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INTRODUCTION 

In this chapter, I address two topics. First, given a set of mediators, we sometimes want to 
order them in terms of their relative importance as determinants of the outcome. The idea 
is that if limited resources or model complexity demand we focus on a smaller subset of 
mediators, then knowing the relative importance of mediators in shaping an outcome can 
help set program and analytic priorities. Second, I consider cases where one has 
measured so many plausible mediators that one must apply data reduction strategies to 
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reduce them to a workable set for RET modeling. I do not consider judgments of relative 
importance for moderation, a topic I cover in Chapter XX.  

Webster’s dictionary defines importance as “a quality or aspect having great worth 
or significance; importance implies a value judgment of the superior worth or influence 
of something or someone.” Importance judgments evaluate worth relative to a set of 
criteria, criteria that for many types of judgments vary by context, by constituency, and 
that are subject to disagreement. In Chapter 10, I discussed approaches to determining if 
an effect in an RET is meaningful. In addition to using focus groups with relevant 
constituencies to set standards, I described three strategies for exploring effect 
meaningfulness, (1) expert-based methods, (2) distribution-based methods, and (3) 
anchor-based methods. These strategies can, in principle, be extended to evaluate and 
order the degree of meaningfulness of each mediator for purposes of RET analysis. The 
present chapter, however, considers statistical criteria that researchers or program 
evaluators might use to help them make or lead discussions of relative importance.    

RELATIVE IMPORTANCE OF OMNIBUS MEDIATION EFFECTS 

It is not uncommon in the scientific literature for studies to order mediators in terms of 
their relative importance based on omnibus indirect effect sizes for each mediator. In 
traditional full information SEM (FISEM), mediation analysis encompasses multiple path 
coefficients that combine multiplicatively to reflect a mediator’s implications for program 
effects on an outcome, namely the  product of the coefficient from the treatment 
condition to the mediator (pT→M) multiplied by the coefficient from the mediator to the 
outcome (pM→Y). This multiplicative function is important. Consider two mediators and 
an outcome that all are measured on the same standardized metric (mean of 0 and a SD = 
1). The path values and omnibus indirect (mediational) effect for the two mediators might 
be as follows:    

 pT→M pM→Y Indirect effect 
    

Mediator 1 0.00 0.50 0.00 
Mediator 2 0.50 0.00 0.00 

 Each mediational chain suggests no mediation for the program effect on the 
outcome through the designated mediators because a link in the mediational chain is 
“broken”; a value of zero in one link negates the other link no matter what value it has. 
Although both of the above indirect effects suggest the mediators in question are 
unimportant, the zero indirect effect is qualitatively different in the two cases. For 
Mediator 1, the zero indirect effect is due to the program failing to create change in a 
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relatively influential mediator; for Mediator 2, the zero indirect effect is due to the 
program targeting a mediator that has no causal influence on the outcome. How you as a 
program evaluator address the problem of a zero or weak indirect effect would differ in 
the two cases, as I have discussed in previous chapters. For Mediator 1, the problem lies 
not in the choice of the mediator per se but rather in the program’s inability to change it. 
We need to revisit the program and figure out how to alter the program to bring about 
change in the mediator. For Mediator 2, the problem is not that the program fails to 
change the mediator but rather in the choice of the target mediator per se. The program 
assumed the mediator is relevant to the outcome but it is not. We need to “move on” from 
Mediator 2 and perhaps not focus program efforts on changing it. Note also that once I 
learn the values of the path coefficients for the two individual links for a given mediator, 
I have a reasonable sense of the strength of the omnibus indirect effect for a mediator. 
However, knowing only the result of the omnibus effect is non-diagnostic of what is 
happening at the per link level. This is why I like to work at a per link level; I get a fuller 
sense and understanding of the operative dynamics.   
 Andrew Hayes (2022), author of the PROCESS framework discussed in Chapter 9, 
argues against the analysis of individual links in mediational chains (other than noting the 
signs of the coefficients) and is critical of the joint significance test for mediation because 
of its focus on individual links. He also argues against evaluating link-specific effect 
sizes. He states that the analysis of omnibus product coefficient statistics as described in 
the previous section coupled with bootstrapping for purposes of statistical inference is the 
“correct” and “modern” way to pursue mediation analysis. I obviously disagree with him. 
How one approaches the analysis of models with mediational chains depends on the 
questions one seeks to answer. For purposes of program evaluation, a careful analysis of 
the individual links in mediational chains is informative. If one is confident that each link 
in a mediational chain is non-zero and meaningful, then, contrary to Hayes, it is not 
“incorrect” to conclude that mediation is present. If one of the links is clearly “broken,” it 
also is not incorrect to conclude mediation is not operating. Hayes is correct that there are 
scenarios where bootstrapping outperforms the joint significance test in null hypothesis 
testing contexts, but there also are just as many if not more cases where the reverse is true 
(see Chapter 9). Further, one can use an array of statistical indices to gain perspectives on 
effect size for individual links in a mediational chain which are meaningful (see Chapter 
10). Hayes criticizes but mischaracterizes the important work of Yzerbyt et al. (2018) on 
individual link analysis in mediation, asserting their approach is “outdated” and 
representative of “old habits dying hard.” This is ironic because many methodologists 
would apply these terms to his PROCESS framework. I encourage readers to consult 
Yzerbyt et al. (2018) and to consider the material in the current and prior chapters to 
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make their own conclusions. I believe that both omnibus mediation analysis and 
individual link analysis have their place, but one needs to tailor their use to the questions 
one seeks to answer. 
 Although I personally prefer individual link analyses in mediational chains to make 
decisions about mediator priorities, I review in this next section approaches that have 
been used in the literature to order mediators in terms of their relative importance using  
omnibus mediation effects, i.e., based on the full T→M→Y mediational chain where the 
various links within the chains are considered simultaneously. I then turn to the analysis 
of relative importance using the separate links, which is my preferred method for 
purposes of program evaluation.        

Omnibus Indirect Effects Indexed by Percents  

In the applied literature, a common strategy for assessing the omnibus relative 
importance of mediators is to obtain a numerical index of “percent explained variance” 
that is attributable to each mediator and then to order mediators as a function of this 
index. For example, Kelly et al. (2011) identified possible mediators of the effects of 
Alcohol Anonymous (AA) programs on drinking abstinence and the number of drinks per 
drinking day after completion of the program. They found the mediators as a whole 
accounted for about 50% of the variation in these outcomes. Based on a relative 
importance analysis of indirect effects for the individual mediators, Kelly et al. concluded 
that the most consistent pathways through which AA confers its recovery benefits is 
through mediators focused on the social networks of clients (e.g., the number of pro-
drinking network members) and via abstinence self-efficacy. The index used by Kelly et 
al. divided the omnibus indirect effect for a mediator by the total indirect effect of all 
mediators. This equals the proportion of the total indirect effect accounted for by each 
mediator. Other researchers use a similar index, but the divisor is sum of the total effect 
of the mediators, not the total indirect effect of the mediators.  

Let me illustrate the two indices. Consider a program with five presumed mediators 
designed to increase monthly retirement savings with each mediator reflecting a different 
program target (e.g., teaching budgeting strategies, teaching the importance of saving). 
The outcome is the number of dollars saved per month. Suppose the total effect of the 
program when comparing intervention and control individuals was to increase monthly 
savings on average by $95. The calculations for the two different proportion/percent 
indices are in Table 17.1.  
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Table 17.1. Relative Importance Using Omnibus Mediation Indices 
 

 Mediator-Specific  
Indirect Effect 

Percent of the  
Total Indirect Effect  

Percent of the 
Total Program Effect 

    

Mediator 1 30.00 (30/85)*100 = 35.29% (30/95)*100 = 31.58% 
Mediator 2 30.00 (30/85)*100 = 35.29% (30/95)*100 = 31.58% 
Mediator 3 0.00 (0/85)*100 = 0% (0/95)*100 = 0% 
Mediator 4 15.00 (15/85)*100 = 17.65% (15/95)*100 = 15.79% 
Mediator 5 10.00 (10/85)*100 = 11.76% (10/95)*100 = 11.76% 

 

                            Σ = 85.00 
  
 The indirect effect for a given mediator is shown in Column 1. It is the mean 
difference between the treatment and control groups in saved monthly dollars as traced 
through that particular mediator. It is the product of the unstandardized path coefficients 
pT→M and pM→Y (not shown in the table). Mediator 1 had an indirect effect of $30; it 
accounted for an increase of $30 savings per month in the treatment group relative to the 
control group. Mediator 4 had an indirect effect of $15; it accounted for an increase of 
$15 savings per month in the treatment group relative to the control group. The total 
indirect effect is the sum of the indirect effects for each mediator. It was $85. This means 
that the direct effect of the program on the outcome independent of the mediators was 
$95 - $85 = $10. Taken together, the total indirect effects plus the direct effect of the 
program sum to the total program effect of $95.  
 The middle column of Table 17.1 converts each indirect effect in the first column to 
the percent of the total indirect effect that it accounts for, i.e. the mediator specific 
indirect effect divided by $85. It is the index that Kelly et al. used. The last column uses a 
different divisor, namely the percent of the total program effect that it accounts for, or 
$95. One or the other of the resulting values in the last two columns are used to order the 
relative importance of the mediators. I refer to these indices as being “omnibus-based” 
because the entries in the last two columns are driven by the values in the first column in 
Table 17.1, which represent the product of pT→M and pM→Y; hence they are omnibus 
effects. In this example, Mediators 1 and 2 are the most important in accounting for 
program effects, Mediator 3 is least important, and Mediators 4 and 5 are intermediate.  
   My own preference when working with omnibus indirect effects is to use the raw 
metrics in Column 1 rather than the percent-based indices in Columns 2 and 3. One 
problem with the percent-based indices is that if the total indirect effect or total program 
effects are small, then the calculated percents for a mediator can misleadingly create the 
impression the mediator indirect effect is more substantial than it is. For example, a 



                                                                                                             Relative Importance 7 

 
 

mediator that accounts for 50% of a total program effect that increases retirement savings 
by only $5 per month is not meaningful despite the 50% figure associated with that 
mediator. Another problem is that if a mediator boomerangs to contribute adversely to the 
total effect for a positive outcome, its percent will be negative, which is nonsensical; and 
the negative percent will play havoc with the overall indices because they will no longer 
sum to 100%. Indeed, Kelly et al. found this to be the case in their study.  

MacKinnon et al. (1995) found percent based omnibus indices tend to be unstable, 
showing considerable sample-to-sample variability across random samples from the same 
population. In their review of omnibus indirect effect size indices, Preacher and Kelly 
(2011) recommend against the use of the percent based indices. For these reasons as well 
as others provided by Preacher and Kelly (2011), my focus when characterizing relative 
importance using omnibus indices here will be on raw metric indirect effects as reflected 
by the first column of Table 17.1. Again, I do not recommend program evaluators use 
such omnibus indirect effects when evaluating mediator relative importance for purposes 
of program evaluation because they lack specificity about where mediational chains 
break down nor where they can be strengthened. However, some researchers may 
disagree with me and I recognize there may be contexts where such analyses can be 
informative. As such, I describe how to perform omnibus-based mediator analyses using 
the Mplus software.   

A Numerical Example 

In the remainder of this chapter I illustrate concepts using an example of a program to 
increase adherence to PrEP medication protocols. PrEP is a medication taken by high risk 
individuals for HIV infection that reduces their risk of contracting HIV. Adherence was 
measured during a six month period after program completion, with scores at the posttest 
ranging from 0 to 100 to reflect the percent of person adherence to the protocol. Perfect 
adherence across the sixth month period resulted in a score for the individual of 100. 
Ninety percent adherence across the six month period resulted in a score for the 
individual of 90. And so on.  The program addressed six mediators, measures of which 
were obtained at baseline and just after program completion. The mediators were (1) 
social support for protocol adherence, (2) coping skills for dealing with PrEP side effects, 
(3) the perceived advantages of using PrEP, (4) perceptions of the risks of contracting 
HIV, (5) perceptions of the severity of HIV should it be contracted, and (6) depression. 
The first five mediators were assessed using multi-item scales with each item responded 
to on a -3 (strongly disagree) to +3 (strongly agree) metric. Each scale had a different 
number of items. Responses to the items were averaged to yield a total score. Even 
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though the total score for each mediator ranged from -3 to +3, the measures probably 
should be considered to be measured on different metrics given they vary in the number 
of items feeding into the total score. Indeed, had I summed the item scores rather than 
averaged them, they unambiguously would be viewed as having different metrics. The 
depression measure ranged from 0 to 10. All mediators were positively associated with 
adherence except depression, which was negatively associated with adherence.  
 The RET causal model is shown in Figure 17.1, absent the baseline covariates to 
avoid clutter. I included correlated disturbances between social support and depression, 
the logic for which I consider later. All other mediators are assumed to be correlated by 
virtue of (a) the common effect of the treatment on them, and (b) the correlations between 
the baseline covariates that impact the mediators.   
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FIGURE 17.1. Adherence example 

In reality, the model likely would be more complex by including causal 
relationships between some of the mediators. However, I use a simplified model here for 
purposes of pedagogy. The causal equations (with covariates included) implied by the 
model are: 

 
Support = a1 + p1 Treat + b1 SupportBASELINE + d1       [17.1] 

Depress = a2 + p2 Treat + b2 DepressBASELINE + d2       [17.2] 
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Coping = a3 + p3 Treat + b3 CopingBASELINE + d3       [17.3] 

Positives = a4 + p4 Treat + b4 PositivesBASELINE + d4      [17.4] 

Risk-HIV = a5 + p5 Treat + b5 Risk-HIVBASELINE + d5      [17.5] 

Severe-HIV = a6 + p6 Treat + b6 Severe-HIVBASELINE + d6     [17.6] 

Adhere = a7 + p7 Support + p8 Depress + p9 Coping + p10 Positives +  
        p11 Risk-HIV + p12 Severe-HIV + p13 Treat + d7     [17.7] 
 
I use p in the equations to refer to path coefficients of interest and b to refer to 
coefficients for covariates.  

Relative Importance of Omnibus Indirect Effects Using Raw Metrics 

The standard Mplus syntax to evaluate the model is in Table 17.2. (I add to this syntax 
later to address mediator relative importance). I number each line for referencing but the 
line numbers are not part of Mplus syntax. You should be familiar with most of the 
syntax from previous chapters. 
 
Table 17.2: Mplus Syntax for Adherence Example 
 
1. TITLE: EXAMPLE CHAPTER 17 ; 
2. DATA: FILE IS c:\mplus\ret\chap17M.txt ; 
3. VARIABLE:   
4. NAMES ARE   
5. id support coping pos riskHIV sevHIV depress supportb 
6. copingb posb riskHIVb sevHIVb depressb treat adhere  ;  
7. USEVARIABLES ARE   
8. support coping pos riskHIV sevHIV depress supportb 
9. copingb posb riskHIVb sevHIVb depressb treat adhere  ;  
10. MISSING ARE ALL(-9999) ;   
11. ANALYSIS:   
12. ESTIMATOR=MLR ;   
13. MODEL:   
14. !Specify equations 
15. adhere on support depress coping pos riskHIV sevHIV treat (p7-p13) ; 
16. support on treat supportb (p1 b1) ; 
17. depress on treat depressb (p2 b2); 
18. coping on treat copingb (p3 b3) ; 
19. pos on treat posb (p4 b4) ; 
20. riskHIV on treat riskHIVb (p5 b5); 
21. sevHIV on treat sevHIVb (p6 b6); 
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22. !Specify correlated disturbances 
23. support with depress ;  
24. MODEL INDIRECT: 
25. adhere IND treat ; 
26. OUTPUT:  
27. SAMP STDYX MOD(ALL 4) RESIDUAL TECH4 ;   
 

 The use of the p and b variable labels maps onto the labels in Figure 17.1. Because 
my initial focus is on the analysis of the relative importance of omnibus indirect effects, it 
probably is best to use percentile bootstrapping for the significance tests. However, doing 
so in this first analysis does not permit me to examine modification indices when 
evaluating global fit, so my initial run uses MLR to allow me to better evaluate model-
data correspondence. Later, I shift to bootstrapping for purposes of sensitivity checks. 
 The global fit indices suggested reasonable model-data correspondence. The chi 
square test statistic (df = 50) was 50.18, p < 0.47, the RMSEA was 0.003 with a 90% 
confidence interval of 0.00 to 0.029, the p value for close fit was 1.00, the CFI was 1.00, 
and the standardized RMR was 0.028. None of the z tests comparing predicted and 
observed covariances were statistically significant. I obtained four modification indices 
that were slightly greater than 4 but decided they were chance results because they did 
not make conceptual sense (I know for a fact that the modification indices results were 
chance because I generated the population data to conform to the tested model). I next re-
ran the analysis using bootstrapping but added MODEL CONSTRAINT commands that 
allowed me to address relative importance of the omnibus indirect effects. Before 
explaining the MODEL CONSTRAINT commands, let me first characterize the results for the 
overall total effect of the program.  
 The control group mean for adherence at the posttest was 45.38 (SD = 18.95). This 
represents relatively low levels of adherence, less than 50%. The model estimated mean 
adherence difference between the treatment and control groups in the Mplus output was 
11.28 ±2.79, p < 0.05 (taken from the section of the output labeled TOTAL, TOTAL 

INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS). Although the result is statistically 
significant, it seems somewhat small in magnitude – the program only increased what 
was a fairly low mean adherence to begin with by about 11 percentage points. The 
Cohen’s d was almost 0.60 but this does not change the fact that the program total effect 
needs to be better.  
 To evaluate the relative importance of the omnibus mediation effects for each of the 
6 mediators, I need to document the effect of the treatment on the outcome through each 
mediator and then compare these omnibus indirect effects with one another. Although the 
mediators are measured on different metrics because they have a different number of 
items, this is not a concern because it turns out that the indirect effect always reflects the 
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mean difference between the treatment and control groups on the outcome, i.e., the effect 
is scaled in terms of the metric of the Y mean difference between the treatment and 
control groups. Here are the MODEL CONSTRAINT commands I added after line 25 of the 
syntax in Table 17.2.  
 
25a. MODEL CONSTRAINT: 
25b. NEW (ind1 ind2 ind3 ind4 ind5 ind6 diff12 diff13 diff14 diff15 diff16 
25c. diff23 diff24 diff25 diff26 diff34 diff35 diff36 diff45 diff46 diff56); 
25d. ind1=p1*p7 ; 
25e. ind2=p2*p8 ; 
25f. ind3=p3*p9 ; 
25g. ind4=p4*p10 ; 
25h. ind5=p5*p11 ; 
25i. ind6=p6*p12 ; 
25j. diff12 = ind1-ind2 ; 
25k. diff13 = ind1-ind3 ; 
25l. diff14 = ind1-ind4 ; 
25m. diff15 = ind1-ind5 ; 
25n. diff16 = ind1-ind6 ; 
25o. diff23 = ind2-ind3 ; 
25p. diff24 = ind2-ind4 ; 
25q. diff25 = ind2-ind5 ; 
25r. diff26 = ind2-ind6 ; 
25s. diff34 = ind3-ind4 ; 
25t. diff35 = ind3-ind5 ; 
25u. diff36 = ind3-ind6 ; 
25v. diff45 = ind4-ind5 ; 
25w. diff46 = ind4-ind6 ; 
25x. diff56 = ind5-ind6 ;   

 
Lines 25b to 25i define the 6 indirect effects by multiplying the path from T→M by 

the path from M→O. Lines 25j to 25x calculate all possible differences between the 6 
indirect effects. To bootstrap the analysis, in Table 17.2 I change the estimator from 
MLR to ML on line 12 and add the text  BOOTSTRAP = 5000 to it, as follows:    

ESTIMATOR = ML ; BOOTSRAP = 5000 ;   

Then, on the output line (line 27), I change the confidence interval statement to read 

CINTERVAL(BOOTSTRAP) 

I also remove MOD(ALL 4) because it is not permitted with bootstrapping. The results are 
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MODEL RESULTS 
                                                     Two-Tailed 
                    Estimate       S.E.  Est./S.E.   P-Value 
 
New/Additional Parameters 
    IND1               0.890      0.704      1.264      0.206 
    IND2               1.258      0.404      3.114      0.002 
    IND3               4.281      0.691      6.196      0.000 
    IND4               4.209      0.480      8.778      0.000 
    IND5               0.008      0.046      0.177      0.859 
    IND6              -0.015      0.242     -0.064      0.949 
    DIFF12            -0.368      0.729     -0.505      0.613 
    DIFF13            -3.391      0.972     -3.490      0.000 
    DIFF14            -3.319      0.823     -4.034      0.000 
    DIFF15             0.882      0.704      1.252      0.210 
    DIFF16             0.905      0.744      1.217      0.224 
    DIFF23            -3.023      0.808     -3.739      0.000 
    DIFF24            -2.951      0.618     -4.776      0.000 
    DIFF25             1.250      0.408      3.066      0.002 
    DIFF26             1.274      0.462      2.760      0.006 
    DIFF34             0.072      0.869      0.083      0.934 
    DIFF35             4.273      0.690      6.195      0.000 
    DIFF36             4.296      0.727      5.913      0.000 
    DIFF45             4.201      0.485      8.669      0.000 
    DIFF46             4.225      0.549      7.690      0.000 
    DIFF56             0.024      0.246      0.096      0.924 
 
 It is helpful to discuss these results by organizing them into a table with the results 
for the individual links that comprise the separate mediation paths. The table appears in 
Table 17.3. Keep in mind that I cannot compare mediators on the values of the pT→M 

coefficients or the pM→Y coefficients per se because the mediators are measured on 
different metrics. However, I can compare mediators on their respective indirect effects 
(the second to last column of Table 17.3) because the effects have the same metric. I 
order the mediators in Table 17.3 in terms of their relative importance based on the size 
of their omnibus indirect effects in the second to last column of the table.  
  
Table 17.3: Analysis of Omnibus Indirect Effects 
 

Mediator pT→M pM→Y Indirect Effect (IE) Critical Ratio for IE 
     

Coping 0.44* 9.72* 4.28a 6.20* 
Positives of Using 0.85* 4.93* 4.21a 8.78* 
Depression -0.25* -5.00* 1.26b 3.11* 
Support 0.09 9.22* 0.89b,c 1.26 
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Risk of HIV -0.09 -0.08 0.01c 0.18 
Severity of HIV 0.62 -0.03 -0.02c 0.06 
 
(In IE column, mediators with common superscripts are not significantly different from one another, p > 0.05) 
 
 As examples, the treatment is predicted to raise protocol adherence, on average, by 
4.28 ±1.38 units through the coping skills pathway; it is predicted to raise protocol 
adherence, on average, by 4.21 ±0.96 units through the mediator that emphasizes the 
positives of using the medication. And so on. Based on the magnitude of the effects and 
the significance tests, two of the mediated effects (coping skills and positiveness of use) 
are strongest, two are intermediate (depression and support), and two are of lesser import 
(perceived risk of contracting HIV and perceived severity of HIV). I contrast these 
conclusions with conclusions derived from the analysis of individual links later. 

Correlated Disturbances and Causal Effects Among Mediators 

I consider in this section several cautions for the analysis of the relative importance of 
omnibus indirect effects. Recall that for the model in Figure 17.1, I included correlated 
disturbances between social support for adherence and depression. Without it, the model 
is unable to adequately account for the covariation between these variables. For example, 
if I test a model that omits it, the z test comparing predicted versus observed covariances 
for the two variables was 4.93, which is highly statistically significant, suggesting the 
model is not accounting for the correlation between the two variables very well. When I 
generated the population data from which the sample data were selected, I purposely 
introduced a correlation between the two disturbances in the population on the premise 
that there are unmeasured variables external to the model that have a positive impact on 
social support for medication adherence and a negative impact on depression, such as 
generalized social support. Thus, the correlated disturbance should be in the model. 
 Suppose I naively fit a model without the correlated disturbance. Not only would I 
observe the above z value for the test of the predicted and observed covariances, but I 
also would observe two substantial modification indices, one for the correlated 
disturbances and the other for the omitted causal path from social support for adherence 
to depression. Thus, after fitting the misspecified model, based on model diagnostics, I 
would be faced with a choice between two plausible mechanisms that can account for the 
localized ill fit, (1) I can correlate the disturbances or (2) I can introduce a causal impact 
of the support variable on depression. Adding either one of these mechanisms to the 
model would eliminate the misfit localized on the observed correlation between the two 
focal variables. I need to decide which of the mechanisms to specify in the revised model, 
letting theory be y guide. Note that if I choose the second mechanism, then the estimate 
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of the value of the omnibus indirect effect of social support on adherence changes. In 
Figure 17.2a, which assumes correlated disturbances, the omnibus indirect effect (OIE) 
for the effect of the treatment through social support is 

OIE = p1*p7 = .09*9.22 = 0.89 
 
whereas in Figure 17.2b, where a causal effect of support on depression is posited, it is  
 
OIE = p1*p7+p7a*p8  =  .09*9.22 + -.23*-5.00 = 1.98  
 
because support is assumed to influence adherence through two chains not just one.  
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FIGURE 17.2. Adherence example with correlated disturbances versus causal links 

 This point is critical. How I choose to model the ill fit impacts the OIE, so I must 
give careful thought as to how to address that ill fit. I know in the present case that the 
correct choice is to allow correlated disturbances because I created the hypothetical 
population data based on this dynamic. However, I would not know this in practice. Upon 
reflection, I might even decide that both mechanisms are plausible and posit a model with 
both dynamics. Or, I might consider any or all of the dynamics in Figures 17.3a through 
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Figure 17.3g as better accounting for the ill fit for the covariance between depression and 
social support. In the absence of strong theory to guide me, I must recognize there are 
multiple models that  might account for the data. This fact makes me approach my results 
on the mediation analyses with humility and tentativeness. 
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FIGURE 17.3. Alternative models of mediator relationships 
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TESTS OF RELATIVE IMPORTANCE OF MEDIATOR EFFECTS ON 
OUTCOMES 

As stated, I believe that tests of omnibus indirect effects for purposes of program 
evaluation are limited because they confound or mix up conceptually distinct dynamics, 
namely (1) whether the program has meaningfully affected the mediator and (2) whether 
the mediator is meaningfully relevant to the outcome. In these next sections, I discuss 
how to index the relative importance of the effect of mediators on outcomes independent 
of the effects of the program on the mediator. Doing so prevents conflation of the effects.  
 When addressing the relative importance of mediators in influencing an outcome, 
the task is particularly challenging because mediators often are measured on different 
metrics. This means one cannot directly compare their respective path coefficients for 
M→Y. The magnitude of these values are metric dependent. In the numerical example, 
several mediators were indexed by multi-item scales in which each item was responded 
to on a -3 to +3 disagree-agree metric. I averaged item responses so that the total scores 
on a scale also varied on a -3 to +3 metric. As noted, this does not mean, however, that 
the mediators have been measured on the same metric. Because the total scores are based 
on a different number of items, a 1 unit change on one of the total scores can mean 
something distinct from a one unit change on the other. Suppose one mediator had 5 
items and the other had 15 items. If I summed rather than averaged the item responses, 
the total scores would range from -15 to +15 and -45 to +45, respectively. Researchers 
would not treat the two total scores as being on the same metric. Averaging the item 
responses to form a total score does not change this dynamic. The technical definition of 
a metric in statistics is complex (Wilcox, 2021). I emphasize here that although total 
scores for multi-item mediators may share the same number system, it does not 
necessarily mean they have a common metric. They may or may not. 
 There is a large literature in linear regression (not SEM) on methods for evaluating 
the relative importance of predictors in a regression equation. I consider this literature 
here as applied to predicting outcomes from mediators. I first discuss coefficient 
statistical significance as a way of classifying predictors into those that are “important” 
and those that are “not important.” I then consider a strategy called best subset analysis 
that uses either stepwise regression, lasso regression, all possible regressions, or 
generalized additive models. Next, I discuss the use of correlations, standardized 
regression coefficients, and semi-part correlations as indicators of predictor importance. 
Finally, I consider dominance analysis. I discuss the methods in the context of linear 
regression but then I consider how they can be applied in SEM contexts. From the PrEP 
numerical example, I focus on Equation 17.2 predicting adherence from the mediators 
and the treatment variable directly and use it to explore relative mediator importance. I 
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repeat that equation here for convenience: 
 
Adhere = a7 + p7 Support + p8 Depress + p9 Coping + p10 Positives +  p11 Risk-HIV +  
p12 Severe-HIV + p13 Treat + d7   

Using p Values as Indicators of Mediator Relative Importance 

One strategy for identifying “important” versus “non-important” predictors in a 
regression equation uses significance tests of the coefficients and declares variables that 
fail to yield statistically significant regression coefficients as “unimportant” and those 
that yield statistically significant coefficients as “important.” As straightforward as this 
seems, the approach can be problematic. The most obvious problem is that a study may 
have low statistical power leading it to declare one or more important predictors as 
statistically non-significant and hence, unimportant. The power problem is more insidious 
than many who use this approach realize. To illustrate, Maxwell (2000) notes that the 
typical correlation between variables in psychological research is about 0.30. If five 
predictors in a population are each correlated 0.30 with the criterion as well as 0.30 with 
each other, then the percent of unique explained variance in Y for each predictor will be 
1.5% and each population regression coefficient will be non-zero and equal in value if the 
predictors all are measured on the same metric, i.e., all the predictors are equally 
important. The sample size needed to obtain statistical power of 0.80 for a significance 
test of a given path/regression coefficient in this case is about 420, which is well above 
typical sample sizes in many studies. 
 Maxwell (2000) reported a simulation study in which a multiple regression analysis 
was conducted using the above scenario, but with a sample size of only 100. Maxwell 
found that the most frequently occurring pattern of results, occurring 45% of the time, 
was the case where one predictor had a statistically significant regression coefficient but 
the other four predictors did not. The next most common pattern, occurring 32% of the 
time, was that two of the predictors had statistically significant regression coefficients, 
but three did not. Thus, in a situation where each of the five predictors is of equal import 
in the population, there was a high likelihood that only one or two of the predictors would 
exhibit statistical significance. The predictors that showed a statistically significant 
coefficient among the five predictors were essentially random. Such results should give 
theorists using smaller sample sizes pause about declaring a mediator “unimportant” if it 
receives a statistically non-significant regression coefficient. 
 Another shortcoming of the p value method is that importance is treated 
dichotomously; a predictor is either important or not. Sometimes we seek more nuanced 
importance judgments than this. The approach also equates statistical significance with 
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practical significance, an equivalence that many researchers question (Amrhein, 
Greenland & McShane, 2019; Aguinis et al., 2010; Wasserstein, Schirm & Lazar, 2019). 
There are better approaches than one based exclusively on p values that can be used. 

Best Subset Analysis as Indicators of Mediator Relative Importance 

I next consider four methods of mediator subset analysis, (1) stepwise regression, (2) 
lasso regression, (3) all possible regressions, and (3) generalized additive models. These 
methods also seek to divide predictors into two groups, those that are “important” and 
those that are “not important,” i.e., they “subset” the predictors into two classes. Each 
method has non-trivial flaws but it is important you are aware of them because they 
continue to appear in the literature, albeit somewhat inconsistently.    

Stepwise Regression 

In stepwise regression, the predictor variables represent a pool of potentially “important” 
mediators for the outcome. Stepwise algorithms enter variables sequentially into a 
regression equation for purposes of predicting the outcome but only “important” 
mediators are selected for inclusion in the equation on any given step if the analysis. 
Sequential inclusion is based on how much each mediator augments the squared multiple 
correlation relative to predictors/mediators already in the equation. One variant is a 
forward approach which first enters into the equation the mediator with the highest 
correlation with the outcome.1 The next mediator added is based on the mediator which 
adds the most unique explained variance relative to the mediator(s) already in the 
equation and whose regression coefficient is statistically significant when it is added. The 
process of adding mediators continues until none of the remaining mediators in the 
predictor pool add statistically significant incremental explained variance to the equation. 
The mediators in the final equation are deemed “important” and those that do not make it 
into the final equation are deemed “unimportant.”  
 A variant of the forward approach is the stepwise approach which uses the forward 
strategy but also tests for the statistical significance of all of the mediators in the equation 
at each step that a new mediator is added. If a previously entered mediator now yields a 
statistically non-significant coefficient with the addition of the new mediator, it is 
dropped from the equation. Yet another variant is the backward elimination approach 
which starts with an equation that includes all mediators and then at each step removes  
the mediator that accounts for the least incremental explained variance and whose 
regression coefficient is statistically non-significant. The process continues until at the 

 
1 If there are demographic or other covariates to control, you would force entry of those variables on the first step in 
the analysis and then conduct the stepwise analysis with those variables already in the equation. 
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final step, only statistically significant mediators remain in the equation. 
 Instead of using statistical significance as a criterion for stopping the process in 
forward, backward, or stepwise analyses, some researchers use an a priori specified 
proportion of unique explained variance (e.g., 0.05) as a standard. For example, the 
backward elimination approach continues until only mediators that each account for at 
least 5% unique explained variance are in the equation; or, the forward approach 
continues until none of the remaining mediators in the predictor pool add at least 5% 
unique explained variance to the existing equation.  
 Numerous objections to these approaches have been raised, including the 
misleading nature of the significance tests (Altman & Anderson, 1989), bias in the 
regression coefficients (Tibshirani, 1996), and a general failure of the approaches to 
accurately identify variables that are part of the true generating function for outcomes 
(see Derksen & Keselman, 1992; Mantel, 1970). To illustrate one problem, the first 
mediator that enters the equation in a stepwise or forward analysis is the mediator that 
has the highest zero order correlation with the outcome. At the second step, all remaining 
mediators are considered for inclusion relative to that first mediator. Only mediators that 
add significant unique explained variance relative to it are candidates for inclusion at the 
second step. Suppose M1 has a sample correlation of 0.30 with the criterion and M2 has a 
sample correlation of 0.29 and the two variables are correlated 0.70. No other mediator 
has a correlation as large with the outcome. M1 will enter the equation first, even though 
its correlation with the outcome is only larger by a miniscule amount compared to M2. 
M2 will not enter the equation at later steps because its explained variance in Y is largely 
redundant with M1 (as evidenced by its high correlation with M1). It is entirely possible 
that the correlation between M2 and Y is larger in the population than the correlation 
between M1 and Y and that the reversal of rank order of the correlations in the sample 
data reflects nothing but sampling error. Despite this, M1 is given theoretical priority and 
enters the equation first. In this case, a relatively small amount of sampling error alters 
the mediators that enter the equation not only at the first step but throughout the entire 
mediator selection process because the entry of the remaining mediators depends on the 
variables that are in the equation from previous steps. The results can be misleading.  

Lasso Regression  

Another subset-based approach is lasso regression (James, Witten, Hastie & Tibshirani, 
2013).2 Lasso regression is a constrained version of traditional OLS regression. It applies 
OLS to a prediction equation but with the constraint that the sum of the absolute value of 

 
2 Lasso is an acronym for least absolute shrinkage and selection operator.  
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the regression coefficients must be less than an a priori defined constant, L.3 The 
maximum value L is allowed to have is the value that would result if one summed the 
absolute values of all the traditional OLS coefficients. The minimum value is 0. When L 
is set to its maximum value, the resulting equation is simply a standard OLS regression. 
Lower values of L tend to shrink the values of the coefficients toward 0, more so when 
small values of L are specified. This shrinkage results in biased coefficients but such bias, 
the logic goes, is compensated for by lower sample-to-sample variation in the 
coefficients, a trade off some are willing to make.  
 Lasso regression is executed in successive steps. At step one, all 
predictors/mediators are assigned coefficients of zero. At each successive step, one 
additional mediator is allowed to have a non-zero coefficient. By the final step, all 
mediators are “in the model” in the sense that they all are allowed to have non-zero 
coefficients. The final step is in essence the OLS model. One typically evaluates the 
quality of prediction at each step and stops the sequential process when further addition 
of mediators trivially improves model fit as indexed by a reduction of prediction error. 
When the assumptions of OLS are met, OLS will, by definition, yield the lowest 
prediction error in the sample. However, lasso regression has a penalty function for lack 
of parsimony and potential overfitting, so the equation with all mediators is not 
necessarily the best. The approach can be summarized as:   

a. First, set all regression coefficients for mediators in the mediator pool to zero.  

b. Next, find the mediator, Mk, most correlated with Y, and allow its coefficient, Bk to be 
non-zero. 

c. Increase the value of the coefficient Bk by a small amount in the direction of the sign of 
Mk’s correlation with Y, calculating the residual e = Yi–Ŷi for individuals for each 
increment in Bk. Stop increasing the value of Bk and move to the next step when some 
other mediator Mm with coefficient BM has as much correlation with the e scores as does 
Mk. Before moving on, calculate an index of model fit/adequacy given the current set of 
mediators with non-zero coefficients in the model (I describe the index below).  

d. Next, increase (Bk, Bm) in their joint least squares direction until some other 
predictor/mediator Xn has as much correlation with the residual based on the predicted Y 
from Bk and Bm. Continue this process, adding a mediator at each successive step, until 
the final model has all mediators in it. 

 
3 If the predictors are measured on different metrics, it usually is necessary to standardize them to apply lasso 
regression for L to be meaningfully used as a variable inclusion/elimination criterion.  
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e. Select the model at the step where further additions of mediators will not substantively 
improve the reduction of prediction error.  
 
 A popular index of model fit/adequacy or prediction error at a given step is called 
Mallows’ C and is abbreviated by Cp. It is defined as    
Cp = 1/N [RSS + (2k)(se2)] 
 
where RSS is the residual sum of squares for the model, k is the number of predictors and 
se2 is the estimated residual variance. The lower the value of Cp, the better the model fit, 
everything else being equal. Essentially the value of Cp is a function of the amount of 
error variance plus a penalty function that increases as the number of mediators in the 
model increases (the term (2k)(se2)). One typically chooses the model that has the lowest 
value of Cp. Lockhart et al. (2014) developed a significance test for variable entry at each 
step of lasso regression which is sometimes used to inform model selection, but it is 
controversial. Once a best fitting equation is selected, the mediators in it with non-zero 
coefficients are deemed “important.”   
 Lasso regression is often used in the big data and machine learning literatures for 
purely prediction purposes to identify prediction equations for future events. However, 
like forward, stepwise, and backward elimination approaches, it sometimes is used to 
identify a subset of “important” predictors that one then theorizes about, builds 
substantive knowledge about, and ultimately models in broader multivariate contexts. I 
find it to be of limited use outside of prediction contexts, as elaborated below.  
 Related approaches to lasso regression include methods known as least angle 
regression, elastic net regression, and ridge regression. Use of these methods as well 
as lasso regression for variable reduction purposes and subset analysis is discussed in 
depth by Efron et al., (2004), Zou and Trevor (2005), and James et al. (2013). 

Generalized Additive Models 

In Chapter 16, I described the generalized additive model (GAM) as a method for 
modeling linear and non-linear relationships between mediators and outcomes. I assume 
here that you are familiar with my treatment of GAMs in that chapter. GAMs can be used 
for mediator subset selection in the same spirit as lasso regression when the number of 
mediators is not too large. The advantage of using GAMs instead of lasso regression is 
GAMs are sensitive to both linear and non-linear relationships between mediators and 
outcomes. The mgcv package in R offers two variable selection methods, one called the 
shrinkage method and the other called the double penalty method. Marra and Wood 
(2011) found that the double penalty method tends to perform better than the shrinkage 
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method and they recommend it (it is the default selection method in the mgcv package). 
The double penalty method adds a second penalty to the traditional penalty matrix for 
wiggliness in GAMs, but the second penalty only affects functions in the null space 
targeting the overall linear portion of the smooth. The two penalties operate in ways that 
the influence for a given mediator in the prediction equation can be reduced to zero, 
much like lasso regression. For mathematical details, see Marra and Wood (2011). The 
double penalty approach can be computationally demanding because each smooth 
requires two smoothness parameters to be estimated. For an example of subset selection 
using GAMs, watch the video for the generalized additive model program on my website 
under the Programs tab.  
 As an alternative to these methods, some researchers use a backward method for 
predictor removal in GAMs. This method proceeds in the same way as the backward 
regression method described above but mediators are sequentially dropped based on their 
p-values in the GAM analysis. The approach begins by including all predictors from the 
predictor pool in the equation and then drops the mediator with the highest non-
significant p-value. This elimination process continues sequentially with a refitted model 
at each step until all terms that remain in the equation are statistically significant. A 
weakness of this approach is that the p-values of the coefficients are only approximate, 
making it somewhat questionable to rely on them. Some researchers use AICs instead of 
p values when using the backward approach, evaluating changes in AIC as each 
backward step is executed. The backward process stops when dropping a predictor leads 
to a non-trivial change in the AIC.  

All Possible Regressions 

The final subset strategy I discuss is called all possible regressions. This approach 
examines prediction error for equations that comprise all possible combinations of 
predictors/mediators. For example, the predictor pool might consist of variables M1, M2 
and M3. I would apply OLS regression to an equation that predicts the outcome Y from 
just M1, a second equation that predicts Y from just M2, a third equation using just M3, a 
fourth equation using both M1 and M2 as predictors, a fifth equation using both M1 and 
M3 as predictors, a sixth equation using both M2 and M3 as predictors, and a seventh 
equation with predictors M1, M2 and M3. The mediators in the equation that produces 
the lowest amount of prediction error or that has the best model fit is the subset of 
“important” mediators. In general, prediction error decreases as one adds predictors to a 
regression equation. Like lasso regression, the all possible regressions strategy 
compensates for this by using indices of prediction error that include penalty functions 
for larger numbers of predictors, such as Mallow’s C or the AIC or BIC. As such, it is not 
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necessarily the case that equations with the most mediators will be “best.” 
A disadvantage of all possible regressions is that it can be computationally intense 

as the number of mediators increases, so it is not well suited to scenarios where there are 
many mediators. The number of possible models is 2k-1, where k is the number of 
predictors. With 10 mediators there are 1,023 possible models.  This is a lot of models.       

Concluding Comments on Best Subset Analysis 

In general, I think best subset strategies are limited for ordering mediators on their 
relative importance. As seen later, I make use of some of them to help reduce a large 
number of plausible mediators to a workable number for purposes of more detailed SEM 
analyses, but as more fine-grained approaches to the identification of mediator relative 
importance, they have shortcomings. One primary shortcoming is that they only yield 
dichotomous characterizations of importance. Also, when fully automated, they equate 
importance with prediction rather than causation and they fail to take into account 
theoretical coherence. Predictive accuracy is defined in different and sometimes 
seemingly arbitrary ways across the methods. Judd and McClelland (1989) capture the 
essence of reservations expressed by many researchers when they state "it seems unwise 
to let an automatic selection algorithm determine the questions we do and do not ask 
about our data" (p. 204). You will encounter these methods in the mediation literature so 
it is important to know about them. However, as methods for determining mediator 
importance, there are better approaches.  

Correlations, Standardized Coefficients, and Part Correlations as 
Indicators of Mediator Relative Importance 

Two commonly used indices of mediator relative importance are the squared zero order 
correlation of the mediator with the outcome and the standardized regression coefficient 
for a mediator when it is embedded in a larger regression equation with the other 
mediators. I discuss each index in turn as well as the use of part correlations. 

Squared Zero Order Correlations 

If the mediator and the outcome are linearly related, normally distributed, and free of 
confounds, then the squared bivariate correlation coefficient between them is often 
interpreted as the proportion of variation in the outcome that is “explained by” or 
“accounted for” by the mediator. Mediators with larger squared correlations are said to be 
more important than those with smaller squared correlations. The aforementioned 
assumptions, however, are not trivial, especially the assumption that the relationship 
between the mediator and the outcome is confound free. Given there are almost always 
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confounds between mediators and outcomes, the squared zero order correlation is not a 
good candidate as an index of the relative importance of mediators in RETs. The 
presence of such confounds makes them difficult to interpret. The squared correlation 
also ignores redundant explained variance with other mediators. 

Standardized Regression Coefficients and Part Correlations 

Another common practice is to use standardized regression coefficients as indicators of 
the relative importance of predictors/mediators in determining outcomes (see Chapter 
10). With complete standardization, the metric of each predictor and the outcome is 
converted to a standard score purportedly to place all measures on a common metric. 
Predictors with larger absolute standardized regression coefficients when the outcome is 
regressed onto the mediators are then said to be more important than those with smaller 
standardized regression coefficients.  
 One problem with this strategy is that the assertion that standardization places 
predictors on a common metric is questionable (Willitt, Singer & Martin, 1998; Judd, 
McClelland, & Ryan, 2009; Blanton & Jaccard, 2006). For example, does a one standard 
deviation increase in social mobility really mean the same thing and have the same 
implications for age of onset of diabetes as does a one standard deviation increase in 
weight if both predictors have standardized regression coefficients of 0.35? Willitt et al. 
(1998) answer this question with a resounding “no.” In their analysis of the relative 
importance of familial rule setting and maternal education as determinants of adolescent 
delinquent behavior, Willit et al. frame the issue as follows: 
 

“Is a one standard deviation difference in rule setting the same as a one 
standard deviation difference in a variable like maternal education? The 
answer to this question depends upon the sample homogeneity with respect 
to these variables which in turn depends, in part, on researchers’ decisions 
about target populations and sampling strategies. Yet, standardization 
effectively eliminates information about homogeneity from consideration, 
creating the false illusion that coefficients can be directly compared” (p. 
412). 

 
 A hypothetical but somewhat “tongue-in-cheek” example adapted from King (1986) 
makes evident the difficulties with the standardized coefficient approach. Consider the 
adage “an apple a day keeps the doctor away.” Suppose I analyze the number of times 
people see a doctor per year as a function of the number of apples and oranges they eat 
per week and obtain the following unstandardized regression equation:  
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Number of visits = 3.0  +  -1.0 Apples  +  -.25 Oranges.  
 
Based on this equation, an apple a week decreases the number of annual visits to a doctor 
by 1, whereas an orange a week decreases the number of visits, on average, by 0.25. 
Based on this, I conclude that it takes only one apple to accomplish what four oranges 
accomplish. Now suppose the SD for apples eaten in a week is 0.50, for oranges it is 1.0, 
and for the number of per year doctor visits, the SD is 3.0. Given this information, the 
above equation can be expressed using standardized coefficients as follows: 
 
Standardized number of visits = 0.0  +  -0.17 Apples  +  -.08 Oranges.  
     
It now appears that one apple has the same effect as two oranges (-.17 is double the size 
of -.08). Which answer is correct? Does one apple equal the effect of four oranges or does 
it equal the effect of two oranges? It turns out that the results using standard scores refers 
not to apples and oranges per se but rather to scaled apples and oranges vis-à-vis their 
standard deviations. The standardized result is thus driven not only by the causal effect of 
apples and oranges on visits to the doctor but also by their respective standard deviations, 
which are part of that scaling process. Given this, there is a mixture of multiple dynamics 
that make it difficult to interpret the coefficients in a straightforward way. Many 
methodologists are uncomfortable with this fact because they feel that standard 
deviations are sensitive to features of study design that have little to do with variable 
importance, such as who you include in your sample and variables you control for (see 
Greenland, Schlesselman & Criqui, 1986). The recommendation is therefore not to 
compare standardized regression coefficients for making inferences of relative causal 
importance.  
 As another example, suppose in a two group RET that a treatment relative to a 
control condition has a substantial effect on one mediator, M1, but not on a second 
mediator, M2. Suppose that both M1 and M2 are measured on the same metric, that they 
have equal variances at baseline, and that, in the abstract, each has the same causal effect 
on the outcome, i.e., the population unstandardized coefficient βM1→Y equals βM2→Y. If I 
collapse across the treatment and control conditions, the posttest variability of M1 will be 
larger than the posttest variability for M2 because the program created a degree of 
separation between the treatment and control groups for M1 but failed to do so for M2. 
As a result of this effect on the variability of M1 but not M2, the two mediators have 
different standardized regression coefficients when Y is regressed onto them even though 
the unstandardized coefficients are identical. The differential standardized coefficients 
are an artifact of program effects on variability rather than causal importance.  
 Finally, when ordering mediators in terms of their relative importance using 
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standardized regression coefficients, it seems wise to take into account sampling error by 
virtue of executing significance tests of those differences and by evaluating confidence or 
credible intervals of them. However, this is rarely done (see Cohen et al., 2003 for 
statistical methods for making such comparisons).  
 Standardized regression coefficients have other properties that are bothersome for 
mediator relative importance analysis (see Bring, 1994, 1996; Darlington, 1968; 
Grömping, 2007a,b for elaboration). There are better approaches you can use. Both 
partial and semi-partial correlations as indicators of relative importance are subject to the 
same artifacts as standardized regression coefficients, so they too are not good measures 
of relative importance (Grömping, 2007a,b, 2015). In addition, they focus only on unique 
explained variance of a predictor, which is limiting, as I discuss below.  

Dominance Analysis and Mediator Relative Importance 

A final approach to evaluating mediator relative importance is dominance analysis. 
Dominance analysis has its roots in methods that allocate shares of the explained variance 
of a linear model to each predictor, with the sum of the shares equaling the overall 
amount of explained variance, usually the squared multiple correlation. Approaches to 
such decompositions other than dominance analysis include (a) a method developed by 
Hoffman (1960; see also Pratt, 1987) that works with the sum of the product of the 
standardized coefficient multiplied by the correlation coefficient for each predictor, and 
(b) a principal components based relative weight method developed by Johnson (2000; 
Johnson & LeBreton, 2004). The latter method has been found to have non-trivial 
shortcomings (see Thomas, Zumbo, Kwan & Schweitzer, 2014) so I do not consider it 
further. The Hoffman/Pratt method is viewed by most statisticians as less satisfactory 
than dominance analysis (Grömping, 2007a,b, 2015; cf Menard, 2007), hence my primary 
focus here is on dominance analysis.  
 Budescu (1993) and Johnson and LeBreton (2004) argue that importance metrics 
for a predictor, X, in a multi-predictor regression analysis should simultaneously take into 
account the following criteria; (a) the contribution of X to Y when X is the only 
predictor, (b) the contribution of X to Y over and above all other predictors (unique 
explained variance), and (c) the contributions of X to Y considering different subsets of 
the other predictors. Dominance analysis uses all three criteria. Importance indices such 
as the standardized regression coefficient, the semi-part correlation, and t ratios of 
coefficients do not. Grömping (2015) lists a dozen different desiderata for importance 
indices, most of which are satisfied by dominance analysis. Of all the relative importance 
methods typically discussed in the literature on variable importance in regression 
analysis, dominance analysis usually is considered to be the method of choice, although it 
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does have limitations (see Grömping, 2007a,b; 2015).  
 Dominance analysis uses an index called general dominance that is based on the 
average increase in R2 for all subset models of equal size that include the predictor in 
question relative to models that do not include it. The index reflects the average unique 
explained variance contribution of X to the outcome across all possible subsets of 
predictors. It uses much more information and in more sophisticated ways than the 
relative importance indices discussed prior to this. A useful feature of general dominance 
indices is that across predictors they sum to equal the total R². Dominance analysis maps 
closely onto an approach by Lindeman, Merenda and Gold (1980), so you will sometimes 
see it referred to as the LMG method. As an example, with k=3 predictors, (A, B, and C), 
one can calculate the increase in R square that A yields relative to a model with no other 
predictors in it, that A yields over and above B, that A yields over and above C, and that 
A yields over and above B and C together. The increments are averaged within common 
subsets of the number of predictors (e.g., for the case where k = 1, then where k = 2, and 
then where k = 3) and then these averaged values are, in turn, averaged for the predictor 
in question to yield its general dominance index. This process is repeated for each 
predictor. For the 4 predictor case, (A, B, C, and D), one calculates the increase in R2 that 
A yields over and above a model with no predictors, that A yields over and above B, that 
A yields over and above C, that A yields over and above D, that A yields over and above 
B and C together, that A yields over and above B and D together, that A yields over and 
above C and D together and that A yields over and above B, C, and D. Obviously, 
computations become intense for large numbers of predictors. For details and well 
explained numerical examples, see Azen and Budescu (2003).  
 I provide a program on my website called Dominance analysis that allows you to 
apply the method to a linear regression equation. I applied the program to the adherence 
example and the results are shown in Table 17.4 (details of the analysis and features of 
the program are provided in the video for the program on my webpage). Table 17.4 also 
includes results from the analysis of the omnibus mediational effects originally reported 
in Table 17.3 for comparative purposes. The first column in Table 17.4 is the traditional 
dominance index. The entries in the column sum to the value of R2. The total R2 was 
0.71. The second column provides normalized dominance indices that sum to 100% and 
represent the percentage of the total explained variance that the mediator accounts for. 
For example, the mediator for coping skills is apportioned 23% units of explained 
variance of adherence (column 1) and this value represents 32% of the total explained 
variance by all of the mediators combined or R2 (column 2). The program bootstraps 
pairwise comparisons between the dominance indices, the results of which are 
summarized using superscripts in column 1. In the last two columns, I present the indirect 
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effects from Table 17.3, with the next to last column being the raw omnibus indirect 
effects and the last column being normalized omnibus indirect effects that sum to 100.  
 
Table 17.4: Dominance Analysis 
 

 
Mediator 

Dominance
M→Y 

N-Dominance 
M→Y 

Indirect Effect 
T→M→Y 

N-Indirect Effect 
T→M→Y  

     

Coping 0.226a 32.03 4.28a 40.26 
Positives of Using 0.071 10.00 4.21a 39.61 
Depression 0.119 16.79 1.26b 11.85 
Support 0.289a 40.84 0.89b,c 8.37 
Risk of HIV <0.01b 0.24 0.01c <0.10 
Severity of HIV <0.01b 0.10 -0.02c <0.-.20 
 
(Note: In columns with superscripts, mediators with common superscripts are not statistically significantly different 
from one another, p > 0.05. Comparisons are only valid within a column, not across columns. N in title signifies 
normalized result.)    
 
  There are striking differences between the results of Table 17.3 that relied on 
omnibus indirect effects and those of Table 17.4. First, in the dominance analysis, the 
mediator for social support tends to dominate the other mediators yet it is a relatively 
weak mediator when analyzed vis-a-vis the classic omnibus indirect effect method. The 
reason for this is because social support is a solid predictor of adherence resulting in its 
strong showing in the dominance analysis, but the program failed to meaningfully change 
it (see Table 17.3) so the T→M link in the mediational chain T→M→Y is “broken.” Is 
the support mediator relatively important? The dominance analysis says “yes” because 
support is a good predictor of adherence; the omnibus indirect effect analysis says “less 
so” but it does not give us a clue as to why. We only learn why when we analyze the 
individual links in the chain and see that the T→M link for support is the source of 
weaknesses in the omnibus effect. To be sure, support does not formally mediate the 
effect of the program on adherence because of the broken T→M link. But it seems to be 
an important malleable determinant of adherence vis-à-vis the dominance analysis and 
program designers simply need to do a better job of influencing it. Of course, if it is 
determined that support is too difficult to change, then the program focus on it might be 
dropped.    
 Dominance analysis can be applied in SEM contexts using limited information 
SEM; one simply applies the Dominance analysis program on my website to the linear 
equation of interest in the larger system of equations defined by the model. Dominance 
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analysis also can be applied to full information SEM with latent variables. I provide a 
program on my webpage called Dominance analysis II that permits such applications.  
 For a discussion of how to use dominance analysis as a theory generation heuristic, 
see Jaccard and Jacoby (2020). To extend dominance analysis to the analysis of binary 
outcomes, consider the approaches of Azen and Traxel (2009), Tonidandel and LeBreton 
(2009), or use a modified linear probability model. However, all such extensions are 
somewhat controversial. To apply dominance analysis to models with interactions and for 
ways of introducing covariates, see Grömping (2006). To apply dominance analysis to 
hierarchical linear models (HLM), see Luo and Azen (2012). For a Bayesian approach to 
dominance analysis, see Korpon (2014) and Wang (2016). For extensions of dominance 
analysis to multiple outcome scenarios, see Azen and Budescu (2006) and Huo and 
Budescu (2009). An R package that applies many of these variants is the 
dominanceanalysis package. For a discussion of the effects of measurement error on 
dominance analysis, see Braun, Converse and Oswald (2019). For a discussion of 
suppressor variables in dominance analysis, see Azen and Budescu, (2003).  
 Dominance analysis must be used with caution. It inherently relies on standardized 
rather than unstandardized statistics which, as noted, can be misleading (King, 1986; 
Achen, 1990). As applied to mediation analysis, it assumes the linear model is correctly 
specified and reflective of the true causal dynamics surrounding the mediators. It is 
challenging to apply when there are causal relationships among mediators in the target 
equation, although it can accommodate correlated disturbances among mediators because 
these correlations are absorbed into the correlations between predictors.  

Concluding Comments on Mediator Relative Importance 

Methods for evaluating the relative importance of mediators in determining or predicting 
an outcome have received considerable attention in the social science literature. I have 
considered methods based on p values, subset analysis (including stepwise regression, 
lasso regression, generalized additive models, and all possible regressions), zero order 
correlations, part correlations, standardized regression coefficients, and dominance 
analyses. Each approach has strengths and weaknesses. In my opinion, there is no simple, 
statistical algorithm that can mindlessly be applied to determine the relative importance 
of a mediator compared to other mediators. Addressing such questions requires careful 
integration of substantive, theoretical, and statistical information, per Chapter 10. Of the 
methods described above, dominance analysis is in my opinion probably the most useful 
when evaluating the relative strengths of the M→Y link, though it is not perfect.   
 There are other approaches to assessing predictor relative importance that I have not 
addressed here. Ritter, Jewell and Hubbard (2014) have written an R package for 
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importance analysis called multiPIM that uses estimating equation methodology (van der 
Laan & Robins, 2003) or targeted maximum likelihood (van der Laan & Rubin, 2006; 
van der Laan & Rose 2011) in conjunction with machine learning algorithms. Random 
forest approaches also are popular for analyzing predictor importance in prediction 
contexts (e.g., Liaw & Wiener, 2002; Kuhn 2008; Kuhn et al., 2011). An index of 
predictor importance often used in the literature on Bayesian additive regression trees 
(BART) is based on how frequently the predictor appears in the different regression trees 
during model estimation, also known as usage indices (see Sparapani, Spanbauer & 
McCulloch, 2021). These indices are somewhat limited in scope (Gelman, 2017), 
although some researchers find them to be helpful in certain BART contexts. Several 
non-parametric approaches to importance analysis have been proposed, as have neural 
network frameworks (Gevrey, Dimopoulos & Lek, 2020). In the final analysis, however, 
I lean towards the use of dominance analysis coupled with strong theory. 

RELATIVE IMPORTANCE OF TREATMENT IMPACT ON THE MEDIATORS 

Some mediators are harder to change than others. An intervention may not impact a 
mediator either because the program is poorly constructed, because it fails to adequately 
address the determinants of the mediator, or because the mediator is simply difficult to 
change and doing so is beyond program capacities. Some researchers seek to order the 
target mediators from those that were most effectively changed by the intervention to 
those that were least effectively changed by the intervention with the idea that if priorities 
must be set, mediators that are more effectively changed have the highest priority.  
 Quantifying mediator changes as a function of a treatment for comparative purposes 
can be challenging because the mediators often are measured on different metrics. One 
strategy for continuous mediators is to convert the absolute mean difference between the 
intervention and control conditions for mediators to a Cohen’s d and then order the 
absolute d statistics across the different mediators. Larger absolute d values indicate 
mediators that were changed more. This approach has the weakness I discussed above for 
standardized regression coefficients – each d uses a different standardizer (i.e., a different 
standard deviation) and it is not known if the standardizer for one mediator, namely a 
standard deviation, has the same meaning and implications as that for another mediator. 

A second strategy is to focus on the absolute value of the critical ratio for the 
significance test of the effect of the treatment condition on each mediator. Relative 
magnitude is then indexed for each mediator by dividing its absolute critical ratio by the 
sum of the absolute critical ratios across the mediators. The resulting index ranges from 0 
to 1.00 and reflects the proportion of the critical ratio sum that the mediator accounts for. 
This method essentially uses as the standardizer the standard error of the mean difference 
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between the treatment and control groups rather than the within group standard deviation 
of Cohen’s d because the critical ratio is the mean difference divided by this standard 
error. Like Cohen’s d, it suffers from the problem of whether a one standard error unit 
difference has the same meaning and implications across mediators.  

For the case where all the mediators are binary, one can order the absolute 
proportion differences between the intervention and control groups for each mediator 
across the mediators. If the mediators are a mixture of continuous and binary predictors, 
then this strategy is not viable.  

Some researchers use the aforementioned critical ratio approach when there is a 
mixture of binary and continuous mediators or they use the d approach by converting the 
proportion differences to analogs of Cohen’s d using formulas from the meta-analysis 
literature and then order the ds across all the mediators. Hasselblad and Hedges (1995) 
suggest the following conversion formula for converting proportion differences to 
Cohen’s d (see also Sanchez-Meca, Marin-Martinez, & Chacon-Moscoso, 2003; 
Whitehead, 2002):  

2
1 2d [ln(Odds / Odd )][ 3 / ]π=  

where Odds1 = p1/(1-p1), Odds2 = p2/(1-p2), ln = the natural log, and π = the mathematical 
constant for pi (which is approximately 3.1416).  
 For the PrEP numerical example, I calculated the covariate adjusted Cohen d value 
for each mediator by dividing the coefficient for the effect of the treatment condition on 
the mediator reported in the MODEL RESULTS section of the Mplus output by the square 
root of the unstandardized residual variance for the mediator reported in the MODEL 
RESULTS section in the sub-section labeled Residual Variances.4 Here are the results 
organized in descending order as a function of their d values and their critical ratios:  

 
Mediator pT→M Disturbance Var Absolute d Critical Ratio 
     

Positives of Using 0.853 0.567 1.13 12.67 
Severity of HIV 0.615 0.727 0.72 8.05 
Coping 0.440 0.609 0.56 6.24 
Depression -0.251 0.760 0.28 3.21 
Support 0.096 0.750 0.11 1.26 
Risk of HIV -0.094 0.754 0.11 1.20 

 
4 Each d is based on a different covariate that is extracted from the disturbance term (namely the baseline measure of 
the target mediator) which means we must assume that a covariate adjusted SD for one mediator has the same 
meaning and implications as a covariate adjusted SD for another mediator.     
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If one treats the d values and critical ratios as valid indicators of relative change, the 
program was most effective at changing the perceived positives of using PrEP followed 
by the perceived severity of HIV if it were to be contracted. Interestingly, the greatest 
amount of change was brought about on a mediator that had one of the lower dominance 
indices (the perceived positives of using PrEP), per Table 17.4.   

In sum, no index of relative change is perfect. One can get a rough sense of the 
ordering of mediators in terms of the intervention’s success in changing the mediator by 
using either Cohen d statistics or the critical ratios for the mediator significance tests. 
However, these methods make non-trivial assumptions about the equivalence of 
standardizers across mediators and must be used with caution. Other metric-free indices 
of change might be worth developing.       

CONCLUDING COMMENTS ON RELATIVE IMPORTANCE 

My own orientation to relative importance analysis is that the question of which 
mediators are most important probably is not all that interesting for purposes of program 
evaluation. Rather, I want to know (a) if a given mediator, M, has a meaningful effect on 
the outcome in its own right and (b) if the program has a meaningful influence on M in its 
own right. This information is apparent when I analyze the individual links in the 
T→M→Y chain. I tend to agree with King (1986) that seldom is a deeper understanding 
gained by hypothesizing a winner in a race of mediators; and to make such questions 
even more challenging as evidenced by my discussion of the various methods for 
determining relative importance, the declaration of a winner often depends on the vantage 
point (i.e., the method of analysis) one uses. Having said that, situations can arise where 
you want to order the relative importance of mediators either in terms of their presumed 
effect on Y or in terms of the extent to which the intervention brings about change in 
them. This might occur if resources are limited and you can only address a subset of the 
mediators in your program moving forward or if you must make modeling decisions that 
carve up a complex model for purposes of piecewise or LISEM based analyses. Analysis 
of mediator relative importance may help you make these decisions. The approaches 
discussed above are candidates for use in such scenarios, although their limitations must 
be kept in mind. I think the healthiest approach to the matter probably is to analyze 
relative importance from multiple perspectives, perhaps using both omnibus indirect 
effects as well as dominance analyses and one or more of the other methods I discussed. 
By doing so, you should be able to get a good handle on issues of relative importance.  
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WHEN THE NUMBER OF MEDIATORS IS LARGE: DATA REDUCTION 

Scenarios occur for some RETs where there are a large number of potential program 
mediators, so many so that they simply are not amenable to analysis using SEM. In 
Positive Youth Development (PYD) programs, for example, there are a key set of 
elements that are seen as critical for a PYD intervention to be effective (Catalano et al., 
2004), including (1) promoting bonding, (2) fostering resilience, (3) promoting social 
competence, (4) promoting emotional competence, (5) promoting cognitive competence, 
(6) promoting behavioral competence, (7) promoting moral competence, (8) fostering 
self-determination, (9) fostering spirituality, (10) fostering self-efficacy, (11) fostering 
clear and positive identity, (12) fostering belief in the future, (13) providing recognition 
for positive behavior, (14) providing opportunities for prosocial involvement, and (15) 
fostering prosocial norms. Each of these variables potentially represents a separate 
program component in an RET and each is a possible mediator of program effects on 
outcome behaviors. Further complicating matters is that within a given variable category, 
there often are multiple plausible mediators. For the category emotional competence, 
which is defined as the ability to identify and respond to feelings and emotional reactions 
in oneself and others, Catalano et al. (2004) specify five elements that are key (1) 
knowing one’s emotions, (2) managing emotions, (3) motivating oneself, (4) recognizing 
emotions in others, and (5) handling relationships. This five-component framework is 
somewhat abstract so that when articulated at a more specific level, we might have even 
more mediators within the category. The analysis for the entire program can quickly 
become unmanageable as the number of mediators multiply.  
 When interventions are mounted, some program designers try to change as many 
potentially relevant factors as possible in the hopes that a few of them “stick” and have an 
effect on the outcome. Faced with a small sample size in an RET to evaluate the program 
and a large number of potential mediators many of which probably are not serving as true 
active ingredients, we have what is known as the curse of dimensionality, i.e., small N 
and large k, where k is the number of potentially relevant variables. (Another term used to 
describe the curse is high dimensionality). High dimensionality can wreak statistical 
havoc, in which case we need to pursue some form of data reduction to make analyses 
manageable. 

Factor Analysis and Principal Components Analysis 

One form of data reduction is to use factor analysis, principal components analysis, or to 
define latent variables that underlie subsets of measures of the mediators so that the 
subset mediators become indicators of latent constructs. The analysis then focuses on 
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linking the factors, components, or latent variable mediators to the outcomes in ways that 
the observed measures take on a more subsidiary role. We essentially “reduce” the data to 
a core set of factors, components or latent variables for purposes of RET analysis.  
 There are several limitations to such approaches. First, factor analysis and principal 
components analysis of data are not really forms of data reduction because one still must 
work with the covariance matrix for the full set of variables in order to apply a factor or 
component analysis to them in the context of an RET model. The curse of dimensionality 
remains unless one forms composites based on the factor or principal components 
analysis outside the focal modeling effort. Second, the strategy shifts the focus away 
from specific mediators to more abstract latent mediators that may be less substantively 
compelling and informative. Consider a study by Morrison et al. (1996) who explored the 
impact of 11 different behavioral beliefs that middle school children have about drinking 
alcohol on their intent to drink alcohol in the near future. Each belief was rated on a 5 
point disagree to agree scale. The goal was to determine which particular behavioral 
beliefs were most influential in determining drinking intentions. The idea was that an 
intervention program would then target the four or five most influential beliefs. Some of 
the beliefs studied by Morrison et al. referred to advantages or positive consequences of 
drinking and others referred to disadvantages or negative consequences of drinking. 
Examples include (using the stem “drinking alcohol will…”): make me have fun; make 
me popular; make me feel more grown up; cause me to get a serious health problem like 
liver disease; get me in trouble; be hard to stop.  
 A factor analysis of the beliefs by Morrison et al. yielded a two factor solution; one 
factor had beliefs about the positive consequences of drinking alcohol loading on it and 
the other factor had beliefs about the negative consequences of drinking alcohol loading 
on it. The standardized loadings were equal to about 0.60 for items that “loaded” on a 
given factor, meaning the correlations between affectively common items were about .602 
or about 0.35. Each separate behavioral belief conveys a specific consequence (e.g., 
would make me popular; would make me feel more grown up) that potentially can be 
addressed in an intervention. By contrast, the latent variables represent amorphous 
constructs of positive and negative affect that give little guidance for program 
content/design. Indeed, focusing on latent constructs alone implies that belief content per 
se does not matter; that it is only the affect of the belief that matters.5  
 The magnitude of the factor loadings also indicated that each belief has 
considerable unique variance relative to the latent construct on which it loads, indeed far 
more unique variance (about 65%) than common variance (about 35%). By focusing on 
the latent construct, one essentially ignores the unique explanatory variance of each 

 
5 I have found this conclusion not to be true in my own research; belief content matters). 



                                                                                                             Relative Importance 35 

 
 

individual belief, a strategy that might be ill-advised. Social scientists, in my opinion, are 
often too quick to factor analyze items (or form components of them) without 
appreciating how much they are giving up when they do so in the form of unique 
variance (see Goldberg, 1972, and Revelle et al., 2021, for similar viewpoints). To be 
sure, I am a fan of working with multi-indicator constructs, but I prefer scenarios where 
the indictors are interchangeable measures of the same construct, not predominately 
distinct constructs in their own right per the case of Morrison et al. (1996). Factor 
analysis, principal components analysis and latent variable formation have their place, 
but I urge you to think carefully before pulling that trigger.  

Choosing Mediators Based on Links in a Mediational Chain 

Barring the use of factor or principal components analysis, the question remains how one 
goes about reducing a large number of plausible mediators to a workable set for RET 
analysis while also maximizing the likelihood that the selected mediators are truly 
relevant to the outcome. This problem has been approached from two perspectives. One 
perspective seeks to reduce the number of plausible mediators by focusing just on the 
M→Y link of the mediational chain; a mediator is deemed relevant if exploratory 
analyses support the proposition that it is a meaningful determinant of the outcome. 
Faced with, say, 50 plausible mediators, I might discover based on preliminary analyses 
that only 8 of them are strongly associated with the outcome, so I decide to focus RET 
modeling on these 8 mediators. The second perspective focuses on the strength of both 
the T→M and M→Y links considered simultaneously to choose a subset of mediators to 
target in RET modeling; if data suggest that either one of the links is “broken,” then the 
mediator is eliminated from consideration for RET modeling. 
 I generally have two goals when I conduct program evaluations. First, I want to 
identify what the program is “doing right” so that I can ensure those program efforts 
continue. Second, I want to determine ways I can improve the program to make it more 
effective. Central to both goals is identifying potentially changeable mediators that have 
meaningful M→Y links. Programs are “doing things right” if they address mediators that 
matter and represent changeable determinants of the outcome. Programs can be improved 
if they are failing to bring about change in a program-targeted mediator that is a key, 
changeable determinant of the outcome. Note that in both cases, having mediators with 
strong links to the outcome is essential. Once I bring such mediators into my formal RET 
model, I am then able to evaluate the T→M link for them, which is an integral part of all 
RETs.  
 I tend to give less emphasis to screening mediators using omnibus indirect effects 
(T→M→Y) because I then run the risk of inadvertently excluding mediators with strong 
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M→Y links that the program has not been effective in changing. To be sure, if my 
primary goal is to gain an understanding of the mechanisms that account for the effect of 
a distal variable on an outcome, then it does indeed make sense to screen mediators on 
the omnibus T→M→Y links. But if my goal is to both understand the mechanisms and to 
maximize insights for program improvement, then individual link analysis is informative. 
Again, in the ideal world I would much rather perform detailed RET modeling on all 
plausible mediators, but the curse of dimensionality can dictate otherwise. To gain 
control over the curse, I am sometimes forced to reduce the set of mediators that my RET 
modeling can focus on. 

Choosing Mediators Based on the M→Y Link 

For mediator reduction based on M→Y links, the subset methods I discussed earlier 
(forward regression, backward regression, stepwise regression, lasso regression, all-
possible regressions) may seem like viable approaches for doing so but they typically are 
not viable without large N, i.e., they suffer from the curse of dimensionality. This is 
because they require analysis of the full covariance matrix among all mediators and their 
covariates, which is implausible in high dimensional scenarios. Predictor screening 
methods are popular in the data mining and machine learning literatures but most of these 
methods prioritize prediction over explanation. As such, their algorithms may not be 
helpful for cases where causation is a priority. I prefer instead methods that allow me to 
exercise theoretical/substantive judgment during the screening process rather than relying 
strictly on prediction per se, so I concentrate my discussion on such methods here.  
 Some data mining and machine learning methods that focus on variable selection 
draw upon techniques used in the social sciences but under the guise of different labels. 
For example, one method, called sure independence screening (SIS; Fan & Lv, 2008) 
selects predictors for consideration if the predictor is larger than a pre-determined 
squared correlation cut-off value, such as r2 = 0.05 = 5% explained variance, or the top 
10% of predictors with the highest squared r. After this first stage of variable screening or 
even during the screening stage itself, causal theory is invoked to reduce the number of 
target mediators to include only those that are likely causally relevant. As well, 
organizational schemes can be imposed on the data to assist the screening process. For 
example, for the positive youth development RET described above, I might apply the SIS 
method separately to variables within each of the 15 different categories and then select a 
subset of variables from each category that are the strongest predictors of Y. If a category 
fails to have any mediators nominated by the SIS criteria, then all variables within that 
category are omitted.  
 The SIS method can be suboptimal because it ignores correlations among the 
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various mediators and because of the problem of confounds biasing correlation 
magnitudes. One adaptation of the method is to first reduce the number of variables using 
SIS and then use dominance analysis as a second stage of variable reduction applied to 
those mediators that survive the first iteration of screening. Covariates to control for 
confounds can be included in the dominance analysis as illustrated in the video for 
dominance analysis on my webpage. The best predictors that survive both the first and 
second screening steps are then used in the final model. The dominance analysis is spared 
the curse of dimensionality because of the first step of variable reduction.  
 An example of an interesting variable screening/selection method that adapts the 
above ideas but without the SIS screen has been proposed by Cai, Tsay and Chen (2009). 
The approach uses linear models in an all-possible regressions framework. Suppose I 
have, say, 56 plausible mediators and I want to choose the linear model that best predicts 
the outcome. There are 256-1 possible linear models to evaluate in an all possible 
regressions context, which is unworkable. Cai et al. propose to first divide the predictor 
pool into non-overlapping smaller groups, say, eight groups of 7 predictors each. 
Assignment of predictors to a given group can be either random or theory based. For each 
set of 7 predictors, there are 27-1 or 127 different linear equations one can analyze in an 
all-possible regressions framework, which is workable. For a given predictor set, you 
apply a penalty-based regression method to all possible regressions within a set to isolate 
the “best” (most predictive) model within each set. For example, you might use OLS 
regression in which fit is evaluated using a BIC criterion.          
 Next, the “winning” equation from each of the 8 sets of predictors are identified. 
You can use the program for all possible regressions on my website to accomplish such 
identification. The predictors in each “winning” equation are then set aside into their own  
category. This smaller predictor pool is then re-grouped into subgroups, just like in the 
first step. For example, the new pool might have 32 predictors, which are then divided 
into 4 sets of 8 predictors each. The best fitting model within each of these reformulated 
groups is identified using the all possible regressions strategy for each of the four sets and 
the predictors from each of the “winning” equations across the 4 sets are set aside into 
their own predictor pool. During this step, it often is possible to bring theory and 
substantive considerations to bear when choosing which variables to merge. The process 
then repeats itself iteratively until no new variables are added to the grand winning 
predictor pool. At the final step, the grand winning predictor pool is analyzed to using the 
all possible regressions strategy to identify the best fitting model within it, again with an 
appropriate penalty function for model complexity. For a concrete example of the 
approach, see the document on all possible regressions on my webpage on the Resources 
tab under Chapter 17. Cai at al. (2009) describe variations of the strategy and show it 
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outperforms a number of more computationally demanding strategies widely used in data 
mining contexts. There exist other strategies for variable screening in data mining (e.g., 
the one covariate at a time method; decision trees), but I do not review them here; see Cai 
et al., (2009), Chudek et al., (2018). and Brick, Koffer, Gerstorf, and Ram (2018). A 
popular method in the machine learning literature for assessing relative variable 
importance is  SHAP (Shapley Additive exPlanation) analysis, but the method has been 
found to have non-trivial limitations (Huang & Marques-Silva, 2024).   

Choosing Mediators Based on the Omnibus T→M→Y Link 
Although I am not a fan of approaches that rely on the omnibus T→M→Y links to screen 
possible mediators, such a strategy has been suggested by van Kesteren and Oberski 
(2019). In this approach, one calculates the omnibus indirect effect for each plausible 
mediator one mediator at a time in its own separate model. By analyzing the data one 
mediator at a time, you avoid the problem of high dimensionality that would result from 
including a large number of mediators in same model. Note that each  omnibus effect has 
the same metric, namely, the mean Y difference between the treatment and control 
groups). We therefore can order the different omnibus mediational effects in terms of 
their magnitude across analyses. For the 56 mediator scenario described earlier, I would 
conduct 56 analyses, one for each mediator. Figure 17.4 shows the influence diagram I 
would use for a given analysis. The model includes measured confounds to control for 
bias. The omnibus mediational effect for a given mediator is reflected by the product of 
paths a and b.6 Path c reflects the impact of the treatment on Y of all omitted mediators 
on the outcome other than the target mediator being evaluated. It generally is not of 
interest in the selection process but it is important to include to control for correlations 
between the target mediator and the omitted mediators. 

 
6 If the outcome is binary, the omnibus indirect effect for a given mediator can be indexed using proportion or 
probability  differences between the treatment and control conditions through the mediator using the causal 
mediation framework or a linear probability model per Chapter 12.   
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FIGURE 17.4. One mediator at a time approach   

 Table 17.5 presents the Mplus code I would use for the above mediator screening 
strategy but with some programming shortcuts to make the code more efficient when 
conducting the multiple separate runs. The example has 56 plausible mediators (med1 to 
med56), one outcome (behave1), one covariate for the outcome (bbehave1), and one 
(baseline) covariate per mediator (covm1-covm56). I would run the code 56 times, with 
the only changes being in Line 4, which I explain shortly.   
 
Table 17.5: Mplus Code for One Mediator at a Time Analysis 
 
1. TITLE: ANALYSIS OF ONE MEDIATOR AT A TIME ;  
2. DATA: FILE IS c:\mplus\ret\chap17Ma.txt ; 
3. DEFINE: 
4. y=behave1 ; m=med1; t=treat ; cm1=covm1 ; cy1=bbehave1 ; 
5. VARIABLE:   
6. NAMES ARE   
7. behave1 behave2 med1-med56 covm1-covm56 bbehave1 bbehave2 treat ;     
8. USEVARIABLES ARE   
9. y m cm1 cy1 t ;  
10. MISSING ARE ALL(-9999) ;   
11. ANALYSIS:   
12. ESTIMATOR=MLR ;   
13. MODEL:   
14. y on m t cy1 ; 
15. m on t cm1 ; 
16. MODEL INDIRECT: 
17. y IND t ; 
18. OUTPUT:  
19. SAMP STDYX MOD(All 4) ; !RESIDUAL CINTERVAL TECH4 ;   
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 On Line 4, I use the DEFINE statement to isolate the outcome, mediator, and 
treatment variable I want to focus the analysis on. This is the only line I need to edit for 
the successive runs of the program as I work through the 56 plausible mediators and their 
covariates. On Line 7, I use Mplus hyphens for naming the 56 mediators and their 
covariates. The Mplus output will print out an estimate of the omnibus indirect effect 
(path a times path b) for the target mediator and its estimated standard error and p value 
in the output section called TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND 
DIRECT EFFECTS. These effects and their margins of error are then summarized across 
mediators in a table with 56 rows, one per mediator. The mediators with the largest 
indirect effects become candidates for ultimate selection into my final model.  

This strategy does not work if there are causal relationships among the mediators 
because it would then ignore indirect effects of a mediator through another mediator. If 
you believe such effects exist and if the sample size permits, you can formally bring the 
additional mediators into the target mediator model so that the effects of the target 
mediator on the outcome through the other mediators are taken into account vis-à-vis 
SEM modeling. The approach also assumes the absence of interaction effects among the 
mediators but these also can be incorporated into the model if need be via SEM. Finally, 
the approach assumes the absence of correlated disturbances, but these also can be added 
if necessary if one uses SEM.  
 Another way of thinking about this approach is that you are dividing a model with 
the 56 mediators into smaller subsets of more manageable SEM models (usually 
containing one mediator) and then based on analyses of these submodels, you make 
decisions about what mediators to include in the final model.  
 Serang et al., (2017) suggest a similar approach to the above but based on 
regularized estimation of SEM models that shrink small path coefficients to zero, much 
like lasso regression. Regularization occurs on the T→M paths independent of the M→Y 
paths and vice versa. van Kesteren and Oberski (2019) are critical of this approach on the 
grounds it fails to address both T→M and M→Y simultaneously, which is necessary if 
the focus is on omnibus indirect effects (see also Jacobucci, Brandmaier & Kievit, 2018). 
van Kesteren and Oberski (2019) introduce a modification called the coordinate-wise 
mediation filter that more directly works with omnibus indirect effects. An initial R 
version of their approach is available on the github website, but it is not yet widely 
available. It still needs improvement relative to matters of covariate inclusion, 
convergence criteria, computer speed, cutoff selection criteria, and error rates. Also, 
evidence for the method’s superiority to the one-mediator-at-a-time approach is not 
strong.  
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Inferential Tests after Exploratory Mediator Analysis 
When using exploratory methods to identify mediators, one must be careful with 
significance tests surrounding those mediators when used in one’s final RET model. 
Many methodologists argue that p values in such cases are problematic. According to this 
argument, in traditional model tests that do not use preliminary exploratory tests, the 
statistical theory underlying the generation of a p value, confidence intervals, and 
standard errors applies to the case where a model/null hypothesis is a priori specified and 
then fit to the data, much like we do when we conduct a multiple regression analysis and 
decide a priori what predictors to include in the regression equation. The statistical theory 
works with a sampling distribution that assumes random sampling from the population. 
The theory was not derived under the presumption that an imperfect “screening” step is 
first performed, a step that brings with it its own assumptions and weaknesses. By 
including such a “screening” step, one essentially alters the sampling distribution of the 
model parameters in unknown ways, which, in turn, can then undermine the p values and 
confidence intervals.  
 Critics of preliminary screening steps also worry about overfitting one’s data in 
which we interpret a post hoc chance effect or an effect that is sample specific as 
meaningful and generalizable to the population when, in fact, it mainly reflects random 
noise in the analytic process. To combat this latter problem, methodologists often suggest 
the use of cross validation strategies. One variant of cross validation is to randomly 
divide one’s sample data in half, then conduct the exploratory screening on each half 
independent of the other half. Only mediators that are identified as being relevant in both 
samples are screened into the model for use in the final RET analyses. A disadvantage of 
this method is that the exploratory analyses use sample sizes that are 50% smaller than 
the full sample and, hence, are subject to more sampling error than if the full sample is 
used for the exploratory analyses. If your sample size is small to begin with, this can 
undermine the exploratory mediator analyses because results are more likely to be 
unstable across the different randomly defined samples (also known as folds in the data 
mining literature).  
 In machine learning and data mining, you will see frequent reference to variants of 
cross validation and the splitting of data into training data, in which the machine learns 
the optimal prediction strategy, and test data, in which one tests how accurate the 
machine’s predictions are when applied to new data. The term feature selection is often 
used to refer to predictor selection during the training phase. Refinement of the prediction 
equation during the training phase is often called tuning. My discussion here is focused 
on cross validation as used during the training phase for purposes of feature inclusion or 
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elimination. I mention this terminology here because it is easy to get confused over the 
different jargon used and foci in the machine learning and data mining literatures.  

CONCLUDING COMMENTS 

In this chapter, I addressed two topics (1) given a set of mediators, how does one order 
their relative importance, and (2) if one has a large number of plausible mediators, how 
does one apply data reduction strategies to reduce them to a workable set for more 
detailed modeling. The concept of “relative importance” is somewhat amorphous and 
there are many ways of defining it. I personally believe the best way to develop standards 
for asserting relative importance is to adapt the methods described in Chapter 10 for 
determining meaningfulness standards, but the field has done so too infrequently. Rather, 
the tendency is to focus on context free statistical criteria grounded in linear modeling.  
 In my opinion, you need to approach this enterprise with caution and realize that the 
concept of predictor importance in RETs goes well beyond simple statistics (King, 1986). 
None of the methods I have discussed in this chapter are problem free. As you zero in on 
the use of particular method, it is important you keep in mind its strengths and 
weaknesses and draw conclusions accordingly.  
 My emphasis in this chapter has been on the analysis of continuous 
outcomes. For a discussion of extensions to binary, ordinal, count and nominal 
outcomes, see the Resources tab of my webpage under the current chapter.  
 


