculated across all schools. Suppose σε equals 
25.0. This means that MVPA scores typically vary within the schools by about 25 minutes 
per day. The population level within-cluster variance is the square of this value, σε2, 
which is 252 = 625. The σε sand σε2 are important indices because they provide us with a 
sense of how much within-cluster or, in this case, within-school variability exists. They 
reflect how different the students are from each other after eliminating the differences 
between the schools. Researchers who use multilevel models often seek to estimate the 
value of this parameter from the data they collect. 

Shifting to a Level-2 perspective, I might ask what is the average Level-1 intercept, 
αj, across the j schools/clusters. I can express this as a Level-2 linear equation as follows 
(using γ0 as the intercept on the right side of the equation to distinguish it from Level-1 
coefficients): 

αj = γ0 + uj                       [25.2] 

 In this equation, αj  is the within-school intercept for school j and γ0 , also an intercept 
but calculated across schools, is conceptualized as the statistical expectation (or mean) of 
the αj across clusters/schools. Suppose γ0 equals 47.0. This means that the average minutes 
of MVPA per day across all clusters is 47.0. If someone asks me what is the average amount 
of time students engage in MVPA per day in School 1, my answer based on Equation 25.2 
would be 47 minutes. Recall, however, that the actual value of αj for School 1 was 42.0 
minutes. My answer based on Equation 25.2 is in error by 47.0 – 42.0 = 5.0 minutes and 
this error is captured in the uj term in Equation 25.2 (technically, it is αj - γ0). As with the 

 
1 For now, I assume no measurement error. I relax this assumption later in the Chapter 
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Level-1 data, I can calculate the standard deviation of the u errors across all clusters, which 
I symbolize as σu. This statistic gives me a sense of the across-school variability in the 
mean MVPA per day across the schools. Suppose it equals 20. This means that the school 
means differ from the grand mean γ0, on average, by 20 minutes. The between-
school/cluster variance is then σu2 = 202 = 400. Researchers who use multilevel models 
also often estimate the value of this parameter from the data they collect. 
 Note that in a cluster randomized trial, the between-school variance includes the 
effects of the intervention in it. I can take this into account in the population Level-2 
equation by adding a dummy variable for the treatment condition (0 = control, 1 = 
intervention) to Equation 25.2: 

αj = γ0 + γ1 Tj + uj                     [25.3] 

γ1 is a regression/path coefficient and equals, like any dummy variable, the difference in 
the mean αj for the intervention schools minus the corresponding mean for the control 
schools. The γ1 coefficient is of primary interest to program evaluators. Note that in 
Equation 25.3, the standard deviation σu now reflects the variability in αj holding constant 
(or removing the effects of) the treatment versus the control group.  
 The above exposition allows me to identify key concepts in the analysis of cluster 
randomized trials. In the absence of any Level-1 and Level-2 predictors, σε2 is the within-
cluster variance of the outcome in the RET and σu2 is the between-cluster variance of 
the outcome. It can be shown mathematically that the total variation in the outcome, Y, is 
an additive function of these two variances: 

σY2 = σε2 + σu2               [25.4] 

When a Level-2 predictor is included in the model, such as a dummy variable for the 
treatment condition or any other Level-2 covariate, σu2 is the between-cluster variance 
holding constant or after removing the variance explained by the added Level-2 predictors. 
When a Level-1 predictor is included in the model, σε2 is the within-cluster variance 
holding constant or after removing the explained variance by those Level-1 predictors. I 
make use of these concepts below. 

THE INTRACLASS CORRELATION COEFFICIENT 

A statistical index often used in studies with clustering is the intraclass correlation 
coefficient (ICC). It often is used to provide perspectives on the need to adjust for 
clustering, to provide insights into dependency structures, and to justify pursuit of 
multilevel modeling. There are many types of ICCs (some of which go by the name 
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interclass correlation rather than intraclass correlations) which can lead to confusion 
about the properties of ICCs. My discussion here focuses on intraclass correlation 
coefficients in forms that are most relevant to the analysis of cluster randomized trials.  

One instantiation of the ICC uses it to document between-cluster mean differences 
on the outcome relative to the total variability in the outcome; that is, it is the ratio of 
between-cluster variance for the outcome relative to the total variance of the outcome, or, 
when there are no Level-1 or Level-2 predictors: 

ICC = σu2 / σY2 =  σu2 /(σu2 + σε2)                  [25.5] 

The ICC is often thought of as the proportion of variance in Y due to across cluster 
dynamics. One minus the ICC is the proportion of variance in Y due to within-cluster 
dynamics. Under this conceptualization, if the ICC is 1.0, this means that each score within 
a cluster is identical – that variation in Y is completely due to across cluster dynamics and 
there is no within-cluster variability in scores. As the ICC becomes increasingly less than 
1.0, the within-cluster scores become less similar. When the ICC equals zero, then within-
cluster variability dominates the total variability in Y; between-cluster variability is zero. 
A large ICC often raises red flags to statistically adjust for error dependencies because 
across cluster dynamics are at play.  

In RCTs, usually half of the clusters are assigned to the intervention group and half 
to the control group, so a low ICC also is indicative of a modest or trivial intervention 
effect. To gain additional perspectives on error dependencies independent of this effect, 
researchers often evaluate the ICC for the intervention and control groups separately or 
after the effects of the treatment condition have been removed from Y, per Equation 25.3. 

A common point of confusion in the literature is the reference to the ICC as a 
correlation coefficient when Equation 25.5 portrays it as a proportion of explained 
variance, which traditionally is viewed as a squared correlation. The ICC is a correlation 
coefficient but it is a special type. I elaborate this point here given common 
misunderstandings of ICCs. Uninterested readers can skip the next three paragraphs.  

Consider a hypothetical example that consists of eight clusters with two 
members/elements in each cluster. The third column of Table 25.1 presents the  Y scores 
(which have a 0 to 10 metric) for each individual in each cluster:   
 
Table 25.1: Clustered Data Example 

Cluster Individual Y 
   

1 1 5 
1 2 6 
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2 1 3 
2 2 2 
3 1 7 
3 2 9 
4 1 2 
4 2 2 
5 1 3 
5 2 5 
6 1 6 
6 2 9 
7 1 4 
7 2 2 
8 1 8 
8 2 7 

To calculate estimates of the variance components σu2 and σε2, I conducted a one way 
random effects analysis of variance where the independent variable or factor is the cluster 
(I did this using SPSS but you can use other statistical packages). The factor has 8 levels 
because there are 8 clusters. I used a random effects analysis as opposed to the traditional 
fixed effects analysis (see Chapter 5) because the 8 clusters are assumed to represent a 
random sample of clusters from a broader population of clusters, a conceptualization I 
comment more on below. I symbolize the sample estimate of σu2 as ŝu2 and, from the 
analysis of variance, I find that it equals 4.50. I symbolize the sample estimate of σε2 as ŝe2 
and the analysis of variance yields a value for it of 1.50. From Equation 25.5, I find 

ICC = ŝu2 /(ŝu2 + ŝe2) = 4.50 / (4.50 + 1.50) = 0.75        

The estimated intraclass correlation is 0.75, which is large. Variation in Y is dominated by 
between-cluster variance, which is consistent with inspection of the data in Table 25.1. 

Adopting a correlational perspective, I restructure the data in Table 25.1 to represent 
each pair of scores in a cluster in a single row, with one member of the cluster in one 
column and the second member of the cluster in a second column, like this: 

 
Cluster Y.1 Y.2 

   

1 5 6 
2 3 2 
3 7 9 
4 2 2 
5 3 5 
6 6 9 
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7 4 2 
8 8 7 

If I calculate the traditional Pearson correlation between the two columns to document 
score similarity within clusters, I find the correlation is 0.82, which does not equal the 
previously computed ICC. This occurs because there is a problem with using Pearson’s 
correlation in this way. In the above data table, the cluster member who I designate as 
member 1 and who I designate as member 2 is arbitrary; For example, I could just as easily 
flip the row scores within cluster 1 to be 6 and 5 instead of 5 and 6 given that who I 
designate as Y.1 and who I designate as Y.2 is arbitrary. If I calculate the traditional 
Pearson correlation after enacting such a switch for just row 1, I obtain a result different 
from 0.82. This is because Pearson’s correlation presumes that scores are meaningfully 
identified within their respective columns. For example, If I correlate height and weight 
with height in the first column and weight in the second column, then the person's height 
must go in the first column and weight in the second column. I can’t arbitrarily interchange 
numbers between columns for any given row. Studies of twins that correlate scores for one 
twin member with scores for the other twin member also encounter this arbitrary pairing 
issue; which twin do you designate as member 1 and which twin as member 2? Sir Ronald 
Fisher proposed a solution to the arbitrary pair problem using what he called the intraclass 
correlation: Have every pair be included twice, in both orders, and then compute the 
Pearson correlation. Here is the reshaped data matrix: 

Cluster Y.1    Y.2 
   

1 5 6 
1 6 5 
2 3 2 
2 2 3 
3 7 9 
3 9 7 
4 2 2 
4 2 2 
5 3 5 
5 5 3 
6 6 9 
6 9 6 
7 4 2 
7 2 4 
8 8 7 
8 7 8 
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If I calculate the correlation between the two columns, I obtain 0.75, which equals the value 
of the variance based ICC. The ICC is indeed a correlation coefficient but it is a correlation 
for the case of "unpaired" data in the same cluster. If there were more than two individuals 
per cluster, the logic is the same but there are more ways of creating pairs of individuals 
within clusters. The ICC is the correlation between all possible pairings but unordered. 
 I do not want to get sidetracked on details, but, in theory, the ICC ranges from -1 to 
+1 and can take on negative values. Some methodologists view negative ICCs in cluster 
randomized trials as artifacts of statistical bias corrections, arguing that such ICCs should 
be treated as if they are very small and positive or zero. Other methodologists argue that 
negative ICCs can be meaningful if they reflect “shocks” to clusters that encourage 
heterogeneity rather than uniformity on the outcome. One example is the ‘fixed pie’ case 
where there is a fixed amount of a resource within a group, such as speaking time during a 
meeting, in which case more time for one person means less time for another (Islam & 
Zyphur, 2005). The issue is moot in most cluster randomized trials because the ICC is 
rarely negative in them. Also, keep in mind that there are special variants of the ICC for 
the case where the variables involved are binary or ordinal (see Ridout, Demétrio & Firth, 
1999; Eldridge, Ukoumunne & Carlin, 2009).  

DESIGN EFFECTS 

The intraclass correlation by and of itself gives us some sense of whether dependencies are 
present but it does not inform us how much the dependencies might disrupt statistical 
inference. A concept that reflects the latter is known as a design effect. The design effect 
is the ratio of the magnitude of the standard error one would observe for a dependency-
corrected analysis compared to the standard error one would observe under simple random 
sampling. If the design effect is 2.0, then this means the adjusted standard error is twice as 
large as the standard error one obtains under random sampling of independent replicates. 
The larger the design effect, the greater the need to adjust for bias due to dependencies, 
everything else being equal. Estimates of the magnitude of the design effect depend on the 
parameter of interest and the method used to adjust for dependencies. Generally, design 
effects larger than 2.0 are deemed worthy of statistical remediation but this standard is 
arbitrary and context dependent. The reason some analysts are reluctant to correct for 
dependencies is because it typically reduces the  power of statistical tests and the precision 
of estimates. The argument in favor of corrections is that ignoring adjustments can be 
misleading because unadjusted data underestimate the role of sampling error.  

When quantifying design effects, some methodologists use the standard errors to 
form the relevant ratio whereas other researchers use the square of the standard errors 
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(which are the standard errors expressed as variances). It is important to know which index 
is used because they imply different design effect magnitudes given the same standard 
errors. For example, suppose the unadjusted standard error is 2.0 and the adjusted standard 
error is 4.0. The design effect index using the standard errors directly is 4.0/2.0 = 2.0. If I 
use instead the variances, the design effect index is 4.02/2.02 = 4.0. The design effect as 
applied to parameter variances (i.e., squared standard errors) is often symbolized by DEFF 
whereas the design effect as applied to the standard errors directly is symbolized by DEFT, 
although there is some inconsistency in such uses in the literature.  

Design effects can vary in magnitude within the same study depending on the 
variables analyzed, how those variables are distributed, and the type of analysis being 
applied to the variables. Design effects can be less than 1.0, in which case, they increase 
statistical precision and power, 1.0, in which case they have no effect on statistical 
precision and power, or they can be greater than 1.0, in which case, they decrease statistical 
precision and power; see Park & Lee, 2004; Vierron & Giraudeau, 2009.  

If the ICC is zero, the design effect typically will equal 1.0. Also, in many (but not 
all) scenarios, smaller cluster sizes lead to smaller design effects. This is because the 
dependencies will then be limited to a small number of individuals in each group/cluster. 
If the dependencies extend to a large number of individuals within a cluster, then this is 
potentially more problematic. Later, I show how the DEFT is used by some to adjust for 
clustering effects.  

CLUSTER POPULATIONS 

The analytic methods I discuss below make different assumptions about the cluster 
population in one’s study. Classic two step random sampling of clusters occurs when we 
first delineate the population of clusters (e.g., clinics or schools) that we seek to make 
inferences about and then we secure a formal random sample of clusters from that 
population. In Chapter 4, I introduced the concept of a meta-population that turns this 
process on its head: The researcher identifies a set of, say, clinics or schools that will 
participate in his or her study as a matter of convenience but then construes these clinics as 
a random sample from a broader meta-population of clinics. In both cases, we deal with a 
random sample of clusters from a broader population of clusters but the process of 
sampling is different. In the latter approach, the researcher’s job is to make a convincing 
case about who the meta-population is, i.e., the population of clusters that the sample of 
studied clusters can be construed as a random sample from. This approach justifies the use 
of inferential statistics on sample level data even with convenience samples. However, 
inferential ambiguities occur because we are not always certain who the relevant target 
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population is.  
 When specifying populations, there is an important distinction to be made. Suppose 

I conduct a study in which my clusters are different clinics. I might have in my final sample 
some clinics that serve 300 clients per year, some that serve 400 clients per year, some that 
serve 500 clients per year and some that serve 600 clients per year. One way of construing 
the broader population of clusters that the clinics represent is as those clinics having these 
particular clinic sizes. When such one-to-one correspondence exists between-cluster values 
on a variable in the sample and the cluster values on that variable in the population, 
statisticians refer to the variable values as being fixed in character 

A different way of construing the broader population of clusters on any given variable 
is that the population consists of clusters with the particular values of the variable in my 
sample, but also other values as well. In my clinic size example, the particular clinic sizes 
that occur in my sample are construed as representing a random sample of values from the 
broader population of clinics I am studying. Stated another way, I seek to generalize not 
just to the fixed clinic sizes in my sampled clinics, but to the broader population of clinics 
that contain more varied clinic sizes than those that happen to show up in my sampled data. 
Statisticians often refer to such variable values as being random in character when they 
are associated with a random distribution and a random sampling scheme. It turns out that 
the way one approaches these two scenarios analytically, i.e., the presence of fixed versus 
random predictors, can differ because in the random predictor case, one must take into 
account the additional random error introduced by not having sampled all the predictor 
values in the population. I will draw on these distinctions later in this chapter. 

Gelman (2005) notes that the terms ‘random’ and ‘fixed’ have been used in many 
different ways in statistics to refer to different concepts in different ways, indeed 
sometimes even in contradictory ways. Gelman prefers to avoid the terms altogether and I 
will tend to follow his lead in this chapter. However, know that these terms are used in 
different ways in the broader literature on cluster randomized trials and it can be confusing.  

My key point is that many cluster randomized trials sample clusters (e.g., clinics, 
schools) and study participants in ways that reference meta-populations rather than existing 
populations. Researchers need to think about if the values of the variables they are studying 
have one-to-one correspondence to those in the broader meta-population that is the focus 
of generalization or if the values represent random samples from variable values in the 
meta-population. Researchers also need to address issues of just who the meta-populations 
are that the sampled clusters and participants in a study are thought to represent—this latter 
issue is common to all research involving statistical inference, but arguably becomes more 
important in clustered designs because two types of populations are being considered.         
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WORKED EXAMPLES 

I use two numerical examples of cluster randomized explanatory trials to illustrate key 
points for analysis. The first example is the previously discussed school-based intervention 
to increase the amount of moderate-to-vigorous physical activity (MVPA) per day on the 
part of high school youth. The trial randomly assigned 25 schools to the intervention 
condition and 25 schools to a treatment as usual (TAU) control group. The outcome 
variable was the number of minutes of MVPA per day as measured for two weeks at the 
end of the school year using an accelerometer for 20 randomly selected students from each 
school. The clusters are schools and the elements within the cluster are students within 
each school. Indices of school characteristics reflect Level-2 data and measures of 
individual student physical activity represent Level-1 data. The intervention sought to 
affect two mediators, (1) educating youth about the benefits or advantages of MVPA, and 
(2) teaching youth how to engage their friends in helping them receive peer support for 
engaging in MVPA. Each mediator was measured on a multi-item self-report scale at 
posttest that ranged from -5 to +5 with 0 as a neutral point; more negative scores reflect 
low levels of perceived advantages and peer support for MVPA and more positive scores 
reflect high levels of perceived advantages and peer support for MVPA. The scales were 
multi-item composites based on the individual’s average response to disagreement or 
agreement with statements about the respective construct (-5 = strongly disagree, -3 = 
moderately disagree, -1 = slightly disagree, 0 = neither agree nor disagree, 1 = slightly 
agree, 3 = moderately agree, 5 = strongly agree). In order to keep the example simple for 
purposes of pedagogy, I do not include covariates but these would normally be included in 
such an experiment. Their inclusion is straightforward.   
 The goal of the intervention was to increase MVPA by a minimum of 20 minutes per 
week (or an average of about 3 minutes per day). Any effect size below this magnitude was 
deemed too weak to be meaningful. For the mediators, consultation with experts suggested 
a mean difference of half a scale unit, 0.50, as a reasonable meaningfulness standard for 
the intervention minus control effect on the mediator. Finally, a 3 unit change in the MVPA 
measure for every one unit increase in the mediator was judged by the experts to be a 
reasonable meaningfulness standard for the effects of each mediator on MVPA.       
 The second example is an RET in which individuals are randomly assigned to an 
intervention or control condition, with individuals in the intervention then randomly 
assigned to small groups of 10 members each for a group administered interactive 
intervention on wearing masks during the COVID pandemic. The control group, instead, 
receives an interactive intervention on eating nutritious foods, also in the same small group 
format. The primary outcome variable is the intention to regularly wear a mask in the 
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future, measured on a multi-item -5 to +5 scale with higher scores indicating a more 
positive intention. The intervention targeted as mediators the individuals’ attitudes toward 
wearing masks (i.e., the perceived advantages of wearing a mask and the perceived 
disadvantages of not wearing one) and perceived norms surrounding mask use. Measures 
of mask wearing attitudes and perceived norms to regularly wear a mask in the future were 
obtained after the intervention/control activities were completed. Each construct was 
assessed on a multi-item scale whose scores on individual items ranged from -5 (strongly 
disagree) to +5 (strongly agree), per the earlier described metric. The total score for all 
measures was the average item response across the items, with appropriate reverse scoring. 
The higher the score, the more positive the intention to wear a mask regularly, the more 
positive the attitude towards doing so, and the more supportive the perceived norm. There 
were 50 small groups in the intervention condition and 50 in the control condition. 

The goal of this intervention was to increase intentions to regularly wear masks by a 
scale unit of 0.20. Any effect below this magnitude was deemed too weak to be meaningful. 
For the mediators, consultation with experts suggested a mean difference of one third a 
scale unit, 0.33, was a reasonable meaningfulness standard for the intervention minus 
control conditions on the mediator. Finally, a 0.33 unit change in mask wearing intentions 
for every one unit increase in the mediator was judged by the experts as a reasonable 
meaningfulness standard for the effect of each mediator on mask wearing intent. 

Figure 25.1 presents the model structure for both studies. The treatment condition is 
scored 1 = intervention group, 0 = control group. The model assumes no direct effect of 
the treatment condition on the outcome over and above the two mediators. The correlated 
disturbances between the mediators reflect the fact that there likely are other sources of the 
correlation between them than just the common cause of the treatment condition.   

  

Mediator 1

Mediator 2

Outcome
Treatment vs. 

Control

p1

d3

d2

d1

p2

p3

p4

 

FIGURE 25.1. Model structure for two RETs 
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For both studies, there are three endogenous variables in the model, yielding three 
core causal equations, expressed here using sample notation: 

M1 = a1 + p1 Treatment + d1 

M2 = a2 + p2 Treatment + d2 

Y = a3 + p3 M1 + p4 M2 + d3 

where M1 is mediator 1, M2 is mediator 2, and Y is the outcome.  

CLUSTERING AS A NUISANCE 

Assuming clustering creates error or disturbance dependencies that are non-trivial in 
magnitude, your study might be such that the clusters per se are not of substantive interest 
but they instead act as nuisance factors whose effect on dependency structures must be 
taken into account. In such cases, you need to introduce corrections for standard error 
estimation; beyond that, the analysis is much the same as traditional individual-based 
regression modeling in an SEM context.  

Mplus uses a multivariate form of pseudo-maximum likelihood (PML) estimation to 
adjust standard errors for such cases. The mathematics of the approach are described in 
Asparouhov (2005) and Asparouhov and Muthén (2005). PML uses Taylor series 
linearization to obtain adjusted standard errors (Oberski, 2014). Forms of bootstrapping 
also are available (Asparouhov & Muthén, 2010e). When applying PML, you obtain the 
same regression/path coefficients as traditional maximum likelihood analysis but the 
estimated standard errors are adjusted to reflect clustering. The unadjusted standard errors 
typically will be underestimates (i.e., too small) if clustering matters. The Mplus approach 
is tied to asymptotic theory and requires sufficiently large sample sizes to satisfy 
asymptotics. It assumes there is no non-trivial omitted variable bias. It also assumes the 
clusters are not part of a higher level hierarchical structure that introduce non-trivial 
dependencies at the cluster level. The Mplus output is similar in format to traditional classic 
single level models without cluster adjustments. However, the adjustments have indeed 
been implemented on the output. Outcome variables can be continuous, censored, binary, 
ordinal, nominal, or counts and all results are interpreted much as in traditional SEM.  

PML requires that the number of clusters be relatively large. About 50 clusters is 
generally considered to be sufficient (Angrist & Pischke, 2008; Donner & Klar, 2000; 
Kahan et al., 2016; Leyrat, Morgan, Leurent & Kahan, 2018) but some methodologists 
argue that a smaller number can be used in certain contexts. For example, the authors of 
the Mplus program suggest that 20 clusters might be feasible in some contexts (Muthén, 
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2014; see also Huang, 2016, 2018). I discuss in Chapter 28 how you can conduct 
simulations to determine if the number of clusters you have or plan to have in your study 
is problematic. 

The PML approach works best when clusters tend to be of roughly equal size (Nichols 
& Schafer, 2007). It handles missing data seamlessly via maximum likelihood methods per 
Chapter 26. It also readily lends itself to mediation and moderation analyses.  

Mplus Analysis with Nuisance Cluster Adjustments  

For the physical activity example, Table 25.2 presents the relevant Mplus syntax for 
treating clustering as a nuisance. Most of the syntax should be familiar to you from prior 
chapters. I number the lines for reference, but the numbers do not appear in the code when 
you program in Mplus. 
 
Table 25.2: Mplus Nuisance Based Analysis 
 
1.  TITLE: Cluster as nuisance ; 
2.  DATA: 
3.  FILE IS mvpa.dat ; 
4.  VARIABLE:  
5.  NAMES ARE  
6.    mvpa peers advant treat school  ; 
7.  USEVARIABLES ARE  
8.    mvpa peers advant treat ; 
9.  CLUSTER is school ;   !identify cluster variable 
10. ANALYSIS: 
11. TYPE = COMPLEX ;    ! specify complex design option 
12. !BOOT = 5000 ;  
13. MODEL : 
14. mvpa ON advant peers  ; 
15. peers on treat ; 
16. advant ON treat ; 
17. advant with peers ; 
18. MODEL INDIRECT: 
19. mvpa IND treat ; 
20. OUTPUT: SAMP STANDARDIZED RESIDUAL MOD(ALL 4) 
21. CINTERVAL TECH4 ; 
22. !CINTERVAL(BOOTSTRAP) TECH4 ; 
 

Lines 5 and 6 input the data, including the cluster id variable called school which is 
characterized by an integer between 1 and 50 (inclusive) that signifies which cluster the 
individual is in. There are 50 such clusters, each with 20 members. Lines 7 and 8 tell Mplus 
which variables to use in the causal model, leaving out the cluster variable because it is not 
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a formal part of the defining equations. Line 9 identifies the cluster id variable and Line 11 
uses the COMPLEX option to inform Mplus that this is a clustered design. The remaining 
syntax is straightforward based on material I have covered in prior chapters. I explain the 
commented out lines (Lines 12 and 22) later. I do not specify the estimation method 
because Mplus invokes its robust algorithm by default in models that use COMPLEX.  
  Because I have described Mplus output formats in priori chapters, I present it here 
with limited exposition. The results for model global fit are as follows: 
 
Chi-Square Test of Model Fit 
 
          Value                              0.392* 
          Degrees of Freedom                     1 
          P-Value                           0.5315 
          Scaling Correction Factor         7.6667 
            for MLR 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.000 
          90 Percent C.I.                 0.000  0.071 
          Probability RMSEA <= .05           0.844 
 
CFI/TLI 
 
          CFI                                1.000 
          TLI                                1.000 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.011  

 
All of the indices suggest satisfactory model fit. The localized fit indices 

(modification indices, standardized residuals) also point to satisfactory fit: 
 
           Standardized Residuals (z-scores) for Covariances 
              MVPA          PEERS         ADVANT        TREAT 
              ________      ________      ________      ________ 
 MVPA           0.001 
 PEERS          0.000         0.000 
 ADVANT         0.002         0.000         0.000 
 TREAT         -0.553         0.000         0.000         0.000  
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MODEL MODIFICATION INDICES 
 
Minimum M.I. value for printing the modification index     4.000 
 
                                   M.I. E.P.C. Std E.P.C. StdYX E.P.C. 
 
No modification indices above the minimum value.  

 
To address the first question of whether the intervention affects the outcome, Mplus  

provides an analysis of the total effect of the intervention on MVPA in the section labeled 
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS: 

 
                                                     Two-Tailed 
                    Estimate       S.E. Est./S.E.    P-Value 

Effects from TREAT to MVPA 

  Total                7.348      2.310      3.182      0.001 

There was a statistically significant effect of the intervention on MVPA (the difference 
between treatment and control groups = 7.35 minutes, margin of error (MOE) = ±4.62, 
critical ratio (CR) = 3.18, p < 0.05). The lower limit of the 95% confidence interval was 
2.73 minutes of MVPA per day, which is defined as the observed mean difference between 
the treatment and control conditions minus the margin of error. This result is just below the 
meaningfulness standard of 20 minutes/7 days per week = an average of 2.85 minutes per 
day. Thus, I am 95% confident that the program effect is non-zero, but technically I cannot 
assert that the program yields a meaningful effect with that same level of confidence. To 
be sure, my best guess of the program effect is the observed sample mean difference, which 
is to increase MVPA 7.35 minutes per day. But if I acknowledge that sampling error is 
present for this estimate, it is possible that the error is sufficiently large that my confidence 
is not strong (i.e., 95% strong) that the effect is indeed meaningful. Note that if I use a 90% 
confidence, interval instead of a 95% interval, the lower limit of that interval will exceed 
the meaningfulness standard. For discussion of different perspectives on this matter, see 
Chapter 10.        

The second core question of interest in an RET asks whether the intervention has a 
meaningful effect on each of the mediators, which in the present example is defined as a 
mean difference of 0.50 scale units. Here are the results for the estimated effects of the 
intervention on the mediators:  
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                                                       Two-Tailed 
                    Estimate       S.E.  Est./S.E.   P-Value 
 
PEERS    ON 
    TREAT              0.776      0.319      2.436      0.015 
 ADVANT   ON 
    TREAT              0.733      0.306      2.395      0.017 

 
The estimated effect of the intervention on perceived advantages was to increase perceived 
advantages, on average, by 0.73 units on its -5 to +5 metric, which was statistically 
significant (MOE = ±0.62, CR = 2.40, p < 0.05). The lower limit of the 95% confidence 
interval was 0.16 which overlaps the meaningfulness standard. Thus, I am again in the 
situation where although I can conclude the intervention effect on the mediator is non-zero 
and that my best guess of the intervention’s effect is to raise perceived advantages by 0.73 
units, the amount of estimated sampling error is such that I can’t confidently state the 
meaningfulness standard is reached.  

The estimated effect for peer support on its -5 to +5 metric also was statistically 
significant (coefficient = 0.78 ± 0.64, CR = 2.44, p < 0.05). The same scenario for perceived 
advantages applies to peer support as well.  

In terms of the standardized effect size of the intervention on the mediators, here is 
the Mplus output for the squared multiple correlations:2 

 
R-SQUARE 

 
    Observed                                          Two-Tailed 
    Variable        Estimate       S.E.   Est./S.E.    P-Value 

 
    PEERS              0.063      0.049      1.303      0.193 
    ADVANT             0.061      0.046      1.323      0.186 
 
The intervention accounts for about 6% of the variation in each mediator. You can convert 
results on the Mplus output to any of the effect size indices discussed in Chapter 10 (e.g., 
Cohen’s d, probability of exceptions to the rule), something I leave as an exercise to you 
based on the material in Chapter 10. As an example, I can calculate Cohen’s d for the 
perceived advantages mediator as the path coefficient 0.733 divided by the square root of 
the unstandardized residual variance for perceived advantages when it is regressed onto the 
treatment condition dummy variable. The value of the residual variance as taken from the 
Mplus output was 2.05 (not shown above but it does appear on the Mplus output). This 

 
2 These estimates ignore the correlated disturbances between the constructs. See the document on my webpage for 
Chapter 10 on possible adjustments for such correlations.  
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yields d = 0.512.   
 The third question in an RET focuses on estimating the effects of each mediator on 
the outcome. Here are the results from the Mplus output for these estimated effects: 
 
                                                      Two-Tailed 
                    Estimate       S.E.   Est./S.E.    P-Value 
 
MVPA     ON 
    ADVANT             4.696      0.577      8.142      0.000 
    PEERS              5.035      0.609      8.264      0.000 

 
The estimated path coefficient for the effect of perceived advantages on MVPA was 4.70 
±1.13, CR = 8.14, p < 0.05; for every one unit that perceived advantages increases on its   
-5 to +5 metric, the mean MVPA is predicted to increase 4.70 minutes holding constant 
peer support. The lower limit of the confidence interval for this coefficient is 3.56 which 
exceeds the a priori meaningfulness standard for it of 3.0. The perceived advantage 
mediator has meaningful impact on MVPA.    

The estimated path coefficient for the effect of peer support on MVPA was 5.04 
±1.22, CR = 8.26, p < 0.05; for every one unit that peer support increases on its -5 to +5 
metric, the mean MVPA is predicted to increase 5.04 minutes, holding perceived attitudes 
constant. The lower bound confidence interval for it was 3.82, which also exceeds its 
meaningfulness standard. Both mediators appear to be relevant determinants of MVPA.  
 Here is the estimated squared multiple correlation for MVPA as predicted from 
perceived advantages and peer support: 
  
R-SQUARE 
 
    Observed                                          Two-Tailed 
    Variable        Estimate       S.E.   Est./S.E.    P-Value 
 
    MVPA               0.432      0.052      8.252      0.000 

 
Perceived advantages and peer support account for 43% of the variance in MVPA.   

Mplus also provides an analysis of the omnibus indirect effect of each mediator on 
MVPA based on Line 19 of Table 25.2. Here is the relevant output: 
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TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                                                       Two-Tailed 
                    Estimate       S.E.    Est./S.E.    P-Value 
 
Effects from TREAT to MVPA 
 
  Specific indirect 1 
    MVPA 
    PEERS 
    TREAT              3.908      1.652      2.366      0.018 
 
  Specific indirect 2 
    MVPA 
    ADVANT 
    TREAT              3.440      1.500      2.294      0.022 

The overall mediational effect through peer support was statistically significant (coefficient 
= 3.91 ±3.24, CR = 2.37, p < 0.05) and this also was true for perceived advantages 
(coefficient = 3.44 ±3.00, CR = 2.29, p < 0.05). These results are consistent with what one 
would conclude using the joint significance test. I generally prefer the joint significance 
test coupled with a link-by-link analysis of the strength of the effect for each link in the 
respective mediational chain as opposed to the above omnibus tests, per my discussion in 
Chapters 10 and 17. However, some researchers prefer the omnibus test.   
 As noted in previous chapters, the test of the omnibus indirect effects often can be 
improved by invoking bootstrapping instead of relying on the MLR estimator of Mplus. I 
can use bootstrapping by commenting out Line 21 in Table 25.2 and uncommenting Lines 
12 and 22. In this particular instance, the results of the two analyses were comparable, so I 
do not show the bootstrapping output.  
 An advantage of the “cluster as nuisance” strategy is that traditional methods for 
mediation and moderation analysis directly import to it (see McNeish, Stapleton & 
Silverman, 2017) as do the interpretation of standardized coefficients. A disadvantage of 
the approach is that one cannot address certain kinds of substantive questions at the cluster 
level that may be of interest, which I elaborate below when I present multilevel structural 
equation modeling (MSEM). The approach conflates sources of between-cluster variability 
and within-cluster variability and if this unconflated analyses are theoretically important to 
you, the approach is limited. Having said that, I show you later in the chapter how to bring 
Level-2 predictors into the above modeling strategy to tease out between-cluster and 
within-cluster effects. However, you still cannot do all that you can using MSEM.  
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Generalized Estimation Equations 

An alternative approach to dealing with clustering that treats clustering as a nuisance is a 
method known as generalized estimating equations (GEE). GEE uses a different 
statistical theory than PML. It estimates a working correlation structure for observations 
within a cluster which then informs the estimation of the regression coefficients and their 
standard errors in the underlying regression model (see Liang & Zeger, 1986; Zeger & 
Liang, 1986; Zeger, Liang, & Albert, 1988). GEE makes more restrictive statistical 
assumptions than PLM and does not handle missing data as well. Technically, GEE 
assumes missing data are MCAR (see Chapter 26), which is more restrictive than PLM, 
which assumes missing data are MAR. This is because GEE is not a likelihood-based 
method, hence, likelihood corrections for missing data cannot be used (Ghisletta & Spini, 
2004). Although GEE’s assumption that missing data are MCAR is disconcerting, 
Fitzmaurice, Laird, and Rotnitzky (1993) found that the bias of GEE with data that are 
MAR tends to be small unless the amount of missing data is large (near 50%) and the 
estimated model is misspecified. Weighted GEE methods have been developed to address 
missing data issues (Chen, Yi, & Cook, 2010; Lipsitz, Ibrahim, & Zhao, 1999; Robins, 
Rotnitzky, & Zhao, 1995), including specialized forms of multiple imputation. 

GEE is popular in epidemiology and many fields of public health. However, in my 
judgment, it is inferior to the analytic methods I emphasize in this chapter for purposes of 
conducting RET based mediation/moderation analyses. Given this, I do not delve into it in 
detail. A non-technical tutorial on using GEE for cluster adjustments is provided by Huang 
(2022).  

Cluster Level Dummy Variables 

A third approach to adjusting for clustered data is to treat the clusters as a nominal variable 
and then to introduce dummy variables for them vis-a-vis traditional OLS regression 
analysis. This strategy removes or controls for all between-cluster variation in the outcome, 
which is often thought to adjust for error dependencies as a function of the clusters. This 
approach is problematic for clustered randomized trials because the intervention versus 
control group manipulation occurs at the cluster level. As such, the dummy variable 
approach is not able to compare the two treatment conditions because you have removed 
those differences by including the cluster dummy variables. A contrast strategy to 
circumvent this limitation has been proposed by McNeish and Stapleton (2016) but their 
approach needs greater exploration and statistical justification. As well, statisticians have 
shown that in certain contexts, the dummy variable approach is not sufficient to guarantee 
the removal of within-cluster error dependencies (see Abadie et al., 2017). 
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 Little et al. (2022; see also Niolon et al., 2019) suggest a two stage multiple group 
SEM strategy for cluster randomized trials that makes use of cluster-based dummy 
variables. One of the groups is the intervention condition and the other group is the control 
condition. In the first stage, model variables are regressed within each group onto the set 
of cluster defined dummy variables and each of the per subject unstandardized residuals 
are saved for use in stage two. In the second stage, the unstandardized residuals are used 
as indicators of variables for standard SEM multiple group analyses that test (a) within 
group causal relationships between mediators and with the outcome, (b) across group 
differences  in the within group causal coefficients, and (c) between group differences in 
means of the residual indicators. For the latter, one must strategically define the zero point 
of each residual covariate for which several strategies are discussed by Little et al. Little 
et. al’s approach has the advantage of relying on well-known multiple group SEM analytic 
structures, but it has not been subject to formal simulation evaluations in the context 
clustered randomized trials. At this point, it is a provocative but understudied analytic 
strategy for clustered randomized trials that needs further exploration.    
 In sum, if clusters are nothing more than a nuisance and you have a sufficient number 
of clusters then the PML approach offered by Mplus is a reasonable analytic strategy for 
analyzing mediation or moderation in a clustered RET (unless your sample size is so small 
that asymptotic theory is compromised). I describe in Chapter 28 how to determine if 
asymptotic theory is undermined by using local simulations.      

MULTILEVEL SEM 

Multilevel SEM is an analytic strategy for multilevel data when one seeks to make 
statements about cluster dynamics in a cluster RET. For example, one might want to 
formally test if the effects of a group-administered intervention are moderated by the 
experience levels of the group facilitators/therapists leading the groups, with more 
experienced facilitators bringing about more group-level change than less experienced 
facilitators. MSEM is distinct from traditional multilevel modeling as implemented by 
software like HLM and MLwiN and from what is commonly known as mixed modeling, 
although these strategies as well as SEM more generally can be thought of as special cases 
of MSEM. MSEM is superior to traditional multilevel modeling because it can incorporate 
latent variables into the analysis, it can deal with complex structural relationships that are 
not easily evaluated in traditional multilevel models, and it addresses oft-overlooked 
conflation of effects at the different levels of analysis.  

When applied to sample data, the significance tests for the coefficients in an MSEM 
model require good estimates of σε and σu  described earlier. It turns out that estimating σε 
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usually is straightforward but estimating σu requires that a sufficient number of Level-2 
clusters be included in the study. If there are, for example, 8 clusters in the study, then we 
effectively estimate σu based on only 8 data points, which can be problematic. In general, 
a minimum of about 40 to 50 clusters seems necessary to produce reasonable results based 
on a wide range of simulation studies (Angrist & Pischke, 2009; Carter, Schnepel & 
Steiger, 2012; McNeish & Stapleton, 2016b) but sometimes even more are needed. 
Disparate cluster sample sizes also can create estimation difficulties. For example, 
MacKinnon and Webb (2013) found that with heterogeneous cluster sizes, as many as 100 
clusters were needed in some contexts to yield valid estimation of σε and σu. I revisit these 
issues below. I discuss later how to deal with scenarios where the number of clusters in 
your study is small.  
 MSEM can be applied using traditional maximum likelihood or it can use Bayesian 
estimation. Because of its complexity, MSEM based on maximum likelihood often 
encounters convergence and estimation challenges, especially as the number of clusters, 
the sample size within clusters, and the intraclass correlations all become smaller (Depaoli 
& Clifton, 2015; Li & Beretvas, 2013; Ludtke et al., 2011; Meuleman & Billiet, 2009). 
Bayesian estimation is a better alternative to maximum likelihood in many of these 
scenarios (Asparouhov & Muthen, 2012; Depaoli & Clifton, 2015; Hox et al., 2014). Mplus 
has made significant advances in Bayesian estimation for MSEM, so I tend to rely on it.  
 
Level-1 and Level-2 Variables Revisited 

As noted, in multilevel designs Level-1 variables are approached with respect to 
characteristics of individuals within clusters whereas Level-2 variables are approached 
with respect to characteristics of the clusters per se. In the MVPA example, peer support 
and perceived advantages are Level-1 variables. The treatment condition that a 
school/cluster is assigned to is a Level-2 variable. If I want to evaluate if the intervention 
for improving MVPA is more effective in private versus public schools, then I would need 
to obtain a measure of whether each school is public or private and this measure then would 
be used as a Level-2 variable in the context of specialized forms of moderated regression. 
In MSEM as applied to cluster RETs, we typically are interested in theorizing about 
between-cluster variables or causes of variation across clusters. In the nuisance variable 
approach, we instead are more interested in variation across individuals ignoring clusters. 

Global versus Contextual Level-2 Variables 

Researchers often make distinctions between two types of Level-2 variables. Contextual 
variables are obtained via the aggregation of Level 1-data. In the MVPA example, I might 
calculate the average posttest peer support in each cluster and then treat that average as a 
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Level-2 variable that predicts or has implications for other Level-2 variables. This Level-
2 variable has the same value for each member of a cluster because it is the cluster mean 
but the values can differ across clusters. A common Level-2 contextual variable used in 
school-based interventions is the average SES of students in the school. We often want to 
know, for example, if an intervention is more effective in schools that tend to serve lower 
income students as opposed to schools that tend to serve higher income students. The 
average SES of students in a school represents an indicator of school student income levels. 
The second type of Level-2 variable is a global or integral variable. Such variables are 
measured directly at Level 2 and cannot be broken down or seen as an aggregate of Level-
1 scores on that variable. Being in a public versus private school in the MVPA example is 
an example of such a variable. It also is constant for everyone in the school/cluster. The 
distinction between global and contextual Level-2 variables is important and I return to it 
in later parts of this chapter. 

When an aggregate of a within-cluster variable for study participants is used to 
represent a between-cluster contextual variable, there is an important qualification to keep 
in mind. Suppose in the MVPA example I obtain a measure of SES for each student in the 
study and then use the aggregate (average) of the SES index for participants attending the 
same school as an index of the school level SES for each school. The problem with this 
strategy is that the sample average SES for a given school is only an estimate of the 
population mean SES for all students at that school. We know there will be sampling error 
associated with this estimate and ideally our statistical analyses takes this sampling error 
into account. Otherwise, bias can (but does not always) result. The bias is referred to as 
Lüdtke’s bias; see Lüdtke et al. (2008) and Asparouhov and Muthén (2019).  

Variable Decomposition 

It can be shown that the total variability of any variable in a multilevel model is an additive 
function of its within-cluster variability and its between-cluster variability. For MVPA,  

varTOTAL(MVPA) = varBC(MVPA) + varWC(MVPA) 

where varBC is an index of the between-cluster variance of a variable and varWC is an index 
of the within-cluster variance of that variable, expressed using sample notation. Stated 
another way, the total variability in MVPA across all data points is a function of how the 
average MVPA for a school/cluster varies across schools/clusters and also how much 
MVPA varies within each school/cluster. The same is true for the peer support and 
perceived advantages variables:  

varTOTAL(Advant) = varBC(Advant) + varWC(Advant) 
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varTOTAL(Peers) = varBC(Peers) + varWC(Peers) 

Note that for a global variable like whether a school is public or private, there is no 
within-cluster variability; its variability is completely determined by varBC. But for 
variables like MVPA, perceived advantages of MVPA, and peer support, both varBC and 
varWC contribute to the overall variability of those variables. Between-cluster variability 
for any given variable is assumed to be uncorrelated with its within-cluster variability;  
knowing the variability of the mean MVPA across schools/clusters does not allow us to 
say how much variability in MVPA there is within specific schools/clusters.  

Focus for the moment on an outcome and a predictor that have both within-cluster 
and between-cluster variability, say, MVPA and the predictor perceived advantages of 
MVPA. Within clusters, I can estimate the path coefficient for the impact of perceived 
advantages on MVPA for each school/cluster separately by regressing MVPA onto 
perceived advantages within each cluster/school. I symbolize this path by pWC because it is 
a within-cluster statistic. There are multiple pWCs for a given predictor, one for each cluster. 
We often are interested in the average value of the pWC for a given predictor across clusters 
so as to document the “typical” within-cluster effect for the predictor, in this case, of 
perceived advantages on MVPA. We also might be interested in how much the pWC 
coefficient varies across clusters.  

Between clusters, I can estimate a corresponding path coefficient but now I calculate 
it not using individual scores within each cluster but rather using estimates of the cluster 
means for the respective variables. In the MVPA example, my sample size for the 
calculation of such paths is 50 because I have 50 clusters and the estimated cluster mean 
values on MVPA and the cluster mean values on perceived advantages are used to calculate 
the path coefficients, regressing one set of means onto the other set of means.3 I call these 
path coefficients pBC and there is only one such coefficient for each predictor. It also is of 
theoretical interest because it estimates causal effects at the between-cluster level. An 
attractive feature of MSEM is that it allows you to construct a causal model for your 
variables at the between-cluster level using cluster level indices and a separate causal 
model for your variables at the within-cluster level. Usually the models will be the same 
but this will not always be nor need it be the case.  

Traditional multilevel modeling reports a single coefficient for a predictor that is a 
weighted average of its pWC and pBC values, i.e., it conflates the values of these distinct 
parameters. The mathematics of this conflation are described in Preacher et al. (2010). A 
useful feature of MSEM is that it unconflates the coefficients and provides unambiguous 
estimates of the within-cluster effect of a predictor on an outcome and the between-cluster 

 
3 The process is more complex but this conveys the spirit of what is being done. 
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effect of that predictor on the outcome. For a global Level-2 variable such as whether the 
school is public or private, MSEM only calculates pBC because there is no within group 
variability for it.  

Varying Slopes versus Non-Varying Slopes  

Another feature of both multilevel modeling and MSEM is that they allow us to evaluate 
if slopes (and intercepts) vary meaningfully across clusters. In the MVPA study, I can, in 
theory, calculate the path coefficient for each school when I regress MVPA onto perceived 
advantages and peer support within schools (I refer to these coefficients as p1WC and p2WC, 
with the p representing a path coefficient and WC indicating it is “within cluster”). Note 
that for purposes of the present discussion, I use sample notation, for reasons that will be 
apparent shortly. I might record the values of the coefficients for each cluster, like this: 
 

Cluster p1WC p2WC 
   

1 3.84 4.84 

2   5.14 8.93 

3 1.32 10.82 
. . . 
. . . 
. . . 

48 6.25 4.02 

49 6.22 3.20 

50 6.02 6.38 

If you scan the column for the path coefficient for perceived advantages (p1WC), you can 
see there is variability in the values of p1WC across the different clusters. Some of this 
variability is due to sampling error and the question becomes whether the observed 
variability reflects the case where the true population values of p1WC are, in fact, equal in 
every cluster and the variability you see is just sampling error. Or, alternatively, do the 
population within-cluster coefficients truly vary across the clusters? If the true population 
coefficients for the predictor are all equal, then the coefficient is said to be non-varying. 
If the true population coefficients differ across clusters, then the coefficient is said to be 
varying. In MSEM you  can evaluate these properties. Later, I show you how to do so.4    
 If you conclude the within-cluster coefficients for a given predictor truly differ across 

 
4 In the MSEM literature, a non-varying coefficient is often referred to as being fixed and varying coefficients are 
said to be random, yet another use of these terms.  
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clusters, then the question becomes why is this the case? You might formulate hypotheses 
about the sources of such variability and then measure the hypothesized causes of 
coefficient variability, testing the relationship between these presumed causes and 
coefficient variability. Such tests are called cross-level moderation in the multilevel 
modeling literature because the Level-2 between-cluster variable moderates the impact of 
the within-cluster predictor on the within-cluster outcome.   

Influence Diagrams for Multilevel SEM 

MSEM uses influence diagrams but the diagrams are more complicated than traditional 
SEM diagrams. There is no one set of accepted diagramming conventions and you will 
encounter different representations by different authors. In this section, I outline one set of 
graphing conventions for MSEM using the MVPA example. 
 One begins by drawing boxes of all the observed variables in your model and placing 
them from left to right between parallel horizontal lines, like this: 

Treatment 
Condition Advantages Peers MVPA

 

Next, I “decompose” the observed variables into their between-cluster and within-cluster 
latent variables by drawing representations of the between-cluster components above the 
top horizontal line and the within-cluster components below the bottom horizontal line. 
Ultimately, I will rearrange these variables to reflect a causal model among concepts that 
capture between-cluster and within-cluster causal dynamics. Here is the new diagram: 

 MVPABC

Treatment 
Condition Advantages Peers MVPA

AdvantBC PeersBC
Treatment 
Condition

MVPAWCAdvantWC PeersWC
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Note that I use circles to indicate the components because technically they are latent 
(unmeasured) representations whose values are inferred from the observed variables 
between the horizontal lines. The exception to the above is the treatment condition (scored 
1 = intervention, 0 = control) because it is a global Level-2 variable that only occurs at the 
between-cluster level; it has no within-cluster variability. Nor is it latent because there is a 
one-to-one correspondence between the measure and the underlying construct it represents, 
namely assignment to treatment condition. 
 Next, I arrange the top and bottom portions of the figure to form the hypothesized 
causal models at the between-cluster and within-cluster levels, yielding Figure 25.2.    

 

 MVPABC

d1BC

Treatment 
Condition Advantages Peers MVPA

AdvantBC

PeersBC
Treatment 
Condition

d2BC d3BC

MVPAWC

AdvantWC

PeersWC

d1WC

Between

Within

p1WC

p2WC

p1BC

p2BC

p3BC

p4BC

 

FIGURE 25.2. MSEM influence diagram 
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The causal depictions at each level follow traditional influence diagram conventions. 
Each endogenous variable in the model is presumed to have an intercept. The intercepts 
calculated on within-cluster data typically are assumed to vary across clusters as this is 
necessary to statistically adjust for cluster-induced dependencies. However, if one wants 
and it seems substantively and statistically justifiable to do so, one can tell Mplus to set 
any intercept to be non-varying. There are no hypothesized varying path coefficients in the 
above model, but if there was, this would be signified using a black dot on the target path. 
For example, suppose I thought that the magnitude of the effect of peer support on MVPA 
meaningfully varies across the different clusters independent of sampling error. I would 
signify this in the Figure as follows: 
 

MVPAWCPeersWC

 

MSEM influence diagrams can become quite complex sometimes losing their 
heuristic value. Researchers often deal with the complexity by breaking the diagram into 
pieces and showing different parts of the overall model in different figures.  

MSEM Analysis of the Numerical Examples 

In this section, I apply the aforementioned concepts to the two numerical examples. A 
document on my webpage for this chapter presents the preliminary analyses I typically 
engage in. I show you MSEM using Bayesian methods of analysis because these are 
becoming the method of choice given their flexibility (see Chapter 8 for an introduction to 
Bayesian SEM).  

RET for School Intervention for Moderately Vigorous Physical Activity 

The syntax for the program for the MVPA example appears in Table 25.3.  

Table 25.3: MSEM Syntax for MVPA Example 
 
1.  TITLE: MSEM analysis ; 
2.  DATA: FILE IS mvpa.dat ; 
3.  VARIABLE:  
4.  NAMES ARE  
5.    mvpa peers advant treat school  ; 
6.  USEVARIABLES ARE  
7.    mvpa peers advant treat ; 
8.  CLUSTER is school ; 
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9.  BETWEEN IS treat ;         ! specify global/integral level 2 variables  
10. ANALYSIS: 
11. TYPE = TWOLEVEL ; 
12. ESTIMATOR = BAYES ;  
13. BITERATIONS=100000 (50000); BCONVERGENCE =.01; 
14. MODEL : 
15. %WITHIN%                  ! specify within cluster model  
16. mvpa ;                  ! estimate within disturb var of outcome 
17. mvpa ON advant peers (p1wc p2wc); ! regress mvpa on within mediators 
18. peers WITH advant ;               ! correlate predictors   
19. %BETWEEN%                            ! specify between cluster model 
20. [mvpa] ;                           ! estimate outcome intercept 
21. [advant] ;  [peers] ;              ! estimate mediator intercepts 
22. mvpa ;                             ! estimate disturb var of outcome 
23. advant ;  peers ;                  ! estimate disturb var of mediators 
24. mvpa ON advant peers (p3bc p4bc) ; ! regress outcome onto mediators  
25. advant ON treat (p1bc) ;           ! regress advant onto treatment 
26. peers ON treat (p2bc) ;            ! regress peers onto treatment  
27. advant WITH peers;                 ! correlate disturbances  
28. MODEL CONSTRAINT:                    ! define contrasts  
29. NEW (medadv medpeer tot con1 con2) ; ! give names to contrasts 
30. medadv = p1bc*p3bc ;                 ! omnibus mediation for advant 
31. medpeer = p2bc*p4bc ;                ! omnibus mediation for peers 
32. tot = medadv + medpeer ;             ! total effect of treatment 
33. con1 = p3bc-p1wc ;                   ! context effect 1 
34. con2 = p4bc-p2wc ;                   ! context effect 2 
35. OUTPUT: STAND(STDYX) RESIDUAL CINTERVAL(HPD) TECH4 TECH8 ; 

Lines 1 through 8 should be familiar and do not need further comment. Line 9 
specifies variables that are global or integral Level-2 variables; they have no within-cluster 
variability and do not represent aggregates of Level-1 variables. The analysis type on Line 
10 is specified as two level; Mplus also offers a three level option. Lines 12 and 13 are the 
standard syntax I use to invoke Bayesian SEM and that you have encountered in prior 
chapters. Line 15 tells Mplus you will specify the within-cluster model and Line 19 tells 
Mplus the ensuing lines will be for the between-cluster model. For the within-cluster 
model, I tell Mplus to estimate the disturbance variance for the outcome (Line 16), the two 
within-cluster path coefficients (Line 17) and to allow the two predictors on Line 17 to be 
correlated. Line 20 tells Mplus to estimate the between-cluster intercept of the outcome. 
Line 21 tells Mplus to estimate the between-cluster intercepts for the two endogenous 
mediators. Lines 22 to 23 tell Mplus to estimate the disturbance variances for the three 
between-cluster endogenous variables. Lines 24 to 26 specify the between-cluster path 
coefficients (with labels) and Line 27 allows for correlated disturbances between the 
between-cluster mediators. Lines 28 to 34 use the Mplus MODEL CONSTRAINT feature to 
calculate the omnibus mediation tests for the between-cluster model for the effect of the 
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treatment on the outcome using syntax I have covered in prior chapters. I explain Lines 33 
and 34 below in the context of the Mplus output. Line 35 specifies the output I want Mplus 
to generate per my discussion in Chapter 8.  

Model Fit. I discussed fit indices for Bayesian SEM in Chapter 8. The potential scale 
reduction (PSR) ratio should be less than 1.1 (some prefer a standard of 1.05) to indicate 
adequate convergence. A separate PSR is calculated for each model parameter with the 
results being reported in the TECH8 output section. Here is the output at the last iteration: 

                    POTENTIAL       PARAMETER WITH 
     ITERATION    SCALE REDUCTION      HIGHEST PSR 
 
     50000            1.000               3 

 
The largest PSR at the final iteration was 1.00, which suggests the model converged. Mplus 
also conducts a Kolmogorov‐Smirnov (KS) test of convergence which should be 
statistically non-significant (Mplus only prints the KS test result if p < 0.05). For the current 
model, the KS result was not printed, also suggesting convergence.  

In place of the p value for the traditional chi square test, Mplus reports a posterior 
predictive p-value; a questionable model fit is suggested by a p value < 0.05. Mplus also 
provides a 95% confidence interval for the difference between observed and replicated chi-
square values based on replicated data sets of the same size as the original data during the 
iterative process. A good fitting model will produce a value of zero close to the middle of 
the confidence interval; if zero is not in the confidence interval, it suggests a poor model 
fit. Here is the relevant Mplus output, which is consistent with good model fit: 

 
Bayesian Posterior Predictive Checking using Chi-Square 
 
          95% Confidence Interval for the Difference Between 
          the Observed and the Replicated Chi-Square Values 
 
                                -17.902            18.391 
 
          Posterior Predictive P-Value              0.489   

 
The above fit indices do not distinguish whether model fit is acceptable at both the 

between-cluster level and within-cluster level. In many studies, within-cluster sample sizes 
(the total N) are much larger than the between-cluster sample size (the number of clusters) 
so that overall model fit is dominated by the fit of the within-cluster model. One approach 
for segregating the respective model fits is called partially saturated modeling (Ryu & 
West, 2009). I describe this approach in the document titled Partially Saturated Modeling 
on my web page. In the current case, the within-cluster model is saturated so any ill fit is 
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between-cluster in nature. 
For localized fit, Bayes MSEM does not produce modification indices nor residual 

tests, but it does provide predicted correlations between the model variables for the 
between-cluster model and the within-cluster model and these can be compared visually 
with the between-cluster and within-cluster observed correlations on a cell-by-cell basis, 
per my discussion in Chapter 8. However, to obtain the respective observed correlations, 
you need to execute specialized syntax separately that for the current example appears in 
Table 25.4: 

Table 25.4: Syntax for Descriptive Statistics in Two Level Designs 
 
1. TITLE: Two level descriptives ; 
2. DATA: FILE IS mvpa.dat ; 
3. VARIABLE:  
4. NAMES ARE  
5. mvpa peers advant treat school  ; 
6. USEVARIABLES ARE  
7. mvpa peers advant treat ; 
8. CLUSTER is school ; 
9. BETWEEN IS treat ;         ! specify global/integral level 2 variables  
10. ANALYSIS: 
11. TYPE = TWOLEVEL BASIC ; 
12. OUTPUT:  ; 

The first 10 lines are identical to the syntax in Table 25.3. Line 11 tells Mplus to calculate 
descriptive statistics for the two level design. Here is the output that reports the within-
cluster and between-cluster observed correlations:  

    ESTIMATED SAMPLE STATISTICS FOR WITHIN 
 
           Correlations 
              MVPA          PEERS         ADVANT 
              ________      ________      ________       
 MVPA           1.000 
 PEERS          0.475         1.000 
 ADVANT         0.478         0.279         1.000 
 
 
     ESTIMATED SAMPLE STATISTICS FOR BETWEEN 
 
           Correlations 
              TREAT         MVPA          PEERS         ADVANT 
              ________      ________      ________      ________ 
 TREAT          1.000 
 MVPA           0.255         1.000 
 PEERS          0.335         0.582         1.000 
 ADVANT         0.330         0.505         0.135         1.000 
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The above correlations do not take into account prior distributions or any Bayesian 
concepts; indeed, they are maximum likelihood estimates of the correlations. Some would 
argue that such correlations are not appropriate for evaluating model fit in a Bayesian 
context but, again, as crude flags of potential model problems, I have found the comparison 
of predicted and observed correlations in this fashion to be helpful. If you do not, then skip 
this exercise.  

Here are the predicted correlations for the model from the RESIDUAL OUTPUT section 
of the main multilevel Bayes analysis:  

 
      WITHIN LEVEL 
 
           Correlations 
              MVPA          PEERS         ADVANT        
              ________      ________      ________      
 MVPA           1.000 
 PEERS          0.475         1.000 
 ADVANT         0.478         0.279         1.000 
 
     BETWEEN LEVEL 
 
           Correlations 
              TREAT         MVPA          PEERS         ADVANT       
              ________      ________      ________      ________ 
 TREAT          1.000  
 MVPA           0.299         1.000 
 PEERS          0.313         0.578         1.000 
 ADVANT         0.309         0.500         0.122          1.000 
  

The within-cluster predicted and observed correlations perfectly match one another 
because this portion of the model is just-identified. The between-cluster predicted and 
observed correlations match reasonably well.  
 The program in Table 25.4 also reports the intraclass correlations for the mediators 
and for the outcome. Here is the relevant output: 
 
Estimated Intraclass Correlations for the Y Variables 
 
                Intraclass              Intraclass              Intraclass 
     Variable  Correlation   Variable  Correlation   Variable  Correlation 
 
     MVPA         0.461      PEERS        0.565      ADVANT       0.562 

 
There is substantial between-cluster variability in the variables. Technically, these ICCs 
are based on maximum likelihood estimation. For large N, the results typically will be close 
in value to ICCs based on Bayes estimation and I often just rely on them. If you want the 
formal Bayes estimates of the ICCs, you can use the program provided on my website in 
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the document called Computation of Bayes ICCs.  
 Coefficients. I primarily am interested in the between-cluster coefficients because the 
treatment variable occurs only at the between-cluster level. Here is the edited output for 
the relevant unstandardized coefficients: 
 
MODEL RESULTS 
 
                               Posterior    One-Tailed         95% C.I. 
                    Estimate      S.D.       P-Value    Lower 2.5%  Upper 2.5% Sig 
 
Between Level 
 
 MVPA       ON 
    ADVANT             4.601       1.191      0.000       2.291       6.973     * 
    PEERS              5.303       1.145      0.000       3.089       7.604     * 
 
 PEERS      ON 
    TREAT              0.775       0.343      0.013       0.097       1.449     * 
 
 ADVANT     ON 
    TREAT              0.731       0.329      0.014       0.078       1.376     * 
 
New/Additional Parameters 
    MEDADV             3.204       1.784      0.014       0.190       7.079     * 
    MEDPEER            3.961       2.052      0.013       0.245       8.256     * 
    TOT                7.344       2.719      0.002       2.412      13.067     * 
    CON1              -0.272       1.243      0.412      -2.681       2.189 
    CON2               0.674       1.196      0.286      -1.643       3.058 

As noted in Chapter 8, Mplus uses the 95% credible interval (labeled 95% C.I.) to 
conduct significance tests relative to a null hypothesis of zero effect. If the credible interval 
does not contain the value zero, the effect in question is declared statistically significant 
(the * in the last column of the output signifies this is the case). Mplus also reports a one 
tailed p value for the parameter in question. For a positive estimate, the p-value is the 
proportion of the posterior distribution that is below zero; for a negative estimate, the p-
value is the proportion of the posterior distribution that is above zero. The idea is that the 
reported p value maps onto a one-sided p value for the test that the parameter equals zero; 
one can obtain a rough analog of a two-sided p value by doubling it.  
 The total effect of the intervention on MVPA is shown in the contrast called tot in 
the New/Additional Parameters section of the output. The estimated between-cluster 
mean difference in MVPA between the treatment and control groups was 7.34 (95% 
credible interval (CI) = 2.41 to 13.07); the intervention increased MVPA on average by 
just over 7 minutes per day. The lower margin of error for the estimate is 2.41 - 7.33 =         
-4.92 and the upper margin of error is 13.07-7.33 = 5.74. The group difference is 
statistically significant, p < 0.05, but the lower limit of the credible interval is below the 
meaningfulness standard of 2.85, meaning I can’t say with confidence that the intervention 
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produced a meaningful result. The results are similar to what I find when I treated clusters 
as nuisance variables using PML estimation.  
 The estimated between-cluster effect of the intervention on perceived advantages was 
0.73 units (95% CI =0.08 to 1.38). The lower margin of error is -0.65 and the upper margin 
of error is 0.65. The effect is statistically significant, p < 0.05. As with my prior analysis 
of this RET facet, the lower limit of the credible interval was less than the meaningfulness 
standard of 0.50, so that even though the sample mean difference estimate is promising 
(0.73), I cannot confidently conclude the intervention produced a meaningful effect on the 
perceived advantages mediator.   

The estimated between-cluster effect of the treatment condition on peer support was 
0.78 (95% CI = 0.10 to 1.45). The lower margin of error is -0.68 and the upper margin of 
error is 0.65. The effect is statistically significant, p < 0.05, but like the perceived 
advantages mediator, the lower limit of the confidence interval did not exceed the 
meaningfulness standard.  
 Finally, the estimated between-cluster effect of the perceived advantages mediator on 
MVPA was 4.60 (95% CI = 2.29 to 6.97); for every one unit that the across cluster 
perceived advantages increases, the mean between-cluster MVPA per day is predicted to 
increase by 4.60 minutes. The lower margin of error is -2.31 and the upper margin of error 
is 2.37. The effect is statistically significant, p < 0.05 but the lower limit of the credible 
interval was smaller than the meaningfulness standard of 3.0. The estimated between-
cluster effect of the peer support mediator on MVPA was 5.30 (95% CI = 3.09 to 7.60). 
The lower margin of error is -2.21 and the upper margin of error is 2.30. The effect is 
statistically significant, p < 0.05 and is meaningful because the lower limit of the credible 
interval is larger than the meaningfulness standard.  
 Using the joint significance test, both perceived advantages and peer support mediate 
some of the effect of the intervention on MVPA across clusters. Neither mediational chain 
exhibited a broken link across the links of the chain because both links were statistically 
significantly different from zero.     
 I can further evaluate the strength of the between-cluster effects of interest using the 
principles discussed in Chapter 10. I leave this as an exercise for you. Here are the 
estimated squared multiple correlations for the across cluster endogenous variables in the 
analysis: 
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R-SQUARE 
 
Between Level 
 
                                Posterior  One-Tailed         95% C.I. 
    Variable        Estimate       S.D.     P-Value   Lower 2.5%  Upper 2.5% 
 
    MVPA               0.531       0.106      0.000       0.315       0.723 
    PEERS              0.099       0.075      0.000       0.000       0.248 
    ADVANT             0.096       0.074      0.000       0.000       0.246 

 
The estimated between-cluster squared correlation predicting MVPA from perceived 
advantages and peer support was 0.53 (lower MOE = -.22, upper MOE = 0.19). The 
estimated eta squared reflecting the effect of the intervention on perceived advantages was 
0.10 and this also was true for peer support.  
  The omnibus mediation effects, which generally are of lower priority in RETs 
focused on program evaluation given the information we already garnered from the above 
tests of the individual links in the mediational chains appear in the New/Additional 
Parameters section of the output. The estimated between-cluster effect of the intervention 
on MVPA through the perceived advantages mediator was 3.20 (95% CI = 0.19 to 7.08); 
the mean MVPA difference between the intervention and control groups based solely on 
the perceived advantages mediators was 3.20 minutes per day. The lower margin of error 
is -3.01 and the upper margin of error is 3.88. The effect is statistically significant, p < 
0.05. The estimated between-cluster effect of the intervention on MVPA through the peer 
support mediator was 3.96 (95% CI = 0.24 to 8.26); the mean MVPA difference between 
the intervention and control groups based solely on the peer support mediator was 3.96 
minutes per day. The lower margin of error is -3.72 and the upper margin of error is 4.30. 
The effect is statistically significant, p < 0.05. 
 In sum, the intervention had a non-zero effect on the mean MVPA per day. The total 
effect mean difference (7.34) was suggestive that the effect was meaningful, but the width 
of the credible interval was sufficiently wide that I could not conclude this was the case 
with confidence. Both perceived advantages and peer support had non-zero effects on 
MVPA but only the latter had a sufficiently narrow credible interval to conclude the effect 
was meaningful. The intervention had non-zero effects on both of the targeted mediators 
but the wide credible intervals for them did not permit strong conclusions of 
meaningfulness.    
 Additional Analyses. A phenomenon of interest in some clustered randomized trials 
is that of context effects. In the present example, the question focuses on whether the effect 
of a mediator on the outcome at the between-cluster level differs from the effect of that 
mediator on the outcome at the within-cluster level. If the respective path coefficients are 
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different, then this suggests that there is something about the cluster/school context that 
enhances (if the path coefficient is stronger at the between level than at the within level) or 
mutes (if the path coefficient is weaker at the between level than at the within level) the 
effect of M on Y at the individual level as reflected by the within level analysis. To be sure, 
there are other ways that context effects have been defined (e.g., Asparouhov & Muthén, 
2019; Diez-Roux, 2002; Lüdtke et al., 2008; Raudenbush & Bryk 2002), but the above 
contrast is often of theoretical interest. In the MVPA syntax, Lines 33 and 34 of Table 25.3 
request from Mplus the between versus within level contrasts for each of the two MVPA 
mediators in con1 (for perceived advantages, the path coefficient at the between-cluster 
level minus the path coefficient at the within-cluster level) and con2 (for peer support). I 
reported above the path coefficients for the effects of the mediators on the outcome at the 
between-cluster level. I repeat them here for convenience coupled with the within-cluster 
results: 

 
                                 Posterior  One-Tailed         95% C.I. 
                    Estimate       S.D.      P-Value    Lower 2.5%  Upper 2.5% Sig 
 
Between Level 
 
 MVPA       ON 
    ADVANT             4.601       1.191      0.000       2.291       6.973     * 
    PEERS              5.303       1.145      0.000       3.089       7.604     * 
 
Within Level 
 
 MVPA       ON 
    ADVANT             4.874       0.354      0.000       4.180       5.558     * 
    PEERS              4.634       0.341      0.000       3.962       5.299     * 

 
Here are the contrast results from the output in the New/Additional Parameters 

section: 
                                 Posterior  One-Tailed         95% C.I. 
                    Estimate        S.D.     P-Value     Lower 2.5%  Upper 2.5%   
 
New/Additional Parameters 
 
    CON1              -0.272       1.243      0.412      -2.681       2.189 
    CON2               0.674       1.196      0.286      -1.643       3.058 

 
Neither mediator showed evidence of a statistically significant contextual effect given the 
presence of 0 within both of the 95% credible intervals.  
 Another analysis of potential interest addresses whether the path coefficient reflecting 
the effect of a given mediator on the outcome varies meaningfully across clusters/schools. 
For example, the model tests I conducted above assumed that the population within-
cluster/school path coefficients reflecting the effect of perceived advantages on MVPA 
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were the same across all clusters/schools and this also was true for peer support. Is this a 
reasonable assumption or could the population coefficients vary across the 
clusters/schools? The issue is relevant because if the coefficients vary but I treat them as 
non-varying then the fitted model is mis-specified and this can undermine coefficient 
estimates, their standard errors, their p values and/or their credible intervals. Similarly, if 
the coefficients do not vary but I model them as varying, this can create estimation issues. 
 Simulation studies have explored the implications of such model misspecification. 
LaHuis et al. (2020) found that treating the coefficient variance across clusters for a 
predictor as zero when the variance is, in fact, non-zero creates more bias in between-
cluster standard errors than treating the coefficients as varying when they should be treated 
as uniform. However, in my opinion, the amount of bias that LaHuis et al. observed in their 
simulations was not large in most cases. Type I errors were more likely when the coefficient 
was treated as non-varying but it should have been treated as varying but not when the 
degree of coefficient variation in the population was small, which makes intuitive sense. 
Type II errors were more likely when the coefficient was treated as varying but it should 
have been treated as non-varying (see also the results of Algina & Swaminathan, 2011; 
Barr et al. 2013; Bell et al. 2019; Heisig & Schaeffer 2019; Hoffman & Walters, 2022; and 
Ye & Daniel 2017). The number of groups also attenuated bias such that more groups were 
associated with lowered bias.  

To lessen the possibility of Type I errors, some researchers suggest making all 
coefficients varying by default (Barr et al. 2013; Heisig & Schaeffer 2019). However, this 
strategy often results in more model nonconvergences and it usually lowers statistical 
power (Park et al. 2020). Other researchers recommend making the decision to treat a 
predictor as having varying coefficients based on the magnitude of coefficient variability 
observed in the data (Hoffman & Walters, 2022). A third approach is to rely on significance 
tests of the null hypothesis that the across cluster coefficient variance is zero. In a Bayesian 
model, this occurs if the lower limit of the credible interval for coefficient variance contains 
the value zero. However, such tests have their own issues; it is rare that population 
coefficient variances are exactly zero, rendering the test somewhat meaningless. Finally, 
some researchers formally compare (using the DIC statistic) the fit of a model that allows 
for non-varying across cluster coefficients with the fit of a model that allows for varying 
coefficients. By using DIC indices, one takes into account the relative parsimony of the 
two models. I illustrate this latter method below.  

In general invoking any of these preliminary tests can be problematic because the 
statistical theory of sampling distributions in multilevel modeling and MSEM was not 
developed on the assumption that screener tests would be applied as a formal step in data 
analysis. These tests bring their own baggage to data analysis and ultimately can undermine 
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multilevel statistical theory about sampling distributions, as I discussed in Chapter 11 for 
preliminary tests more generally. They must be used with caution.  
 The Mplus syntax for analyzing the MVPA model with varying (cluster) coefficients 
for the perceived advantages predictor is shown in Table 25.5. The syntax is very similar 
to that of Table 25.3. I highlight using a red font those changes I want to call to your 
attention. 

Table 25.5: MSEM Syntax for MVPA Example with Varying Slopes 
 
1. TITLE: MSEM analysis ; 
2. DATA: FILE IS mvpa.dat ; 
3. VARIABLE:  
4. NAMES ARE  
5. mvpa peers advant treat school  ; 
6. USEVARIABLES ARE  
7. mvpa peers advant treat ; 
8. CLUSTER is school ; 
9. BETWEEN IS treat ;         ! specify global/integral level 2 variables  
10. ANALYSIS: 
11. TYPE = TWOLEVEL RANDOM; 
12. ESTIMATOR = BAYES ;  
13. BITERATIONS=100000 (50000); BCONVERGENCE =.01; 
14. MODEL : 
15. %WITHIN%                         ! within cluster model  
16. mvpa ;          
17. vs1 | mvpa ON advant ;         ! specify varying slope for advant 
18. mvpa ON peers (p2wc) ;         ! specify non-varying slope for peers 
19. peers WITH advant ;            ! allow predictors to be correlated 
20. %BETWEEN%                         ! between cluster model 
21. [mvpa] ;                       ! estimate outcome intercept 
22. [advant] ; [peers] ;           ! estimate mediator intercepts 
23. [vs1] ;                        ! estimate average of the varying slope    
24. mvpa ;                         ! estimate disturb var of outcome 
25. peers ; advant                 ! estimate disturb var of mediators 
26. vs1 ;                          ! estimate across cluster var of path  
27. mvpa ON advant peers (p3bc p4bc) ; ! regress outcome onto predictors  
28. advant ON treat (p1bc) ;           ! regress advant onto treatment 
29. peers ON treat (p2bc) ;            ! regress peers onto treatment  
30. advant WITH peers;                 ! correlate disturbances  
31. OUTPUT: STAND(STDYX) RESIDUAL CINTERVAL(HPD) TECH4 TECH8 ; 
32. PLOT: TYPE = PLOT3 ; 

     
On Line 11, I specify the model type differently by including the word RANDOM to indicate 
there will be one or more varying effects. On Line 17, I define the varying effect using the 
label vs1 (you can use any 8 character label you want), the symbol | which stands for 
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“defined as” and to the right of it I indicate the path coefficient of MVPA on perceived 
advantages. Wherever I use the label vs1 in the syntax, I am referencing this varying path 
coefficient. In the process of adding this syntax line I simultaneously tell Mplus to regress 
MVPA onto perceived advantages within each cluster. Line 23 tells Mplus to calculate the 
mean of vs1 across clusters and Line 26 tells Mplus to calculate the variance of vs1 across 
clusters. On Line 32 I added a plot command so I can examine a plot of the posterior 
distribution of the vs1 variances. 
 Here is the output for the DIC fit index for this model: 

Deviance (DIC)                        13224.021 

For the original model with the perceived advantages → MVPA path set to non-varying 
status, the DIC was 13220.45. The difference in the DICs is minor (see Chapter 8), and if 
anything, they favor the non-varying effects model (the lower the DIC, the better the 
model-data correspondence). I conclude based on this test that there is not strong evidence 
for allowing the perceived advantages → MVPA path to vary across clusters.  

Here are the results for the mean and estimated variance of vs1 across clusters for the 
model that allowed for non-varying coefficients: 
 
                                 Posterior   One-Tailed          95% C.I. 
                    Estimate        S.D.     P-Value    Lower 2.5%  Upper 2.5%   Sig 
Means 
    VS1                4.862       0.382      0.000        4.150       5.640      * 
 
Variances 
    VS1                0.616       0.818      0.000        0.001       2.468     * 

 
The estimated average coefficient across clusters for the effect of perceived advantages on 
MVPA was 4.86 with an across-cluster variance estimate of 0.616. The variance seems 
subjectively small to me, supporting the treatment of the coefficients as non-varying. The 
data for this example are hypothetical and when I created the population data for it, I made 
the two mediator-to-outcome coefficients non-varying. The above results are consistent 
with the data generating population model.  
 Another diagnostic is to examine the plot of the posterior distribution for the across 
cluster variance estimates that is available using the PLOT command in the Mplus syntax. 
To obtain this plot, I chose the menu option on the plots tab of Mplus called “Bayesian 
Parameter Posterior Distributions” and then I choose “Parameter 14 %BETWEEN% vs1). 
Here is the resulting plot 
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Note the stacking of the distribution near zero. Mplus also offers a significance test 
in the TECH16 option that evaluates a null hypothesis of a zero variance, but its accuracy  
is not well known. 

Overall, across these many forms of analysis, a reasonable conclusion seems to be 
that the coefficient does not meaningfully vary across clusters.   

Parenthetically, if both of the path coefficients in a given mediational chain are 
treated as non-varying in your final model, then the formulae for computing the omnibus 
mediation effect for that chain and the total effect in the MODEL CONSTRAINT command in 
Lines 28 to 32 of Table 25.3 no longer hold; we need to incorporate into the commands the 
covariance between the two slopes. This rarely occurs in clustered RETs because the T→M 
link in the mediational chain only occurs at the between-cluster level so the within-cluster 
effect of T→M cannot vary across clusters. For a discussion of such adjustments, see 
Bauer, Preacher and Gil (2006).   

RET for Group Level Intervention to Increase Pandemic Mask Wearing 

I next analyze data for the second example, namely a group interactive intervention (n = 
10 people per group) designed to influence mask wearing during the COVID pandemic. 
The primary outcome variable is the intention to regularly wear a mask in the future as 
measured on a -5 to +5 multi-item scale. The control group also receives an interactive 
intervention but it is on eating nutritious foods, an irrelevant topic to the outcome variable. 
The intervention targets as mediators the individuals’ attitudes toward wearing masks (i.e., 
the perceived advantages of wearing a mask and the perceived disadvantages of not 
wearing one) and norms surrounding mask use, with each assessed on a multi-item scale 
whose total score ranges from -5 (strongly disagree) to +5 (strongly agree). There were 50 
small groups in the intervention condition and 50 such groups in the control condition. 
 What sets this study apart from the MVPA study is that the 10 members in a given 
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group are not conceptualized as a random sample from a larger cluster/group. In the MVPA 
study, I selected a sample of 20 students from each of the schools in the study. The 20 
students were a random sample from their respective school and I used these 20 students 
to estimate the mean perceived advantages of MVPA and the mean peer support in a school. 
The means for a given school, of course, are subject to sampling error because  the sample 
mean of the 20 students from a given school will not perfectly represent the true mean of 
all students for that school. Mplus takes this sampling error into account when applying 
MSEM. By contrast, in the mask wearing study, the 10 members from a group are not a 
random sample from a larger group; the group is what it is and the mean attitude toward 
wearing a mask regularly for the 10 members of a group is indeed the mean of that group 
(absent measurement error) as is the case for norms. In this study, we do not want to correct 
for sampling error for a given group mean as representing a broader group mean because 
there is no sampling error for it. To be sure, each group is conceptualized as having been 
randomly selected from a larger population of groups, but the members within a group 
define the characteristics of that group in a formative sense (Lüdtke et al., 2008). In contrast 
to the MVPA example, we need to instruct Mplus not to correct for sampling error for the 
various cluster means as representing the broader cluster; instead we treat the means as 
global Level-2 variables, per my earlier discussion of global and contextual variables. 
There are different ways one can approach the analysis of the data in these circumstances 
in an MSEM context. Unfortunately, there is little work evaluating which method is best.  
  The relevant syntax for the analysis is presented in Table 25.6.   

Table 25.6: MSEM Syntax for Group Intervention 
 
1. TITLE: MSEM analysis for group interactive intervention ; 
2. DATA: FILE IS group.dat ; 
3. DEFINE: 
4.  matt = CLUSTER_MEAN (att); 
5.  mnorm = CLUSTER_MEAN (norm); 
6. VARIABLE:  
7. NAMES ARE  
8.  intent norm att treat group ; 
9. USEVARIABLES ARE intent treat matt mnorm ; 
10. CLUSTER is group ; 
11. BETWEEN IS mnorm matt treat ; ! specify global level 2 vars  
12. ANALYSIS: TYPE = TWOLEVEL ; 
13. ESTIMATOR = BAYES ;  
14. BITERATIONS=100000 (50000); BCONVERGENCE =.01; 
15. MODEL : 
16. %WITHIN%                          ! no within cluster variables  
17. %BETWEEN%                          ! between cluster model 
18. [intent] ; [matt] ;  [mnorm] ;  ! estimate intercepts 
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19. intent ;  matt ;  mnorm ;       ! estimate disturbance variances 
20. intent ON matt mnorm (p3 p4) ;  ! estimate mediator paths 
21. matt on treat  (p1) ;           ! estimate treat effect on att   
22. mnorm ON treat (p2) ;           ! estimate treat effect on norm  
23. matt WITH mnorm ;                ! allow for correlated disturbances 
24. MODEL CONSTRAINT:               ! estimate mediation and total effects 
25. NEW (medatt mednorm tot) ; 
26. medatt = p1*p3 ; 
27. mednorm = p2*p4 ; 
28. tot = p1*p3 + p2*p4 ; 
29. OUTPUT: STDYX RESIDUAL CINTERVAL(HPD) TECH4 TECH8 ; 

 
All of the syntax should be self-explanatory except Lines 4 and 5. The raw data file 

for Mplus takes the form of a traditional Mplus data file with individuals listed as rows and 
variables as columns. I need to analyze the observed predictor means for each cluster as 
global Level-2 variables, so I create a new set of variables using the DEFINE command and 
the CLUSTER_MEAN transformation within it. The transformation creates a variable that is 
the average of the values of the individual-level target variable for each cluster separately. 
I label these variables with an m in front of them, but you can use any label you want. 
Because the treat variable already is global in character, I do not need to calculate its per 
cluster mean. These transformed variables must be listed at the end of the USEVARIABLES 
line. 

Model Fit. Here is the output for the last iteration of the Bayesian analysis: 

                   POTENTIAL         PARAMETER WITH 
     ITERATION    SCALE REDUCTION      HIGHEST PSR 
 
          50000            1.000            5 
 

The largest PSR at the final iteration was 1.00, which suggests convergence. No  
Kolmogorov‐Smirnov (KS) tests of convergence were printed, which also suggests 
convergence.  

Here are the chi square statistics and the posterior predictive p-value for the model, 
all suggesting adequate fit: 

 
Bayesian Posterior Predictive Checking using Chi-Square 
 
          95% Confidence Interval for the Difference Between 
          the Observed and the Replicated Chi-Square Values 
 
                                -15.170            15.704 
 
          Posterior Predictive P-Value              0.499 
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There are only between-level covariance and correlation matrices with more than one 
element in this analysis, so any ill fit should show up in disparities between predicted 
versus observed correlation matrices at the between level. I used the syntax in Table 25.7 
to calculate the “observed” correlations between the variables (again, these are maximum 
likelihood estimates, which I am using informally).  

Table 25.7: Syntax for Descriptive Statistics  
 
1. TITLE: MSEM analysis for group interactive intervention ; 
2. DATA: FILE IS group.dat ; 
3. VARIABLE:  
4. NAMES ARE  
5. group intent norm att treat ; 
6. USEVARIABLES ARE  
7. intent att norm treat ; 
8. CLUSTER is group ; 
9. BETWEEN IS intent norm att treat;  
10. ANALYSIS: 
11. TYPE = TWOLEVEL BASIC; 
12. OUTPUT:   

 Here is the output that reports the between-cluster observed correlations: 

      ESTIMATED SAMPLE STATISTICS FOR BETWEEN 

           Correlations 
              INTENT        NORM          ATT           TREAT 
              ________      ________      ________      ________ 
 INTENT         1.000 
 NORM           0.470         1.000 
 ATT            0.388        -0.015         1.000 
 TREAT          0.177        -0.075         0.401         1.000 

Here are the predicted between-level correlations for the model from the Residual output 
for the original syntax in Table 25.6 based on Bayesian estimation : 

           Correlations 
              INTENT        NORM          ATT           TREAT 
              ________      ________      ________      ________ 
 INTENT         1.000 
 NORM           0.511         1.000 
 ATT            0.421        -0.014         1.000 
 TREAT          0.130        -0.072         0.390         1.000 

 
The between-cluster predicted and observed correlations match reasonably well. 
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 Coefficients. Here is edited output for the key unstandardized coefficients of interest: 
 
Between Level 

                                 Posterior   One-Tailed          95% C.I. 
                      Estimate      S.D.     P-Value    Lower 2.5%  Upper 5%   Sig 

 
INTENT     ON 
    MATT               0.527       0.110      0.000       0.314       0.744      * 
    MNORM              0.558       0.096      0.000       0.369       0.746      * 
 
 MATT       ON 
    TREAT              0.481       0.114      0.000       0.257       0.702      * 
 
 MNORM      ON 
    TREAT             -0.102       0.141      0.235      -0.372       0.185 
 
New/Additional Parameters 
    MEDATT             0.247       0.081      0.000       0.102       0.414      * 
    MEDNORM           -0.055       0.081      0.235      -0.222       0.100 
    TOT                0.195       0.115      0.040      -0.033       0.421 
 

 The estimated total effect of the intervention on mask wearing intentions is shown in 
the contrast tot in the New/Additional Parameters section. The estimated mean 
difference between the treatment and control groups was 0.19 (95% credible interval (CI) 
= -0.03 to 0.42) which is just below the meaningfulness standard of 0.20. In traditional null 
hypothesis testing, the intervention effect was not statistically significant (the one tailed p 
value, doubled, was 0.082 and the value of zero occurred within the credible interval). 
However, as discussed in Chapter 9, joint significance test logic suggests the presence of a 
total effect because there is at least one non-broken mediational chain linking the treatment 
to the outcome, as you will see shortly. Given this, I am inclined to declare an effect is 
present, but the mean difference is slightly less than the meaningfulness standard of 0.20 
and certainly does not sustain the more conservative evaluation that takes into account 
sampling error via the lower limit of the credible interval.  
 The estimated effect of the intervention on attitudes as reflected by the intervention 
vs. control group difference was 0.48 (95% CI =0.25 to 0.70). The lower MOE is -0.23 and 
the upper MOE is 0.22. The effect is statistically significant, p < 0.05. The meaningfulness 
standard was 0.33 and the lower limit of the credible interval is not greater than it. Thus, I 
can’t say with confidence that the effect is meaningful but the difference of 0.48 is 
suggestive. The estimated effect of the treatment condition on norms was -0.10 (95% CI = 
-0.38 to 0.17). The effect is not statistically significant and the mean change is weak and 
could be zero. It represents a broken link in the mediational chain from the treatment 
condition to the outcome through norms.  
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 I can evaluate the strength of the effects using principles discussed in Chapter 10, 
which I leave for you as an exercise. The estimated squared multiple correlations are: 
 
R-SQUARE 
 
Between Level 
 
                            Posterior   One-Tailed         95% C.I. 
Variable        Estimate       S.D.       P-Value   Lower 2.5%  Upper 2.5% 
 
  INTENT            0.386       0.077      0.000       0.233       0.532 
  MATT              0.152       0.061      0.000       0.037       0.273 
  MNORM             0.007       0.019      0.000       0.000       0.054 

  
The estimated between-cluster squared correlation predicting intention to wear a mask 
from attitudes and norms was 0.39 (± 0.15). The estimated eta squared reflecting the effect 
of the intervention on perceived advantages was 0.15 (± 0.12) and for norms it was 0.007.  
 The estimated between-cluster effect of the attitude mediator on the intention to wear 
a mask regularly was 0.53 (95% CI = 0.31 to 0.74); for every one unit that the cluster 
attitude increases, the cluster mean intent to wear a mask regularly is predicted to increase 
by 0.53 units. The lower and upper margins of error are -0.23 and 0.20. The effect is 
statistically significant, p < 0.05 but the lower limit of the 95% credible interval (0.31) was 
just slightly below the meaningfulness standard of 0.33. 

The between-cluster effect of norms on the cluster mean intent to wear a mask 
regularly was 0.56 (95% CI = 0.37 to 0.75). The lower margin of error is -0.19 and the 
upper MOE is 0.19. The effect is statistically significant, p < 0.05. The lower limit of the 
95% credible interval (0.37) is larger than the meaningfulness standard of 0.33, so we judge 
the effect to be meaningful with strong confidence (95% confidence). 
 Although they are of lower priority for RETs for program evaluation, the omnibus 
mediation effect for each mediator appears in the New/Additional Parameters section 
of the output. The estimated effect of the intervention on intent through the attitude 
mediator was 0.25 (95% CI = 0.10 to 0.41). The lower margin of error is -0.14 and the 
upper margin of error is 0.17. The effect is statistically significant, p < 0.05. The estimated 
effect of the intervention on intent through the norms mediator was -0.06 (95% CI = -0.22 
to 0.10). The lower margin of error is -0.16 and the upper margin of error is 0.15. The effect 
is not statistically significant due to the intervention failure to meaningfully impact norms. 
 Additional/Alternative Analyses. There is no reason to test for context effects in the 
current example because there are no within-cluster path coefficients to compare with 
corresponding between-cluster path coefficients. Some methodologists might argue that 
one use traditional MSEM with both within and between-cluster representations of the 
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intention, attitude and norm variables but this is controversial because Mplus then makes 
Lüdtke’s bias adjustments that assumes the individuals within a cluster are a random 
sample from a larger population of cluster members. Perhaps one can justify such a 
conceptualization in some cases. Another possibility is to treat the groups as nuisance 
variables and analyze the data using PML methods that adjust for clustering.  

Multilevel SEM with Latent Variables 

The prior examples use models with single indicators. Extending MSEM to include latent 
variables is straightforward. However, there are technical issues you should be aware of. 
Figure 25.3 shows a single mediator, single outcome RET model with three 
interchangeable indicators for the mediator and for the outcome.     
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FIGURE 25.3. MSEM influence diagram with measurement error adjustments 
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Latent variables can be used at the between-cluster level, at the within-cluster level, 
or both. This example includes them at both levels. The ways in which latent variables are 
modeled depends on their substantive meaning (Stapleton et al., 2016). Suppose in a school 
based prevention program where schools are clusters, the latent Y variable in a clustered 
RET is depression with the indicators being 3 different self-ratings of depression on the 
part of students (y1, y2 and y3) with each measure ranging on a -5 to +5 metric. The 
indicators are thought to reflect the latent depression construct in the same way at both the 
between-cluster and within-cluster levels. Suppose one wants to compare the magnitude of 
p2BC with p2WC in Figure 25.3 to evaluate a context effect for the effect of the mediator on 
the outcome. Consistent with the concept of measurement invariance, to do so the 
unstandardized factor loadings of a given indicator should be equal (or functionally 
equivalent) at the across and within-cluster levels. Specifically, the loading for y1 at the 
between-cluster level should equal the loading for y1 at the within-cluster level; the loading 
for y2 at the between-cluster level should equal the loading for y2 at the within-cluster 
level; and the loading for y3 at the between-cluster level should equal the loading for y3 at 
the within-cluster level and such correspondence also should occur for the mediator 
(Asparouhov & Muthén, 2012; Mehta & Neale, 2005; Rabe-Hesketh et al., 2004). One can 
evaluate the viability of this assumption by testing the difference in values of the respective 
factor loadings at the two levels. Table 25.8 shows the Mplus syntax for such a test.  

Table 25.8: Syntax for Test of Loading Invariance in MSEM  
 
1. TITLE: MSEM invariance analysis ; 
2. DATA: FILE IS invariance.dat ; 
3. VARIABLE:  
4. NAMES ARE  
5.   y1 y2 y3 m1 m2 m3 treat school ; 
6. USEVARIABLES ARE  
7.   y1 y2 y3 m1 m2 m3 treat ; 
8. CLUSTER is school ; 
9. BETWEEN IS treat ;  ! specify global/integral level 2 variables  
10. ANALYSIS: 
11. TYPE = TWOLEVEL ; 
12. ESTIMATOR = BAYES ;  
13. BITERATIONS=100000 (50000); BCONVERGENCE =.01; 
14. MODEL : 
15. %WITHIN%  
16.   y1 ; y2 ; y3 ;  ! estimate disturbance variances of outcome 
17.   m1 ; m2 ; m3 ;  ! estimate variances of mediator 
18.   lyw by y1 y2 y3 (pw1-pw3) ; ! define measurement model for y 
19.   lmw by m1 m2 m3 (pw4-pw6) ; ! define measurement model for m 
20.   lmw ; ! estimate variance of latent mediator 



                                                                                                             Clustered Designs 53 

 
 

21.   lyw ; ! estimate disturbance variance of latent outcome 
22.   lyw ON lmw (pw7) ; !regress latent outcome on latent mediator  
23. %BETWEEN%  
24.   y1 ; y2 ; y3 ; ! estimate residual variances of outcome 
25.   m1 ; m2 ; m3 ; ! estimate residual variances of mediator 
26.   lyb by y1 y2 y3 (pb1-pb3); ! define measurement model for y 
27.   lmb by m1 m2 m3 (pb4-pb6); ! define measurement model for m 
28.   lyb ; ! estimate disturbance variance of latent mediator  
29.   lmb ; ! estimate disturbance variance of latent outcome 
30.   lyb ON lmb (pb7) ; !regress latent outcome on latent mediator  
31.   lmb on treat ; !regress latent mediator onto treatment condition 
32. MODEL CONSTRAINT: ! conduct contrasts 
33. NEW (ly2 ly3 lm2 lm3 context) ; ! give labels to contrasts  
34.  ly2 = pw2-pb2 ; ! compare y indicator 2 loadings 
35.  ly3 = pw3-pb3 ; ! compare y indicator 3 loadings 
36.  lm2 = pw5-pb5 ; ! compare m indicator 2 loadings 
37.  lm3 = pw6-pb6 ; ! compare m indicator 2 loadings 
38.  context = pb7-pw7 ; ! test context effect 
39. OUTPUT: STDYX CINTERVAL(HPD) RESIDUAL TECH4 TECH8 ; 

 
Note that the syntax defines latent variables at both the within-cluster level and the 
between-cluster level. None of the syntax should be new to you. The test of loading 
invariance and the test of the context effect occurs under the MODEL CONSTRAINT 
command. I use the letters b and w in my labels to differentiate between-cluster and within-
cluster parameters.  
 When I analyzed the data, I found that the largest PSR on the final iteration was 1.003, 
suggesting the model converged. Here is the relevant output for model fit: 
 
MODEL FIT INFORMATION 
 
Bayesian Posterior Predictive Checking using Chi-Square 
 
          95% Confidence Interval for the Difference Between 
          the Observed and the Replicated Chi-Square Values 
 
                                -29.217            27.663 
 
          Posterior Predictive P-Value              0.512 

 
The confidence interval for the chi square statistic is reasonably symmetrical and contains 
the value of 0. The posterior predictive p-value is near 0.50. These results suggest 
reasonable model fit. I do not show them here but the model estimated correlations were 
all reasonably close to the model observed correlations at both the between-cluster and 
within-cluster levels, which also is consistent with a good fitting model.  



                                                                                                             Clustered Designs 54 

 
 

 Here are the unstandardized parameter estimates of interest: 

MODEL RESULTS 
 
                                Posterior   One-Tailed         95% C.I. 
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Sig 
 
Within Level 
 
 LYW      BY 
    Y1                 1.000       0.000      0.000       1.000       1.000 
    Y2                 0.891       0.008      0.000       0.876       0.906      * 
    Y3                 0.905       0.008      0.000       0.889       0.920      * 
 
 LMW      BY 
    M1                 1.000       0.000      0.000       1.000       1.000 
    M2                 0.853       0.010      0.000       0.834       0.873      * 
    M3                 0.860       0.010      0.000       0.841       0.880      * 
 
 LYW        ON 
    LMW                0.503       0.013      0.000       0.478       0.528      * 
 
Between Level 
 
 LYB      BY 
    Y1                 1.000       0.000      0.000       1.000       1.000 
    Y2                 0.880       0.075      0.000       0.739       1.032      * 
    Y3                 0.939       0.076      0.000       0.793       1.089      * 
 
 LMB      BY 
    M1                 1.000       0.000      0.000       1.000       1.000 
    M2                 0.848       0.077      0.000       0.704       1.006      * 
    M3                 0.833       0.081      0.000       0.681       0.997      * 
 
 LYB        ON 
    LMB                0.434       0.103      0.000       0.236       0.638      * 
 
 LMB        ON 
    TREAT              1.149       0.204      0.000       0.744       1.545      * 
 
New/Additional Parameters 
    LY2                0.011       0.075      0.441      -0.143       0.152 
    LY3               -0.034       0.076      0.318      -0.190       0.109 
    LM2                0.005       0.078      0.473      -0.156       0.149 
    LM3                0.027       0.081      0.370      -0.140       0.179 
    CONTEXT           -0.069       0.104      0.251      -0.276       0.131  

The unstandardized factor loadings for both the outcome latent variable and the 
mediator latent variable are quite similar at the two levels of analysis, suggesting functional 
loading invariance. The first four rows of the section New/Additional Parameters are 
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formal tests of across versus between loading differences for those loadings that were freely 
estimated (see Lines 34-37 in Table 25.8). As discussed in the measurement invariance 
document on my website for Chapter 3, this evaluation strategy assumes the first indicator 
of each latent variable is loading invariant; other strategies described in that document also 
could be pursued for sensitivity purposes.  
 The test for the presence of a context effect for the estimated effect of the latent 
mediator on the latent outcome also appears in the section New/Additional Parameters 
in the row labeled CONTEXT. The path coefficient reflecting the effect at the between-cluster 
level (coefficient = 0.44, 95% CI = 0.24 to 0.64) is not significantly different than the effect 
at the within-cluster level (coefficient = 0.50, 95% CI = 0.47 to 0.53). The difference in the 
coefficients is -0.07 whose credible interval (-0.28 to 0.13) contains the value of zero.  
 Analyses of latent variables in an MSEM framework sometimes are referred to as 
being doubly robust because they adjust for both measurement error as well as sampling 
error in the cluster sample means when defining the relevant latent variables. It is not 
required that measurement invariance for latent variables be demonstrated at the within-
cluster and between-cluster levels. If it does not exist, this simply implies the respective 
latent variables may reflect different constructs.     

Moderation Analyses in Multilevel SEM 

Moderation analyses in multilevel SEM can be straightforward but they also can be 
nuanced and challenging. I describe examples in the document Moderation Analyses in 
Multilevel SEM on my website. The core logic of the underlying statistical theory is 
described in Asparouhov and Muthén (2020). I provide an example here that uses Bayesian 
estimation applied to the single mediation model in Figure 25.3 to keep matters simple. I 
seek to test if the treatment condition moderates the effect of the latent mediator on the 
latent outcome, i.e., I test for a treatment-mediator interaction. I make use of the XWITH 
feature in Mplus for purposes of representing the interaction effect. This method can be 
used to model interactions or moderated relationships between an observed variable and a 
latent variable but it technically assumes the latent mediator and the observed variable both 
are normally distributed (see Chapters 15 and XX). This is clearly not the case when the 
treatment condition is binary with approximately equal sample sizes in the two conditions. 
Gonzalez & Valente (2023) evaluated eight different approaches to testing treatment by 
latent mediator moderation/interactions, one of which was Bayesian estimation with the 
XWITH command for a model similar to that in Figure 25.3. They varied in a Monte Carlo 
study a wide range of factors including sample size, effect size, distributional properties of 
the latent mediator indicators. The Bayes method produced reasonable estimation, power, 
and credible interval coverage across all conditions. The approach seems viable despite the 
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non-normal binary variable in the interaction. Table 25.9 shows the Mplus syntax for the 
model in Figure 25.3, most of which you are familiar with:    

Table 25.9: Syntax for Test of Moderation in MSEM  
 
1. TITLE: MSEM invariance analysis ; 
2. DATA: FILE IS moderation.dat ; 
3. VARIABLE:  
4. NAMES ARE  
5.   y1 y2 y3 m1 m2 m3 treat school ; 
6. USEVARIABLES ARE  
7.   y1 y2 y3 m1 m2 m3 treat ; 
8. CLUSTER is school ; 
9. BETWEEN IS treat ;  ! specify global/integral level 2 variables  
10. ANALYSIS: 
11. TYPE = TWOLEVEL RANDOM ; 
12. ESTIMATOR = BAYES ;  
13. BITERATIONS=100000 (50000); BCONVERGENCE =.01; 
14. MODEL : 
15. %WITHIN%  ! specify within model  
16. y1 ; y2 ; y3 ;  ! estimate resid var of outcome indicators 
17. m1 ; m2 ; m3 ;  ! estimate resid var of mediator indicators 
18. lyw by y1 y2 y3 (pw1-pw3) ; ! define measurement model for y 
19. lmw by m1 m2 m3 (pw4-pw6) ; ! define measurement model for m 
20. lmw ; ! estimate var of latent mediator 
21. lyw ; ! estimate disturbance variance of latent outcome 
22. lyw ON lmw (pw7) ; !regress latent outcome on latent mediator  
23. %BETWEEN% !specify between model  
24. y1 ; y2 ; y3 ; ! estimate resid var of outcome indicators 
25. m1 ; m2 ; m3 ; ! estimate resid var of mediator indicators 
26. lyb by y1 y2 y3 (pb1-pb3); ! define measurement model for y 
27. lmb by m1 m2 m3 (pb4-pb6); ! define measurement model for m 
28. lyb ; ! estimate disturbance variance of latent mediator  
29. lmb ; ! estimate disturbance variance of latent outcome 
30. lmb on treat (pb7) ; ! regress latent med onto treatment 
31. int| treat XWITH lmb ; !define interaction term 
32. lyb ON lmb treat int (pb8-pb10) ; ! regress latent outcome onto   
33.                                  ! interaction and component parts  
34. MODEL CONSTRAINT: ! conduct simple effects 
25. NEW (streat scontrol diff) ; ! give labels to contrasts  
36. streat = pb8 + pb10 ; ! simple effect of ly on lm for treat grp 
37. scontrol = pb8 ; ! simple effect of ly on lm for control grp 
38. diff=streat-scontrol ! check on interaction 
39. OUTPUT: STDYX Cinterval(hpd) TECH4 TECH8 RESIDUAL ; 

 
Line 31 creates the moderation/interaction term using the XWITH keyword. As review 

from Chapter XX, the label for the moderation/interaction term is placed to the left of | 
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and to the right of it are the two variables to be used in the term separated by XWITH. At 
least one of the variables must be a latent variable. Line 32 specifies the linear equation 
predicting the latent outcome from the moderator/interaction term and its component parts. 
The MODEL CONSTRAINT commands starting on Line 34 define the two simple effects for 
the path coefficient reflecting the effect the latent mediator on the latent outcome, one for 
the treatment group (Line 36) and the other for the control group (Line 37). The underlying 
algebra was discussed in Chapter XX and the expressions rely on the Mplus labels for the 
relevant path coefficients. Line 38 calculates the difference between the two simple effects 
and should equal the coefficient for the int variable in Line 32. 
 When I analyzed the data, I found that the largest PSR on the final iteration was 1.000, 
suggesting the model converged. No global fit indices are reported by Mplus for the model, 
which is a limitation of the Bayesian approach in this particular case. I can compare the 
predicted and observed correlations for the observed variables as an informal check on 
model fit, per my earlier discussion in this chapter. I do not show the matrices here but the 
model estimated correlations were all reasonably close to the model observed correlations 
at both the between-cluster and within-cluster levels. I discuss in the document on my 
webpage Moderation Analyses in Multilevel SEM additional approaches you can use for 
Bayesian moderation models.  
 To save space, I do not report results for the measurement model (the results for it 
were reasonable) and focus only on the moderation analyses. Here is the relevant output 
for the unstandardized coefficients: 
 
MODEL RESULTS 
 
                                Posterior   One-Tailed         95% C.I. 
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Sig 

Between Level 
  
 LYB        ON 
    LMB                0.224       0.187      0.112      -0.144       0.587 
    INT                0.432       0.250      0.038      -0.047       0.936 
    TREAT             -0.336       0.277      0.106      -0.878       0.222 
 
New/Additional Parameters 
    STREAT             0.657       0.168      0.000       0.338       1.000      * 
    SCONTROL           0.224       0.187      0.112      -0.144       0.587 
    DIFF               0.432       0.250      0.038      -0.047       0.936 

 
The moderator/interaction term (INT) is not statistically significant because the 95% 
credible interval for it contains zero (-0.047 to 0.936). The coefficient for it was 0.432, 
which estimates the difference between the latent variable M→Y path coefficient for the 
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intervention group minus the corresponding path for the control group. The estimates for 
the component individual path coefficients are in the section New/Additional 

Parameters. The estimate for the intervention group is 0.657 (95% CI = 0.338 to 1.000) 
and for the control group it is 0.224 ((95% CI = -0.144 to 0.587). The estimated squared 
correlation for the between-cluster latent Y regressed onto the between-cluster latent 
mediator, treatment effect and the moderation/interaction term was: 

R-SQUARE 
 
Between Level 
 
                                Posterior   One-Tailed         95% C.I. 
    Variable        Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5% 
 
    LYB                0.290       0.092      0.000       0.119       0.476 

   
or 0.290 (95% credible interval = 0.119 to 0.476).  

Assumptions 

Like most statistical methods, multilevel models make statistical assumptions. The major 
ones are: (1) the model is correctly specified (all the predictors associated with the outcome 
and relevant random effects are part of the model), (2) the functional form of relationships 
is correct (e.g., linearity), (3) Level-1 disturbances are independent and normally 
distributed, (4) Level-2 disturbances are independent and normally distributed, (5), 
disturbances at Level 1 and Level 2 are unrelated, and (6) predictors at one level are not 
related to disturbances at another level.  

Assumptions about normality and variance homogeneity are less pressing when 
robust or certain forms of Bayesian estimation are used in multilevel modeling. 
Specification error is always of concern. With multilevel models, the issue of mistakenly 
treating a predictor as having varying coefficients across clusters when they are, in fact, 
non-varying or vice versa has received considerable attention. As noted, simulations 
suggest that the effects of such violations depend on how severe the misspecification is: 
Treating a varying coefficient predictor as non-varying is not particularly problematic if 
the amount of variation in the coefficients is modest. Treating a non-varying coefficient 
predictor as varying across clusters also is not particularly problematic because the lack of 
coefficient variability will reveal itself during the modeling process and will be taken into 
account accordingly. Most of the other assumptions can be addressed using methods 
outlined in Chapter 11 for preliminary analyses with continuous outcomes.   
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The Use of Covariates in MSEM 

The examples I have considered do not include covariates for purposes of confounder 
control. It is reasonably straightforward to include covariates to adjust for confounding for 
either the within-cluster model, the between-cluster model, or both; you just include the 
covariate in one or both of the %WITHIN% and %BETWEEN% statements of the Mplus code as 
you would in any standard regression model.  

One nuance is if the covariate is nominal (such as biological sex or ethnicity) and you 
want to include it in both the within-cluster and between-cluster models. At the within-
cluster level, you would dummy code the variable using traditional 0-1 dummy coding and 
enter into the equation the dummy variables for all groups except the reference group. This 
also would be true for the between-cluster model. Using Bayesian MSEM, you would not 
mention any of the dummy variables on the WITHIN and BETWEEN subcommands under the 
VARIABLE command, thereby telling Mplus to invoke latent variables for them. The 
coefficients for the dummy variables for the within-cluster model are interpreted as in 
traditional regression – they represent the average cluster mean difference between the 
group scored 1 on the dummy variable and the reference group. However, the coefficient 
for the between-cluster model takes on a different meaning because the dummy variable 
now reflects the mean of the 0-1 scores for the dummy variable in question in each cluster, 
This mean equals the proportion of individuals in each respective cluster that have a score 
of 1 on the dummy variable. Yaremych, Preacher & Hedeker (2023) suggest interpreting 
the between-cluster coefficient by dividing it by 10.  

Let me make this concrete for you. Suppose I code biological sex as 0 = female and 
1 = male and include the dummy variable (which I call biosex) in both the within-cluster 
and between-cluster models as covariates. Suppose my outcome variable is the number of 
minutes of vigorous physical exercise per day (MVPA). If the coefficient for biosex in the 
within-cluster model is 3.0, this means that within-clusters, males are predicted to engage 
in MVPA, on average, three minutes more per day than females, i.e., it is the mean for the 
group scored 1 on the dummy variable minus the reference group, holding the other 
variables in the equation constant. Suppose the coefficient for biosex in the between-cluster 
model is 20.0. If I divide this by 10, I obtain 2.0. I interpret the result as follows: For every 
10% increase in the percentage of males in a cluster (school), the cluster average number 
of MVPA minutes per day is predicted to increase by 2.0, holding constant the other 
predictors in the between-cluster equation.5 By dividing by 10, this allows me to use the 

 
5 In the unusual case where each cluster contains entirely one category of the nominal variable (i.e., the categorical 
predictor has no within-cluster variability), the coefficient for the variable will equal the mean difference on y 
between that group and the reference group and be interpreted as the mean difference on the outcome when moving 
from a cluster composed entirely of the reference group to a cluster composed entirely of the group scored 1 on the 
dummy variable. 
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phrase “for every 10% increase.” 
As another example, suppose the nominal variable is ethnicity with three levels, (a) 

non-Hispanic White, (b) Black, (c) Latinx. I create two dummy variables with dummy 
coding, one for Blacks and the other for Latinx, with Whites being the reference group. I 
include DBLACKS and DLATINX as covariates in the within-cluster model and also in the 
between-cluster model. Suppose the coefficient for DBLACKS was 1.0. This means that 
within-clusters, Blacks are predicted to engage in MVPA, on average, one minute more 
per day than Whites. Suppose the coefficient for DBLACKS in the between-cluster model was 
15.0. If I divide this by 10, I obtain 1.50 and interpret the result as follows: For every 10% 
increase in the percentage of Blacks in a cluster (school), the cluster average number of 
MVPA minutes per day is predicted to increase by 1.5, holding constant the other 
predictors in the between-cluster equation.   

There is some controversy about how best to implement the treatment of nominal 
covariates in multilevel modeling. Asparouhov and Muthén (2018b) argue that the above 
approach is widely applicable and has the advantage of explicitly dealing with Lüdtke bias. 
For binary nominal variables, Enders and Tofighi (2007) suggest instead using observed 
group mean centering rather than latent variable centering, but this approach is subject to 
Lüdtke bias and is not as widely applicable (see Asparouhov & Muthén, 2018b, for details).    

Concluding Comments on Multilevel SEM 

Multilevel modeling is an approach for analyzing clustered RET data when you seek to 
gain perspectives on the clusters themselves. MSEM is distinct from traditional multilevel 
modeling as implemented by software like HLM and MLwiN and what is commonly 
known as mixed modeling, although these strategies as well as SEM more generally can be 
thought of as special cases of MSEM. MSEM is superior to traditional multilevel modeling 
because it can incorporate latent variables into the analysis, it can deal with complex 
structural relationships that are not easily evaluated in traditional multilevel models, and it 
addresses often overlooked conflation of effects. In the current chapter, I focused on the 
case of MSEM with continuous outcomes. However, it also can be applied to binary and 
ordinal outcomes as well as count outcomes (for an example of an application to a binary 
outcome, see Cho, Preacher & Bottge, 2015). 

COMPARISON OF MSEM AND CLUSTERS-AS-NUISANCE APPROACHES 

The cluster-as nuisance approach to the analysis of cluster randomized trials is rooted in 
traditional regression modeling for individuals but standard errors are adjusted for 
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dependencies using sandwich-based corrections. Unlike multilevel modeling, there is no 
desire to characterize random variances nor are we interested in the variance of slopes 
across clusters, at least in the sense that multilevel models do. One assumes the same slope 
value applies to each cluster, just as we do in standard regression for individuals. To be 
sure, their likely will be some cluster differences in slopes but the assumption is that the 
variability is not meaningful and reflects sampling error. If this is not the case, then one 
models the variability using product terms rather than the random slopes approach in 
MSEM.  

At the outset of this chapter I illustrated the cluster-as nuisance approach but did not 
include Level-2 predictors, with the exception of the assignment of individuals to treatment 
versus control conditions, a global Level-2 variable. It turns out that one can include both 
global and contextual Level-2 predictors in the cluster-as-nuisance approach. If you do so,  
then clustering probably is no longer viewed strictly as a nuisance because you are now 
exploring how cluster characteristics impact the outcome. Given this, I henceforth refer to 
the approach as the cluster robust standard error approach (CRSE) and distinguish it 
from MSEM by its use of specialized sandwich type standard errors to specify both within-
cluster and between-cluster effects on outcomes in a more traditional SEM context. To be 
sure, MSEM has more analytic flexibility for exploring non-varying slopes across clusters 
and to adjust for Lüdtke’s bias but it also comes with a host of assumptions that may be 
unrealistic in some settings. McNeish, Stapleton & Silverman (2017) provide a useful and 
detailed comparison of the two approaches. Sometimes, I find it helpful to analyze both 
Level-1 and Level-2 predictors of an outcome using a CRSE approach rather than MSEM.  

Recall that global Level-2 variables assign the same value to all individuals in a 
cluster (such as the size of a school representing a cluster) while contextual Level-2 
variables assign the mean value for the cluster for all individuals in that cluster (such as the 
mean SES of individuals in a school or the percent of students in the school who are non-
white if schools). Including a global Level-2 variable in the CRSE approach is 
straightforward because there is no within-cluster variability associated with it; its variation 
is completely determined by between-cluster differences on the predictor. For Level-2 
predictors that are the average of a Level-1 predictor, however, one needs to include both 
the Level-2 predictor as well as the Level-1 predictor in the linear equation(s) in order to 
make the interpretation of their respective coefficients meaningful. For the Level-1 
predictor, you enter it into the equation using one of two versions depending on the research 
question you seek to answer (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012; 
Antonakis et al., 2021).  

The first version of the Level-1 contextual predictor is to cluster-mean center it before 
entering it into the equation. In this case, you subtract the mean of the cluster from each 
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cluster members’ original score and then include the transformed score as your predictor. 
You also include as a separate predictor the Level-2 version of the variable, which is simply 
the cluster mean assigned to each individual in their respective cluster. The path coefficient 
for the Level-1 predictor will then estimate the within-cluster effect of the predictor on the 
outcome and the coefficient associated with the average of the Level-2 predictor will 
estimate the between-cluster effect of the predictor on the outcome.  

To illustrate this approach using the MVPA example, I adapt the cluster-as-nuisance 
syntax I showed you at the beginning of the chapter (see Table 25.2) to the syntax in Table 
25.10, where I now include between-cluster mean vectors for perceived advantages and 
peer support (Lines 5 and 6) after which I cluster mean center their raw scores (Line 7).  

Table 25.10: Syntax for CRSE Approach: Version 1  
 
1. TITLE: CRSE Version 1 ; 
2. DATA: 
3.   FILE IS mvpa.dat ; 
4. DEFINE: 
5.   madvant = CLUSTER_MEAN (advant);  ! define level 2 var of cluster means 
6.   mpeers = CLUSTER_MEAN (peers); 
7. CENTER advant peers (GROUPMEAN) ;   ! cluster mean center level 1 vars 
8. VARIABLE:  
9. NAMES ARE  
10.  mvpa peers advant treat school ; 
11. USEVARIABLES ARE  
12.  mvpa peers advant treat madvant mpeers ;  ! list new vars last  
13. CLUSTER is school ;                        !identify cluster variable 
14. ANALYSIS: TYPE = COMPLEX ;                  ! specify complex design option 
15.  !BOOT = 5000 ;  
16. MODEL : 
17.  mvpa ON advant peers madvant mpeers ; ! regress Y onto level 1 and 2 vars 
18.  mpeers on treat ;     ! regress level 2 vars onto treat  
19.  madvant ON treat ; 
20.  madvant with mpeers ;  ! allow correlated disturbances for level 2 vars 
21. MODEL INDIRECT: 
22.  mvpa IND treat ; 
23. OUTPUT: SAMP STANDARDIZED(STDY) RESIDUAL MOD(ALL 4) 
24. CINTERVAL TECH4 ; 
25. !CINTERVAL(BOOTSTRAP) TECH4 ; 

  
 I highlight in red the syntax you should be sure to note.  Lines 5 and 6 create the 
Level-2 variables madvant and mpeers that assign the respective cluster mean value to 
each individual. Line 7 enacts the cluster mean centering transformation by subtracting an 
individual’s cluster mean from his or her raw score on the variables. It is important that 
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this transformation occurs after I define madvant and mpeers.  Line 15 is commented out 
because I am not using bootstrapping in this initial run but I might do so in later runs for 
sensitivity purposes. This also is true for Line 25. Line 17 adds madvant and mpeers as 
predictors of MVPA and Lines 18 and 19 regress the Level-2 instantiations of the mediators 
onto the Level-2 dummy variable for the treatment condition. Line 20 allows for correlated 
disturbances between madvant and mpeers due to unmeasured common causes.  

In the interest of space, I do not report the model fit indices but all of them were 
favorable. I instead focus on the unstandardized path coefficients that emerged in the 
analysis that illustrate my earlier points: 

 
                                                      Two-Tailed 
                    Estimate       S.E.   Est./S.E.    P-Value 
 
 MVPA     ON 
    ADVANT             4.873      0.341     14.273      0.000 
    PEERS              4.630      0.317     14.607      0.000 
    MADVANT            4.615      0.921      5.014      0.000 
    MPEERS             5.298      0.993      5.333      0.000 
 

  The coefficients for the first two predictors of MVPA (advent and peers) are the 
estimated within-cluster effects of the two mediators on MVPA. The coefficients for the 
second two predictors of MVPA (madvant and mpeers) are the estimated between-cluster 
effects of the two mediators on MVPA. Let’s compare them to their counterparts in the 
Bayesian MSEM analysis, whose output from earlier I reproduce here. First, let’s examine 
the between level effects from the Bayesian MSEM: 

  
                                 Posterior  One-Tailed        95% C.I. 
                    Estimate       S.D.      P-Value    Lower 2.5%  Upper 2.5% Sig 
 
Between Level 
 
 MVPA       ON 
    ADVANT             4.601       1.191      0.000       2.291       6.973      * 
    PEERS              5.303       1.145      0.000       3.089       7.604      * 
 

You can see that the results are comparable to what I found in the CRSE analyses, 
indicating that the CRSE approach reasonably captured the between-cluster effects. Here 
are the Bayesian coefficients for the within level analysis: 
 
Within Level 
 
 MVPA       ON 
    ADVANT             4.874       0.354      0.000       4.180       5.558      * 
    PEERS              4.634       0.341      0.000       3.962       5.299      * 
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The CRSE results for the within-cluster coefficient also map closely onto these values.  
Here are the between level results for the CRSE analysis that regress the mediators 

onto the treatment effects in order to isolate the effect of the treatment on them:  

                                                     Two-Tailed 
                    Estimate       S.E.   Est./S.E.   P-Value 
MPEERS   ON 
    TREAT              0.776      0.319      2.436      0.015 
 
 MADVANT  ON 
    TREAT              0.733      0.306      2.395      0.017   

 
and here are the corresponding results from the Bayesian MSEM analysis: 
 
                               Posterior    One-Tailed         95% C.I. 
                    Estimate      S.D.       P-Value    Lower 2.5%  Upper 2.5% Sig 
 
Between Level 
 
 PEERS      ON 
    TREAT              0.775       0.343      0.013       0.097       1.449     * 
 ADVANT     ON 
    TREAT              0.731       0.329      0.014       0.078       1.376     * 
 

Again, the results are comparable.  
Result compatibility to the more complex Bayesian SEM is an attractive feature of 

the CRSE approach because it shows that one can use it to address key substantive 
questions about within-cluster and between-cluster effects in a cluster randomized trial and 
avoid shifting to a Bayesian framework. Some audiences might be more comfortable with 
this.  

In MSEM, I noted its ability to test for contextual effects by formally testing 
differences in the effects of the mediators on the outcome at the between-cluster level with 
those same effects at the within-cluster level. It turns out I can also accomplish such tests 
in the CRSE approach by using version 2 coding of the Level-1 mediators. In this version, 
I execute the same syntax as in Table 25.10 but I do not cluster mean center the Level-1 
scores for the mediators, i.e., I remove or comment out Line 7 from the Table 25.10 syntax. 
This step will not change the (within-cluster) coefficients for the Level-1 predictors but it 
will change the (between-cluster) coefficients for the Level-2 predictors. Specifically, the 
coefficients for the Level-2 predictors will now estimate and test the context effects for 
each mediator. Here are the results for the key coefficients from the CRSE analysis when 
I do this: 
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                                                      Two-Tailed 
                    Estimate       S.E.   Est./S.E.    P-Value 
 
 MVPA     ON 
    ADVANT             4.873      0.341     14.273      0.000 
    PEERS              4.630      0.317     14.607      0.000 
    MADVANT           -0.257      0.940     -0.274      0.784 
    MPEERS             0.667      1.040      0.642      0.521 

 
Note that the within-cluster coefficients remain the same but the coefficient for MADVANT 
is the context effect, namely the between-cluster coefficient for MADVANT→MVPA minus the 
within-cluster coefficient ADVANT→MVPA or 4.601-4.873 = -0.257, which was statistically 
non-significant (margin of error = 1.88, critical ratio = 0.274, p = 0.784). The result maps 
well onto the corresponding contrast I performed in the Bayesian MSEM and this was also 
true for the peer support context effect. Thus, we also have the ability to use the CRSE 
approach to formally test for context effects. 
 In sum, we can use the CRSE method to analyze clustered randomized trial data and 
obtain perspectives on much of what we can with MSEM but all in a more traditional SEM 
framework. To be sure, MSEM has more flexibility in its ability to characterize and explore 
non-varying slopes and its ability to adjust for Lüdtke’s bias. However, often CRSE is more 
audience friendly. Of course, both analytic frameworks can incorporate latent variables to 
address measurement error.      

STRATEGIES WHEN THERE ARE FEW CLUSTERS 

It is well known that many methods for analyzing clustered data are questionable when the 
number of clusters is small. For the CRSE approach, research suggests that standard errors 
can be biased downward when the number of clusters is small which, in turn, leads to 
higher Type I error rates (Cameron, Gelbach, & Miller, 2008; Cameron & Miller,  2015; 
Imbens & Kolesar, 2016; MacKinnon & Webb, 2017). As noted, about 50 clusters is 
generally considered to be sufficient, with 20 or so clusters being reasonable in some 
contexts. For multilevel models, an early rule of thumb was known as the 30-30 rule that 
argued for at least 30 clusters of 30 observations each (Kreft, 1996), but this rule has fallen 
into disrepute. Hox and Maas (2001) conducted a simulation study to explore sample size 
requirements for MSEM and found that 50 clusters generally sufficed for low intraclass 
correlations and clusters of equal size. Under more general conditions, they recommended 
100 clusters or more were likely needed (see also Hox, Maas & Brinkhuis, 2010). Usually, 
the best way to determine a reasonable number of clusters and sample size for your study 
is via computer simulation, which I address in Chapter 28.  
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 There are several ad hoc methods that have been suggested for analyzing data with 
few clusters. One early approach analyzed data using standard methods that ignore 
clustering but then multiplies the resulting standard errors by a design effect correction, 
DEFT, before forming a z value or t ratio for purposes of significance testing. In cases 
where the probability of selection of each member of the population of clusters is equal 
and the cluster sizes are equal, the correction factor in many cases is  

DEFT = c1 ICC(1 n )+ −  

where ICC is the intraclass correlation coefficient and nc is size of each cluster. If the cluster 
sizes are unequal but close in magnitude, some researchers use the harmonic mean of the 
cluster sizes in place of nc. For example, if the observed margin of error based on a 95% 
confidence interval of a statistic ignoring clustering is 3.0 and DEFT is 2.0, the cluster 
adjusted margin of error would be (3.0)(2.0) = 6.0. If the z value for a significance test for 
a parameter of a mean difference or regression coefficient is 1.50 when ignoring clustering, 
then the cluster adjusted z value would be (1.50)/(2.0) = 0.75. The DEFT correction 
approach is crude and tends to be conservative. Thomas and Heck (2001) suggest using 
more liberal alpha levels if applying the approach but do not provide guidelines for how to 
choose an alpha level. Hedges (2007, 2015) provides a correction multiplier to traditional 
z or t ratios that can be applied to studies that mistakenly ignore the effect of clustering by 
analyzing the data as if it were from a simple random sample. These corrections can be 
helpful when conducting meta-analyses. In the final analysis, better approaches to adjusting 
for cluster effects with few clusters are available. I discuss two such methods here, one 
called bias-reduced linearization (BRL; Bell & McCaffrey, 2002) and the other based on 
Bayesian modeling.  

Bias-Reduced Linearization (BRL)   

Several reasonably effective small sample corrections exist for clustered data (Manor & 
Zucker, 2004; Skene & Kenward, 2010a, 2010b; Zucker, Liberman, & Manor, 2000, 
Kenward & Roger, 1997, 2009). One popular method is the Kenward-Roger correction 
(Bell et al., 2014; McNeish & Stapleton, 2014) which frequently is used in traditional 
multilevel models. I focus here on the bias-reduced linearization method that uses the 
CRSE framework (see Bell & McCaffery, 2002). The BRL approach must be used on an 
equation by equation basis in limited information SEM contexts. For coefficient estimation, 
the method adopts ordinary least squares regression (or maximum likelihood estimation) 
but uses a cluster-robust standard error based on what is known as a CR2 estimator. The 
CR2 estimator is a generalization of the heteroskedasticity-consistent HC2 estimator 
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proposed by MacKinnon and White (1985). It is a sandwich estimator. Unlike Mplus that 
relies on asymptotic  theory, the method  invokes empirically based degrees of freedom to 
define p values and confidence intervals. The degrees of freedom are called dfBM and are 
data-based. The degrees of freedom can be non-integer and tend to yield more conservative 
critical values than convention methods (Pustejovsky & Tipton, 2018). Several simulations 
have affirmed the utility of the approach for models with as few as 10 to 20 clusters (e.g., 
Bell & McCaffery, 2002; Huang & Li, 2021; Imbens & Kolesar, 2016; Pustejovsky & 
Tipton, 2018). Huang et al. (2023) have extended the BLR approach to the analysis of 
binary outcomes for logistic or probit regression contexts. I provide R code for the method 
on my website and a video that walks you through the program.   

The BLR approach only can evaluate complex SEM models using limited 
information estimation frameworks without latent variables. Level-2 variables can be 
included in the modeling per my above discussion of the CRSE approach. With Level-2 
predictors, it does not address Lüdtke’s bias. However, when faced with a small number of 
clusters, MSEM and the Mplus based CRSE approach become unfeasible; BLR can be a 
viable alternative, albeit one with limitations. Of course, the BLR approach does not solve 
the problem of low statistical power when analyzing few clusters in certain modeling 
contexts. The bottom line is that if you are going to conduct cluster randomized trials, you 
need to ensure you have plenty of clusters. 

Bayesian Modeling with Informative Priors 

Another approach to modeling clustered data with few clusters is to use Bayesian MSEM  
with informative priors. The present chapter emphasized Bayesian MSEM but using 
diffuse or noninformative priors. By contrast, if you use reasonably chosen informative 
priors, model estimation can yield smaller standard errors and less bias for parameter 
estimation. Zitzmann, Helm and Hecht (2021) suggest two strategies for defining 
informative priors for multilevel models with few clusters, (1) specify an informative prior 
for the cluster-level variance of cluster level predictors and (2) specify an informative prior 
for the path coefficient for one or more cluster level predictors. Zitzmann et al. discuss 
factors to consider when using these strategies. In Chapter 28 on sample size decisions, I 
described how to incorporate informative priors into Bayesian frameworks in Mplus to 
address small sample sizes. I refer you to that chapter for an introduction to this topic and 
ways of implementing the suggestions of Zitzmann et al. (2021). Having said that, with 
diffuse prior distributions, Bayes methods with few clusters or with small sample sizes 
often perform no better and sometimes worse than traditional frequentist methods, so care 
must be taken in such cases (McNeish, 2016a; Depaoli & Clifton, 2015). The choice of 
informative priors is crucial.  
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Cluster Matching 

When there are few clusters in a cluster randomized trial, some methodologists recommend 
using cluster matching for purposes of random assignment to treatment arm. The approach 
involves pairing clusters before randomization on key, theoretically relevant determinants 
of the outcome and then randomizing one member of the pair to each treatment arm. The 
idea is to reduce imbalance that can occur during randomization and to increase efficiency.  
 As discussed in Chapter 4, with randomization one expects baseline variable means 
and proportions to be equal but sometimes by virtue of random error, they are not, i.e., the 
treatment conditions are imbalanced. It usually is good scientific practice to adjust for such 
imbalance if possible but only for variables that matter, namely variables that impact the 
posttest outcome. One way of accomplishing this is through the introduction of covariates 
during data analysis. Another way is through matching during study design and execution.  

Matching can vary from weak to strong. Strong matching occurs when all cluster 
pairs are perfectly matched on all target variables. Weak matching is when we are unable, 
for whatever reason, to form pairs with comparable scores on the target variables. Cluster 
matching tends to fail in the presence of weak matching (Chondros et al. 2021). I refer you 
to Chapter 4 for a more detailed discussion of imbalance, sample size, and matching. It is 
a strategy worth considering when analyzing data with few clusters. For analysis issues 
related to matched designs, see Diehr et al. (1995) and Martin et al. (1993). 

POWER ANALYSIS/SIMULATIONS FOR CLUSTER RANDOMIZED TRIALS 

There are numerous software packages available for power analysis for clustered 
randomized trials. I like the R package called PUMP by Porter et al., (2023a, b). Rutterford, 
Copas and Eldridge (2015) provide two simple formulae for estimating the per condition 
sample size needed to obtain a given level of power for a two arm treatment in a clustered 
randomized trial for (1) a mean difference between the intervention and control groups for 
a continuous outcome/mediator, and (2) a proportion difference between the intervention 
and control groups for a binary outcome/mediator. Here is the formula for the continuous 
outcome: 

2
2 2

1

2

/ ) )(2 )( (1 ( 1)ρ)
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Zm nZα β σ− 
= + − 
 

+
        [25.5]

  
where m = the group/condition sample size, Z1-α/2 is the z score of the standard normal 
distribution corresponding to 1-(α/2), Zβ is the z score of the standard normal distribution 
corresponding to beta, i.e., the desired Type II error rate (power is one minus this value), 
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∆ is the population mean difference of interest, σ2 is the variance of the 
outcome/mediator, n is the cluster size, and ρ  is the intra-class correlation. This formula 
assumes all the cluster sizes are equal or close enough so to be reasonably represented by 
a single number. 
 As an example, if the alpha level is 0.05, then Z1-α/2  equals 1.96; if the desired power 
is 0.80, then Zβ equals 0.84. I might expect the typical cluster size to be 20 and the 
population intraclass correlation to be 0.05. I set the outcome variance to be 1.0 and the 
mean difference of interest to be 0.50, which maps roughly onto a Cohen’s d of 0.50 given 
the variance equals 1.0. Substituting these values into Equation 25.5 yields an m value of 
approximately 91. I need about 90 individuals per condition, which will yield about 180/20 
= 9 clusters, which is probably too few unless I use an analytic method appropriate for few 
clusters.  
 Here is the corresponding formula for a proportion difference: 
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                         [25.6] 

where P1 is the target population proportion of responders in the intervention group, P2 is 
the target population proportion of responders in the control group, ∆ is P1 – P2 and all 
other terms are as previously defined. R code for executing Equations 25.5 and 25.6 is in 
the Appendix. 
 An interesting property of the above two equations is that the terms in the brackets 
yield approximations to the required per group sample size for the case of simple random 
sampling, i.e., they will be close in value to what you would get by conducting a traditional 
power analysis for a mean difference or a proportion difference. The result is then inflated 
by (i.e., multiplied by) an index of the anticipated design effect, in this case 1+((n-1)ρ ), 
where n is the typical cluster size and ρ  is the intraclass correlation. Some methodologists 
perform back-of-the-envelope estimates of sample size needs under clustering by 
conducting a power analysis for sample size using traditional power analysis software for 
the case of simple random sampling and then multiplying the result by the above design 
effect expression. This requires, of course, that the design effect multiplier is appropriate 
for the type of analysis conducted; the multiplier can vary depending on the type of analysis 
performed and the nature of the clustering (see Rutterford et al., 2015).  
  Rather than rely on assumption bound approximations such as the above, I prefer to 
pursue power analysis through computer simulations. Although more work, the simulation 
strategy provides much more information and gives you more control over the power 
analysis than general power analysis software. Simulations also allow you to evaluate if 
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the number of clusters you are analyzing is problematic and to gain perspectives on margins 
of error. I discuss how to construct such simulations in Mplus in Chapter 28 where I also 
provide an example for a clustered randomized trial.   

METHODOLOGICAL ISSUES IN CLUSTER RANDOMIZED TRIALS 

Partially Nested Designs 

Cluster randomized trials sometimes use what are known as partially nested designs. 
These are designs where clustering occurs in some conditions but not others. For example, 
individuals in the intervention group might be given a treatment in small groups of 5 to 10 
individuals but people in the control group are not given anything, hence there are no group 
clusters in the control condition. Some studies seek to formally compare group 
administered to individually administered interventions, in which case a partially nested 
design is used. These examples are distinct from fully clustered designs where clustering 
occurs in all study conditions. In partially clustered designs, it often is reasonable to assume 
that observations in the unclustered condition are independent but non-independent in the 
clustered condition.  

The analysis of partially nested cluster trials has received considerable attention. Over 
half a dozen methods of analysis have been proposed (e.g., Bauer, Sterba & Hallfors, 2008; 
Baldwin, Bauer, Stice & Rohde, 2011; Sterba, 2017). Sterba et al. (2014) describe SEM 
methods for analyzing partially nested designs many of which rely on multiple group 
MSEM. I placed a link to the Sterba et al. article on the Resources tab of my webpage 
coupled with a link to their extensive Mplus syntax. Their programs use MSEM but with 
maximum likelihood estimation rather than Bayesian estimation. It is fairly straightforward 
to conduct multigroup SEM using maximum likelihood but this is not the case with 
Bayesian estimation. The latter requires the use of mixture modeling with known groups. 
I do not consider the analytic strategies discussed by Sterba et al. because their article and 
the accompanying syntax for it makes clear how to implement their approach. My own 
preference is for simpler methods that work about as well.  

One such option is a method known as pseudo-clustering (Candlish, Teare, Dimairo 
et al., 2018). The idea is to conduct traditional fully clustered analyses but to introduce 
arbitrary clustering into the non-clustered arm of the study, usually the control condition. 
One method of pseudo-clustering is to create artificial random clusters in the control group 
using the same number of clusters and cluster sizes as the intervention arm. This method 
introduces some bias in the estimation of the intraclass correlation because of the likely 
independence of within-cluster observations for controls. However, the bias may not be 
sufficiently strong to undermine the analysis. In their simulation studies, Candish et al. 
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found the strategy yielded reasonable results. If you use this strategy it probably is wise to 
conduct a localized simulation in Mplus that maps onto your study conditions to ensure 
that Type I error rates are not inflated and that statistical power is adequate. I discuss how 
to construct such localized simulations in Chapter 28.  

Therapists/Providers as Clusters 

In many clinic-based randomized trials, therapies are administered by different therapists 
but in some trials, the same therapist individually treats multiple study participants. In such 
cases, therapists represent a form of clustering because patients are nested within therapists. 
There are different forms that such nesting can take. Sometimes the role of the therapist is 
inconsequential, such as when simply administering a shot or providing a medication for a 
patient to take, in which case clustering can be safely ignored. In other contexts, the role 
of the therapist is more substantial and can affect patient outcomes. In general, if patients 
in the respective treatment arms are assigned to therapists with different probabilities and 
if therapists can meaningfully affect outcomes, then therapist cluster effects may need to 
be taken into account. If patients in both treatment groups have an equal chance of being 
assigned to the same therapist, clustering may be ignorable.6 If therapists treat patients in 
both arms, but are more likely to treat patients from a specific arm, clustering may need to 
be accounted for.  
 There are methods for dealing with multiple levels of clustering, such as patients 
within therapists within hospitals within counties. However, attempting to control for all 
levels of clustering can sometimes make complex analytic demands that may not work well 
in practice. Simpler analyses adjusting only for truly meaningful sources of clustering may 
be preferable. 

Multisite Designs 

Cluster randomized trials are often undertaken at multiple sites. Multiple sites are 
sometimes used for non-substantive reasons, primarily as a means of increasing participant 
recruitment to achieve a large enough sample size for the study to be adequately powered. 
Site essentially operates as a nuisance variable in the broader context of the study. Other 
multisite studies are designed such that sites take on a theoretically meaningful role, such 
as to evaluate the effects of site-level variables on treatment effectiveness or to evaluate 
the generalizability of treatment effects across sites as a function of site characteristics. 

 
6 By ignorable, I mean that an unadjusted analysis will yield valid Type I error rates, but if the intraclass correlation 
is high, then statistical power can be adversely affected. 
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When the latter is the goal, researchers typically use a large number of sites and treat them 
as a higher level variable in multilevel analyses.  

When a very small number of sites are viewed as nuisances, site effects usually are 
not treated as cluster variables in the ways I have described in this chapter. Rather, they are 
conceptualized as having fixed values with the sites being dummy coded and statistically 
controlled during the modeling process (see Feaster et al., 2011). Some researchers view 
such analyses as limiting the generalizability of the study to the particular sites that are 
studied but this is too narrow a conceptualization. Generalizations are indeed limited to the 
essential properties of the studied sites per my earlier discussion of cluster populations, but 
it is possible to select sites in ways that permit strong statements about generalizability. 
For example, if I select two sites that are highly disparate on their essential characteristics 
and show that my intervention has functionally the same effect in both sites, then this 
increases my confidence in the generalizability of the intervention to other types of sites as 
well. Per my discussion of meta-populations in Chapter 4, single site studies rarely 
randomly sample study participants yet study results typically are generalized to the types 
of participants that were included in the trial and not restricted to the study participants per 
se. Although this ultimately represents a form of nonstatistical generalization, it is a 
common practice in clinical trials and not unreasonable by fiat. The same is true for sites 
when treated as fixed effects.  

CONCLUDING COMMENTS 

Clustered randomized explanatory trials can be analyzed using SEM frameworks. The 
clusters can be treated either as nuisance variables or as meaningful units in their own right 
that we want to make inferences about. In either case, the clustering can create 
residual/error within-cluster dependencies that require specialized analytic structures. In 
Mplus, SEM models that treat clusters as nuisances typically are analyzed using maximum 
likelihood based sandwich estimators. Models that treat clusters as meaningful and that 
seek to explore effects at the cluster level use multilevel modeling strategies, most notably 
MSEM. These strategies require a fairly large number of clusters in the study design. 
However, specialized small sample analytic strategies have evolved. The present chapter 
has only scratched the surface with respect to the analysis and design of cluster randomized 
trials. Extensions to binary outcomes/mediators are reasonably straightforward and follow 
from principles discussed in prior chapters. 

There are many different types of cluster designs each with different analytic 
implications. For example, step-wedged designs sequentially transition clusters (such as 
schools, hospitals) from control to intervention conditions in a randomized order, thus  



                                                                                                             Clustered Designs 73 

 
 

representing a form of cross-over design but with clustering. No matter the design, it 
always is possible to bring mediators and moderators into these trials, thereby offering the 
power of randomized explanatory designs instead of outcome-only evaluations. Most 
current textbooks on cluster designs ignore mediation and moderation, which is 
unfortunate. 
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APPENDIX: R CODE FOR SAMPLE SIZE DETERMINATION 
 
This appendix presents R code for executing Equations 25.5 and 25.6. For Equation 25.1, 
the R code is: 
 
alpha <- .05 # specify alpha level of interest 
beta <- 0.20 # specify desired Type 2 error or (1-power) 
var <- 1.0   # specify variance of outcome 
diff <- 0.50 # specify mean difference of interest 
nclus <- 10  # specify typical sample size of cluster 
icc <- 0.05  # specify intraclass correlation 
zalpha <- qnorm(1-alpha/2) 
zpower <- qnorm(beta) 
unadjn <- (((zalpha-zpower)^2)*(2*var))/diff^2 
groupn <- unadjn*(1+(nclus-1)*icc) 
groupn # show result  

 
and for Equation 25.6, the R code is 
  
alpha <- .05 # specify alpha level of interest 
beta <- 0.20 # specify desired Type 2 error or (1-power) 
p1 <- .30    # specify proportion of responders for group 1 
p2 <- .20    # specify proportion of responders for group 2 
nclus <- 10  # specify typical sample size of cluster 
icc <- 0.05  # specify intraclass correlation 
diff = p1-p2 
zalpha <- qnorm(1-alpha/2) 
zpower <- qnorm(beta) 
unadjn <- (((zalpha-zpower)^2)*(p1*(1-p1)+p2*(1-p2)))/diff^2 
groupn <- unadjn*(1+(nclus-1)*icc) 
groupn # show result  

 


