
 

Cluster Plots with More than Two Target Variables 
  
In this document I discuss methods used to construct cluster plots when there are three or 
more target variables in the cluster analysis. I focus on two approaches, one based on 
principal components analysis (PCA, used in my programs on consensus and medoid 
cluster analyses) and the other on discriminant function analysis (DFA, used in my program 
on trimmed k-means cluster analysis). I assume you are somewhat familiar with both PCA 
and DFA. When there are only two target variables, the visual display of the cluster plot is 
straightforward and typically uses a two-dimensional scatterplot with one variable on each 
axis (sometimes transformed, sometimes not). With three or more target variables, 
representing the clusters in a two dimensional visual is challenging. PCA and DFA are 
used to address these challenges.      

PRINCIPAL COMPONENTS ANALYSIS 

PCA is often characterized as a form of factor analysis but it is not that. To be sure, it can 
be adapted for use in factor analysis but in its original form, it was intended as a data 
reduction method to characterize the variation in a set of variables using fewer, more 
succinct linear combinations of the target variables. These linear combinations are called 
principal components. In general if the number of target variables is k, then there are k 
possible principal components. The first principal component that is extracted from the 
data describes the most variation in the target variables considered as a whole (per the  
covariance matrix of the variables). The second principal component describes the second 
most amount of variation that is not accounted for by the first component. Because of this 
property, only the first and second principal components are extracted from the target 
variable to construct a cluster plot to visualize cluster dynamics in the data. Each individual 
is assigned a score on each of the two principal components (called component scores) 
and these pairs of scores are then used to form a traditional scatterplot of them. The scores 
typically are standardized in form. The idea is that the first two principle components 
capture variation in the target variables that can then be mapped onto the cluster structure. 
For details and an example, see (Wang et al., 2018). 

On a cluster plot that uses PCA, it is not atypical for the plot to report a percentage 
on each axis. This indicates how much of the variation that is explained by each component. 
Some plots only report the sum of the total percent explained variance across the two 
components. In general, when you sum these percents, the larger the result the better.  

The data points that constitute the different clusters on the cluster plot usually are 
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assigned different shapes or colors. Cluster centroids are included with 95% ellipsoid bands 
drawn around them. These bands represent the cluster circles that separate one cluster from 
another. The clusters can overlap on the plot. Small overlaps indicate that the clusters are 
somewhat similar; if the overlap is too great, then one cannot distinguish between the 
overlapping clusters. Clearly separated clusters suggest partial empirical support for the 
clusters. Here is an example PCA based plot for multiple target variables in conjunction 
with a two cluster solution: 

 

 
 

Use of PCA as a strategy for visualizing clusters works well in many situations but 
there also are scenarios where it is suboptimal. If the first two components when considered 
together account only for a small amount of variation, then focusing on those dimensions 
does not provide much information. PCA plots also can be problematic when the data has 
non-linear relationships between variables, when there are highly skewed distributions, and 
in the presence of outliers. It turns out that PCA focuses on somewhat different features of 
the data than clustering algorithms do and these differences can distort the visual. Even if 
the clusters appear well-separated on a plot that uses PCA, this does not necessarily mean 
they are distinct in the original data space. That is why we do not rely solely on plots when 
evaluating cluster structure. They are useful but only one piece of information we take into 
account. For PCA tutorials, see Dunteman (1989) and Tabachnick and Fidell (2013). 



                                                                                                                     Cluster Plots   3 

 
 

DISCRIMINANT FUNCTION ANALYSIS 

A second approach eschews PCA and instead uses DFA. This is the case for the trimmed 
k-means program on my website. Both PCA and DFA are data reduction techniques but 
they use different statistical frameworks with somewhat different goals. Like PCA, DFA 
defines linear “components” underlying the observed data but the components are called 
discriminant functions. Whereas PCA seeks to explain variation in the target variables, 
FDA seeks to define the underlying discriminant functions so as to maximize the separation 
(e.g., the mean differences) of known groups, in this case, the clusters from the cluster 
analysis. Like PCA, there are multiple underlying discriminant functions, with the first 
extracted discriminant function best separating the groups, the second extracted 
discriminant function being next best independent of the first discriminant function, and so 
on. Each individual can be assigned a score on each discriminant function. A higher score 
on a given discriminant function indicates that the data point for the individual is closer to 
the group or cluster that the discriminant function best separates.  

Traditional DFA assumes linear relationships between variables. When applied to 
trimmed k-means analysis, outliers are not as problematic as with traditional k-means 
analysis because outliers are eliminated vis-à-vis the trimming process. Ellipsoid bands 
usually do not accompany DFA plots. Here is an example plot from the trimmed k-means 
program on my website in which the uncolored data points represent trimmed cases:  
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We again seek well separated clusters that are relatively homogeneous within a 
cluster. Note that the plot can change depending on the amount of trimming you do. I often 
construct multiple plots with different levels of trimming to literally visualize how 
trimming may be affecting matters. For introductions to DFA, see Klecka (1980) and 
Tabachnick and Fidell, (2013). 
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