
 
 

 
Nonlinear and Specialized Modeling In Mediation Analysis 

 

 
            If you change the way you look at things, the things you look at change.  

 
                         -  WAYNE DWYER  

_______________________________________________________________________ 
 

INTRODUCTION 

 When a Mediator Moderates Itself to Affect an Outcome 

 Non-Linear Mediation and Correlated Disturbances 

MEDIATION ANALYSIS AND POLYNOMIAL REGRESSION 

 Detecting Curvature 

FISEM Methods for the Analysis of Quadratic Regression 

  Total Effect of the Program on the Outcome 

  Effect of the Program on Mediators  

  Effects of the Mediators on the Outcome 

  Omnibus Mediation  

  Overall Conclusions of the RET Analysis and Classic Mediation Tests  

  Influence Diagrams with Quadratic Relationships  

 LISEM Methods for the Analysis of Polynomial Regression 

 Mean Centering 

15
 



                                                                                                             Nonlinear Mediation 2 

 

 Additional Considerations and Concluding Comments   

MEDIATION ANALYSIS AND SPLINE REGRESSION  
 
 Key Facets of Spline Regression 

Total Effect of the Program on the Outcome 

 Effect of the Program on the Mediators  

 Effects of the Mediators on the Outcome 

 Omnibus Mediation 

 Overall Model Fit 

Concluding Comments on Spline Modeling 
 
MEDIATION ANALYSIS AND TRADITIONAL NON-LINEAR REGRESSION 

 Key Facets of Traditional Non-Linear Regression 

Total Effect of the Program on the Outcome 

 Effects of the Program on the Mediators  

 Effect of Mediators on the Outcome 

 Omnibus Mediation 

 Overall Model Fit 

Concluding Comments on Traditional Non-Linear Regression 
  
MEDIATION ANALYSIS AND BAYES ADDITIVE REGRESSION TREES 
 
 Key Facets of BART Analysis 

Binary and Nominal Variables in BART  

Bayes Estimation 

Common Support and Propensity Scores 



                                                                                                             Nonlinear Mediation 3 

 

Partial Dependence Plots 

Predictor Relative Importance 

Identifying Correlates of Individualized Treatment Effects 

Numerical Example  

Total Effect of the Program on the Outcome 

  Program Effects on Mediators  

  Mediator Effects on the Outcome 

  Overall Model Fit and RET Summary 

Concluding Comments on Bayesian Additive Regression Trees 
 
MEDIATION ANALYSIS AND GENERALIZED ADDITIVE MODELS  
 

Key Facets of GAM Analysis 

 Smoothers 

 Concurvity 

 Profile Analysis 

Average Marginal Effects 

Predictor Selection 

RET Example 

Total Effect of the Program on the Outcome 

Program Effects on Mediators  

Mediator Effects on the Outcome 

Concluding Comments on RET Results 

Concluding Comments on Generalized Additive Models 



                                                                                                             Nonlinear Mediation 4 

 

MEDIATION ANALYSIS AND CLUSTER ANALYSIS 

K-means Clustering: Key Issues 

Choosing the Number of Clusters 

Interpreting the Solution 

Relating Cluster Membership to Other Variables 

Matters of Metric 

Trimmed K-Means Cluster Analysis 

Trimmed K-Means Cluster Analysis in RETs    

  Numerical Example 

Total Effect of the Program on the Outcome 

   Program Effects on Mediators  

   Mediator Effects on the Outcome 

   Omnibus Mediation 

  Concluding Comments on Trimmed K-Means Cluster Analysis 

Partitioning Around Medoids 
 

Consensus Clustering 
 

Concluding Comments on Cluster Analysis and RETs 
 

MEDIATION ANALYSIS AND LATENT PROFILE/CLASS ANALYSIS 

Key Facets of Latent Profile/Class Analysis    

 Model Fit for LPA and LCA 

Multi-Step Model Evaluation Strategy 

Strengths and Weaknesses of LPA and LCA 



                                                                                                             Nonlinear Mediation 5 

 

Numerical Example 

 Evaluation of the LCA Measurement Model 

Total Effect of the Intervention 

  Program Effects on Mediators  

  Mediator Effects on the Outcome 

  Concluding Comments on Numerical Example 

Concluding Comments on Latent Profile/Class Analysis 
 

MEDIATION ANALYSIS AND RECURSIVE PARTITIONING MODELS  

Key Facets of Recursive Partitioning (CART) Models 

Multiple Predictors in CART Models 

Complexity Parameters and Pruning 

Variable Importance  

Profile Analysis 

Covariate Control 

More on the Quality of Model Predictions 

Moderation Dynamics and CART  

Strengths and Weaknesses of Regression and Classification Trees    

Numerical Example 

  Initial Model Evaluation  

Total Effect of the Program on the Outcome 

  Program Effects on Mediators 

Mediator Effects on the Outcome 



                                                                                                             Nonlinear Mediation 6 

 

   Concluding Comments on Numerical Example 

 Concluding Comments on Recursive Partitioning Models 

CONCLUDING COMMENTS 

APPENDIX A: CALCULATION OF AME FOR A QUADRATIC MODEL 

APPENDIX B: ELABORATION OF EXPONENTIAL FUNCTION 

APPENDIX C: GEWEKE TEST OF CONVERGENCE 

_______________________________________________________________________ 
 
 

INTRODUCTION 

In this chapter, I address SEM methods for analyzing mediation in which the modeling 
includes non-linear relationships. Technically, the much of the prior chapters on binary, 
ordinal, nominal, and count outcomes use forms of non-linear modeling but here I 
address non-linear models that go beyond these approaches. I first consider traditional 
non-linear regression approaches, including polynomial regression, spline regression and 
non-linear OLS based regression. I then discuss newer methods for non-linear mediation 
analysis based in Bayesian additive regression trees. I next introduce modeling non-
linearity using smoothers in generalized additive models. Finally, I describe cluster 
analysis, mixture modeling using latent profile/class analysis, and classification and 
regression trees. Most (but not all) of my examples focus on the case where the mediator-
outcome links comprise continuous variables. This is because when a predictor variable 
is binary, nominal, or has very few values, meaningful non-linear analysis typically takes 
the specialized forms discussed in Chapters 12 to 14. The current chapter is long but each 
section, other than the first few, stand independent of one another. You can jump from 
one section to another as your interests dictate.  
 Given chapter length, for each example I do not explore preliminary analyses and 
potential assumption violations in depth. My primary focus is on introducing you to the 
core dynamics of each statistical method. This is not to say that preliminary exploration 
of one’s data is not important. In general, the data I analyzed are compatible with model 
assumptions because the data are hypothetical and I created them to be assumption 
consistent. For each example, I address the three core questions of an RET, namely (1) 
does the intervention have a meaningful effect on the outcome, (2) does the intervention 
meaningfully impact the core mediators of the program, and (3) do the mediators 
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meaningfully impact the outcome. Normally, I address questions about overall model fit 
before considering these questions because it makes little sense to interpret the 
implications of models that are not data consistent. However, I found in this chapter that I 
can discuss model fit better after I have familiarized you with the relevant non-linear 
modeling dynamics. In general, all of the examples I consider had reasonable model fit 
because I created the data to be as such. For the LISEM based methods, I typically 
address model fit issues after working through the numerical example rather than before 
doing so. For FISEM, I focus on model fit before delving deeper into the models.   

When a Mediator Moderates Itself to Affect an Outcome 

Although my emphasis in this chapter is on mediation, non-linear relationships also can 
be thought of through the lens of moderation. Specifically, curvilinear analysis can be 
conceptualized as a case where a variable moderates itself in terms of its effect on an 
outcome, i.e., X moderates the X→Y relationship. Let me elaborate. When theorizing 
about moderation, we seek to identify variables that account for the lack of 
generalizability of the impact of one variable, X, on another variable, Y. The moderator is 
typically a third variable, Z, that produces variability of an effect due to either time, 
settings, and/or individuals, such as when X influences Y for middle and high income 
individuals but not for low income individuals. Consider an example from organizational 
psychology. Conscientiousness is the extent to which people are dependable, persistent, 
organized, and goal directed. Research typically finds a positive association between 
conscientiousness and job performance. A program to increase job performance among 
employees might target conscientiousness as a mediator with the idea that making 
workers more conscientious will lead to better job performance. In a study by Le and 
colleagues (2011), they found that the relationship between conscientiousness and job 
performance is complex; that too much conscientiousness can interfere with rather than 
improve job performance. Le et al. found that performance is indeed positively associated 
with conscientiousness up to a point; they also found that extremely conscientious 
workers often show decrements in performance because such workers can be rigid, 
inflexible, and perfectionists who pay too much attention to small details while 
overlooking larger job-related goals. The impact of X on Y depends on where on the X 
dimension that changes in X are induced; X moderates the impact of X on Y. 
 The dynamic is shown in Figure 15.1 where performance and conscientiousness are 
each measured on 0 to 10 metrics. The effect of conscientiousness on performance is 
positive and linear between conscientiousness scores of 5 and 6.5. The effect weakens 
between conscientiousness scores of 6.5 and 8 and reverses course between 8 and 9.5; in 
short, conscientiousness moderates the effect of conscientiousness on performance.  
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Note that Figure 15.1 is nothing more than a curvilinear relationship between 
conscientiousness and job performance. Suppose in an RET the program participants 
span the range of conscientiousness at baseline per Figure 15.1. Given this, the “gains” in 
job performance shown by those whose scores improve to the 5 to 8 range on the 
conscientiousness scale will be canceled by the “losses” in performance shown by those 
who conscientiousness improve to the 8 to 9.5 range, yielding a net null program effect. 
The program affects conscientiousness (the mediator) and conscientiousness, in turn, 
affects job performance but the program fails to improve job performance. The solution 
to “program failure” in this case might be to ensure the program distinguishes 
performance enhancing versus performance detracting qualities of conscientiousness, 
with the intervention being redesigned to foster the former.  
 

 

FIGURE 15.1. X as a moderator of the X→Y link 

Non-Linear Mediation and Correlated Disturbances 

I use both limited information SEM (LISEM) and full information SEM (FISEM) 
throughout this chapter (see Chapter 8 for a comparison of the two approaches). A core 
issue for non-linear mediation is the modeling of correlated disturbances among the 
mediators. Consider the RET in Figure 15.2a where a curvilinear link to the outcome by 
M1 is captured using a quadratic term M1*M1 in the model. I use special notation for the 
M1*M1 arrow because the term is introduced merely to model curvilinearity between M1 
and Y; it is not a substantive causal determinant in its own right. 
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FIGURE 15.2. Need for correlated disturbances 

 If I fit this model to data using Mplus, I likely will obtain a poor model fit because 
the model implies a zero correlation between the endogenous variable M1 and the 
exogenous variable M1 squared, which is unlikely though it can occur. The model also 
implies that the correlation between M1 and M2 can be completely accounted for by the 
common cause of the treatment condition, which also may not be the case. Stated another 
way, the model fails to properly account for the correlation structure among the 
predictors M1, M12, and M2 when predicting Y in the model equation  

Y = α + β1 M1 + β2 M12 + β3 M2 + ε3 

This specification error, in turn, can bias the estimates of the structural coefficients β1 to 
β3 and can undermine the regularities of polynomial regression I discuss later that lend 
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themselves to meaningful interpretation. To properly account for the correlation structure 
among the predictors, I need to add convenience parameters that are not of substantive 
interest but that are required to avoid bias and maintain meaningful regularities for the 
coefficients of interest, much like I added M1*M1 as a convenience term to capture 
curvilinearity. The convenience parameters take the form of the correlated disturbances 
shown in Figure 15.2b and which I describe in more detail shortly.  
 Interestingly, these modeling gymnastics are unnecessary if one uses LISEM to 
evaluate the model. In LISEM, I conduct three separate regression analyses: 

Y = α1 + β1 M1 + β2 M12 + β3 M2 + ε3 

M1 = α2 + β4 T + ε1 

M2 = α3 + β5 T + ε2 

where T is the treatment condition. The correlation between predictors in the first 
equation is automatically taken into account vis-à-vis standard regression algorithms. The 
correlated disturbances between M1 and M2 in the latter two equations is not of 
theoretical nor practical consequence because the equations are estimated separately; β4 
and β5 are unbiased even in the presence of such a correlation per the dynamics of 
seemingly unrelated regression (SUR) analysis.      
 I raise these issues here because as I shift between FISEM and LISEM in later 
sections, you will sometimes observe me making model accommodations that are not 
substantively meaningful but that are needed as statistical conveniences to make model 
parameters more interpretable and free of specification error.  

MEDIATION ANALYSIS AND POLYNOMIAL REGRESSION 

Recall from Chapter 6 that one way of exploring non-linear relationships is to use 
polynomial regression whereby we add to the traditional linear equation terms that 
multiply a target predictor by itself one or more times. In many studies, researchers use 
either quadratic or cubic functions but do not venture beyond that. However, one 
certainly can do so if the data so dictate. To illustrate the flexibility that polynomial 
regression affords, I repeat from Chapter 6 a curve generated by a seven-term polynomial 
equation which shows the kind of complex curvature one can account for.  
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FIGURE 15.3. Polynomial function with seven terms 

 In the current chapter, I focus on the case of quadratic regression to introduce core 
concepts for analyzing polynomial dynamics for mediators in RETs. I expand on this 
introductory material in the document called Polynomial RET Modeling: Additional 
Considerations on the resources tab of my webpage. In that document, I describe 
polynomial approaches that use latent variable modeling, cubic modeling, and other 
advanced issues in polynomial regression.   

Detecting Curvature 

 Recall that the basic form of the quadratic equation expressed in regression terms 
(using sample notation and excluding the disturbance term) is  
 
Y = a + b1 X + b2 X2 

 

Figure 15.4 presents core shapes of four quadratic curves that vary the value of b2. The 
term parabola refers to the U-shaped curve that is drawn for a quadratic function. Note 
there is only one bend in the curve for a quadratic function. When b2 is > 0, then the 
parabola opens up; see the two curves in the upper portion of the plot. When b2 is < 0, the 
parabola opens down; see the two curves in the lower portion of the plot. The larger the 
absolute value of b2, the thinner or less open is the parabola; compare the parabola for b2 
= 3 with the parabola for b2 = 6.  



                                                                                                             Nonlinear Mediation 12 

 

 

FIGURE 15.4. Quadratic functions 

 When fitting data, it is possible to define values of the intercept and coefficients in 
the quadratic equation that invoke only part of the parabola. Here is a plot of two of the 
curves with positive b2 from the prior plot but where only the right sides are invoked:     

 

Such flexibility gives the quadratic function the ability to capture a wide range of non-
linear relationships between variables, but the functions nevertheless are still constrained 
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by the core mathematical properties of quadratics.    
 I illustrate core principles for analyzing an RET using quadratic regression for the 
case of a three mediator RET that has all continuous mediators and a continuous outcome 
of the form shown in Figure 15.5.  Suppose that M1 is measured on a 0 to 15 metric, M2 
and M3 are measured on -3 to +3 metrics, and Y is measured on a 0 to 30 metric. Each 
measure is from a multi-item scale and total scores are based on the average of item 
responses. I treat the total scores as continuous. Normally, the RET would include 
additional covariates but I omit them here for pedagogical reasons. They would be 
handled in much the same ways as described in Chapters 11 to 14.        
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Control

d3

d1

d4

M2

M1

M3

Y

d2

 

FIGURE 15.5. Mediation model 

 We typically assume the causal paths between continuous variables in RET models 
are linear. In Chapters 6 and 11, I introduced preliminary analyses to help determine the 
number of polynomial terms one may need to address curvilinearity if it exists between 
one or more mediators and the outcome. One strategy was to examine the significance 
patterns for the highest order polynomial in regression models that predict Y from M1, 
M2, M3 plus the relevant covariates each time successively adding polynomials up to the 
5th power for the target mediator, in this case M1. Here are the results in which the 
polynomial regression program on my website automatically mean centers the M1, M2, 
and M3 variables (to reduce collinearity between these variables and their respective 
product terms), calculates all relevant polynomials using the centered data up to the fifth 
power, and then enters them sequentially into the respective equations: 
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Coefficients for linear model 
             Estimate Std. Error    t value Pr(>|t|) 
(Intercept) 17.852217   0.105113 169.837605 0.000000 
m2           0.178723   0.112720   1.585546 0.113160 
m3           0.256811   0.107877   2.380582 0.017473 
m1           1.141563   0.042231  27.031722 0.000000 
  
Coefficients for quadratic model 
             Estimate Std. Error    t value Pr(>|t|) 
(Intercept) 18.569222   0.123783 150.014811 0.000000 
m2           0.171392   0.107611   1.592693 0.111547 
m3           0.244714   0.102992   2.376044 0.017688 
m1           1.143532   0.040316  28.364297 0.000000 
quadratic   -0.126073   0.012744  -9.893096 0.000000 
Coefficients for cubic model 
             Estimate Std. Error    t value Pr(>|t|) 
(Intercept) 18.568813   0.123893 149.878038 0.000000 
m2           0.172002   0.107789   1.595721 0.110869 
m3           0.244689   0.103044   2.374619 0.017756 
m1           1.137398   0.065909  17.257192 0.000000 
quadratic   -0.126025   0.012757  -9.879268 0.000000 
cubic        0.000394   0.003352   0.117673 0.906350 
 
Coefficients for quartic model 
             Estimate Std. Error    t value Pr(>|t|) 
(Intercept) 18.561269   0.138718 133.805920 0.000000 
m2           0.171346   0.107978   1.586858 0.112863 
m3           0.243982   0.103260   2.362789 0.018330 
m1           1.137821   0.066033  17.230967 0.000000 
quadratic   -0.123150   0.026945  -4.570357 0.000005 
cubic        0.000362   0.003364   0.107686 0.914267 
quartic     -0.000096   0.000793  -0.121143 0.903602 
 
Coefficients for quintic model 
             Estimate Std. Error    t value Pr(>|t|) 
(Intercept) 18.555997   0.138973 133.521950 0.000000 
m2           0.174260   0.108093   1.612132 0.107251 
m3           0.248689   0.103521   2.402298 0.016475 
m1           1.090117   0.096515  11.294804 0.000000 
quadratic   -0.121725   0.027035  -4.502527 0.000008 
cubic        0.006678   0.009906   0.674136 0.500382 
quartic     -0.000160   0.000798  -0.200444 0.841175 
quintic     -0.000132   0.000194  -0.677877 0.498008 
 

 I look for the highest order polynomial term that is statistically significant across 
the five analyses. For M1 it is the quadratic model. This suggests there potentially is 
quadratic curvilinearity for M1 predicting Y. When I repeated the analyses for M2 and 
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M3, neither of these predictors had a statistically significant higher order polynomial 
term suggestive of curvilinearity in any of the regressions.   
 To gain additional perspectives on the curvature, I used the program on my website 
called Bivariate smoother that generates a scatterplot between M1 and Y with a smooth 
rather than a straight line fitted to the data (see Figure 15.6). The curvature is evident in 
the plot; at the higher end of M1, the slope flattens out somewhat. Overall, the plot also 
suggests a quadratic function is reasonable given a single bend in the curve, but the plot 
should be considered only a rough diagnostic. On my webpage under the Resources tab 
for Chapter 15, I provide a document called Polynomial RET Modeling: Additional 
Considerations that describes more detailed diagnostics for non-linear models that you 
can use as well as preliminary analyses you should pursue to identify analytic challenges 
one might face with non-linear data.             

 

FIGURE 15.6. Smoothed plot 

 I usually (but not always) find these simple diagnostics, in conjunction with theory, 
can help me identify possible non-linearities to take into account when working with 
RET data. More elaborate identification approaches can be found in Gerhard, Büchner, 
Klein and Schermelleh-Engel (2017) and Mooijaart and Satorra (2009).  
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FISEM Methods for the Analysis of Quadratic Regression 

Your first choice of an analytic method for quadratic mediation modeling probably 
should be FISEM assuming that the conditions are appropriate for doing so. Small sample 
size, ill-behaved distributions, challenging missing data patterns, obstinate outliers, and 
other such factors might lead you instead to consider LISEM, which, although more 
challenging, can be used to good effect.  
 Table 15.1 presents the Mplus syntax I use to evaluate the model in Figure 15.5 but 
with a (non-centered) quadratic term (M1M1) added for M1 to account for curvature in 
its relationship with Y. 
 
Table 15.1: Mplus Syntax for Quadratic Model  

1.  TITLE: Quadratic analysis   ; 
2.  DATA: FILE IS c:\mplus\quadratic.dat ; 
3.  VARIABLE: 
4.    NAMES ARE treat m1 m2 m3 m1m1 y m1a m1b m1am1a m1bm1b ; 
5.    USEVARIABLES ARE treat m1 m2 m3 m1m1 y ; 
6.    !m1m1 is the first mediator multiplied by itself 
7.    MISSING ARE ALL (-9999) ; 
8.  ANALYSIS: 
9.    ESTIMATOR = MLR ; 
10. MODEL: 
11.   y ON m1 m2 m3 m1m1 (p1-p4)  ; 
12.   [y] (a1) ; 
13.   m1 m2 m3 ON treat (p5-p7)  ; 
14.   m1 m2 m3 m1m1 WITH m1 m2 m3 m1m1  ;   
15.   treat WITH m1m1 ;   
16. OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL MOD(ALL 4) TECH4 ;  
 

All syntax should be familiar. Line 13 is a shortcut for specifying three separate 
equations, namely regressing each of the variables (separately) to the left of ON onto all 
the variables to the right of ON. In this case, there are three separate regressions with one 
predictor in each equation, treat. I assign labels (p5, p6 and p7) to each coefficient 
associated with the predictor. Lines 14 and 15 specify the convenience parameters and 
the correlated disturbances I discussed earlier, correlating all the variables to the left of 
WITH with all the variables to the right of WITH.   
 Reporting of traditional global fit indices is controversial with non-linear models 
because they are seen by some as having limited value for non-linear and moderation 
analysis that use product terms. For example, Gerhard et al., (2017) and Mooijaart and 
Satorra (2009) show that the traditional SEM based chi square test is insensitive to 
misspecified models that omit non-linear or interaction terms or that include more general 
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forms of non-linear/interaction misspecification. This also applies to other global fit 
indices that make use of the chi square statistic in their derivation (e.g., the RMSEA, the 
CFI; see Chapter 7). When misspecification is present in the parts of the model that do 
not involve the non-linear equation(s), the global fit indices can often adequately flag the 
misspecification. Some methodologists argue, with qualifications, that it therefore may be 
useful to examine the traditional global fit indices in a more informal sense. Here are 
selected global fit indices for the current model and data1: 

MODEL FIT INFORMATION 
 
Chi-Square Test of Model Fit 
 
          Value                              0.509 
          Degrees of Freedom                     1 
          P-Value                           0.4756 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.000 
          90 Percent C.I.                    0.000  0.074 
          Probability RMSEA <= .05           0.818 
 
CFI/TLI 
 
          CFI                                1.000 
          TLI                                1.000 
 
SRMR (Standardized Root Mean Square Residual) 
 
         Value                               0.002 
 
 All of the fit indices point to satisfactory model fit, albeit tentatively so because of 
the non-linear term in the model. There also were no modification indices greater than 4 
and no absolute standardized residuals greater than 2. Coupled with the diagnostics I 
discussed earlier, this gives me increased confidence in model viability. I therefore turn 
to the three central questions of RET analysis, namely (1) is there a total effect of the 
program on the outcome, (2) does the program affect the presumed mediators, and (3) do 
the mediators affect the outcome. 

 

 
1 A warning message appears on the output about a non-positive definite first order product matrix. This warning 
can be ignored for all chapter examples; see the relevant document in Chapter 11 on the Resources tab of my 
webpage.  
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Total Effect of the Program on the Outcome 

The first substantive question is whether the program affected the outcome and by how 
much. In FISEM, one estimates the overall outcome mean difference between the 
treatment and control groups using a model based approach, that is (a) one assumes the 
tested causal model is correct, and then (b) one combines the separate model parameter 
estimates into a model-implied total effect per my discussion of multiplicative rules for 
combining coefficients in Chapters 5 and 7. This approach has many challenges when 
there is non-linearity involved. A simpler approach is to shift to a LISEM framework for 
purposes of answering this first question by simply comparing outcome means for the 
treatment and control groups. This is accomplished in Mplus by executing syntax for a 
linear regression that regresses the outcome onto a dummy variable for the treatment 
condition (1 = intervention group, 0 = control group), as follows: 

TITLE: Total effect for quadratic analysis   ; 
DATA: FILE IS c:\mplus\quadratic.dat ; 
VARIABLE: 
  NAMES ARE treat m1 m2 m3 m1m1 y m1a m1b m1am1a m1bm1b ;  
  USEVARIABLES ARE treat y ; 
  MISSING ARE ALL (-9999) ; 
ANALYSIS:  
  ESTIMATOR = MLR ;    
MODEL:  
   y ON treat  ;  
OUTPUT: SAMP RESIDUAL CINTERVAL TECH4 ;   

     
 Mplus in this case pursues the analysis using robust maximum likelihood 
estimation. You can include covariates to increase statistical power, as appropriate, 
explore result sensitivity using bootstrapping, and use programs on my website to explore 
outlier resistant methods of analysis. The tested model from the above syntax is just 
identified and yielded the following results: The estimated mean Y for the control group 
(the intercept on the output for the above analysis) was 16.41 with a 95% confidence 
interval of 16.04 to 16.78 or a margin of error of ±0.37. The estimated mean Y for the 
intervention group was 19.48 with a 95% confidence interval of 19.17 to 19.79 or a 
margin of error of ± 0.31 (estimated by reverse scoring the TREAT variable and re-running 
the syntax – see Chapter 11). The mean difference between the treatment and control 
groups (the path coefficient for TREAT) was 3.07 with a 95% confidence interval of 2.58 
to 3.55 or a margin of error of ±0.48. Suppose that discussions with staff and other 
relevant constituencies established that a meaningful program effect is a mean difference 
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of 2.50 or larger.2 Because the lower limit of the 95% confidence interval for the 
observed mean difference exceeded this value, I conclude that the program had a 
meaningful total effect on Y. 

Effect of the Program on the Mediators  

The second substantive question is whether the program affected the presumed mediators 
and by how much. Returning to the syntax in Table 15.1, here is the relevant output:  
 

MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 M1       ON 
    TREAT              2.675      0.124     21.520      0.000 
 
 M2       ON 
    TREAT              0.261      0.056      4.688      0.000 
 
 M3       ON 
    TREAT              0.377      0.057      6.579      0.000 

 
 For M1, the difference between means for the treatment and control groups was 
2.68 with a margin of error of ±0.25. or a 95% confidence interval of 2.43 to 2.93.  
Suppose the predetermined criterion for a meaningful program effect on M1 was 2.0. 
Because the lower limit of the 95% confidence interval is larger than this criterion, I 
conclude the program had a meaningful effect on M1. 
 For M2, the difference in means for the treatment and control groups was 0.26 with 
a margin of error of ±0.11. Suppose the predetermined criterion for a meaningful effect 
for M2 was 0.20 or larger. Because the lower limit of the 95% confidence interval (0.15 
to 0.37) was smaller than this criterion, I cannot conclude with confidence that the 
program had a meaningful effect on M2, although I can confidently conclude the program 
effect was non-zero (i.e., statistically significant).  
 For M3, the difference in means for the treatment and control groups was 0.38 with 
a margin of error of ±0.11. Suppose the predetermined criterion for a meaningful effect 
for M3 also was 0.20 or larger. Because the lower limit of the 95% confidence interval 
(0.27 to 0.49) was larger than this criterion, I can confidently conclude that the program 
had a meaningful effect on M3. I can calculate the estimated mean values of M1, M2 and 

 
2 I discuss the process of establishing meaningful effect sizes in Chapters 10 and 11. I do not delve into the 
mechanics of doing so in this Chapter in order to save space and avoid repetition.  
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M3 for the treatment and control conditions by examining the output for the intercepts 
coupled with re-scoring the TREAT dummy variable and then re-running the analysis (see 
Chapter 11).  

Effect of the Mediators on the Outcome  

The third substantive question of interest is whether the presumed mediators of the 
program effects on Y each affect the outcome and by how much. This question is 
addressed using the model equation that predicts the outcome from the three mediators 
and the M1 quadratic term, expressed here using sample notation with the ps reflecting 
the relevant path coefficients: 

Y = a + p1 M1 + p2 M2 + p3 M3 + p4 M1M1 + d        [15.1] 

where d is the disturbance term. Here are the estimates of the intercept and coefficients 
from the FISEM Mplus output for this equation: 

MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 Y        ON 
    M1                 3.043      0.188     16.179      0.000 
    M2                 0.171      0.101      1.693      0.090 
    M3                 0.245      0.108      2.257      0.024 
    M1M1              -0.126      0.012    -10.286      0.000 
 
Intercepts 
    Y                  2.806      0.699      4.012      0.000 

 
yielding the equation: 

Ŷ= 2.806 + 3.043 M1 + 0.171 M2 + 0.245 M3 + -0.126 M1M1      [15.2] 

Note in the Table 15.1 syntax, the intercept is assigned the label a1 and the coefficients 
are assigned the labels, in order, p1, p2, p3, and p4. Let me first focus on estimating the 
effect of the M1 mediator on Y vis-a-vis Equation 15.2. Such estimation is complicated 
by the fact that the presumed relationship between M1 and Y is quadratic in form. To 
better appreciate the implied relationship, you can have Mplus plot the curve by adding 
the following syntax to Table 15.1 just before the OUTPUT line (the line numbers below 
are for reference only; they do not appear in the Mplus program)3: 

 
3 You also must remove MOD(ALL 4) from the OUTPUT line; it can’ be used with the MODEL CONSTRAINT 
command. 
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15a. MODEL CONSTRAINT: 
15b. PLOT (predy); !created variable to plot on y axis 
15c. LOOP (m1, 0, 15, 1);  !variable to plot on x axis 
15d.  predy = a1+p1*m1+p2*.195+p3*.244+p4*m1*m1 ; 
15e. PLOT: 
15f. TYPE=PLOT2 ; 

 
 Line 15a invokes the MODEL CONSTRAINT option, which we have encountered in 
previous chapters. Line 15b tells Mplus to create a plot with the variable named in 
parentheses on the Y axis of the plot. In this case, the variable is a new one that I define 
using the LOOP subcommand in Lines 15c and 15d. The new variable is called predy but 
you can give it any name up to 8 characters using Mplus conventions. I use predy as a 
euphemism for predicted Y, which I compute in Line 15d for different values of M1. I 
then plot the values of predy as a function of the specified values of M1. 
  Line 15c states I want to create a loop (analogous to a DO or FOR loop in R) that 
places a new variable I call m1 on the X axis with values ranging from 0 to 15 in 
increments of 1 (the three numbers in parentheses on Line 15c). Line 15d creates values 
of predy for each of these m1 values, one value for each m1 value in the loop. It adds to 
the intercept (labeled a1) each looped value of m1 times the path coefficient for m1 
(labeled p1), the mean value of m2 (.195) times the path coefficient for m2 (labeled p2), 
the mean value of m3 (.244) times the path coefficient for m3 (labeled p3), and the value 
m1*m1 multiplied by the path coefficient for m1m1 (labeled p4).  I use the mean values of 
m2 and m3 in this equation to hold these “covariates” constant at their mean values. 
Traditionally, any covariates we include in the equation we set to their mean values. 
 Line 15e tells Mplus to create the plot and Line 15f tells Mplus the plot type to 
generate (Type 2; see the Mplus manual for a discussion of plot types). After executing 
the full program syntax including the above added syntax, I click on Plots>View and then 
Loop Plots in the Mplus menu and I obtain the plot shown in Figure 15.7.4 
 The plot shows the estimated Y values (i.e., the predicted Y means) using the red 
line at each of the M1 values on the X axis with 95% confidence intervals about the 
estimated Y means in blue. The plot differs from the smoothed plot shown in Figure 15.6 
because (a) M2 and M3 have been held constant in Figure 15.7 at their mean values but 
this is not the case in Figure 15.6, and (b) the red line reflects predicted scores based on 
the input model whereas the plot in Figure 15.6 does not impose a model on the data. The 
plot in Figure 15.7 is intended to provide a sense of the implied curvature in terms of the 
effect of M1 on Y. Notice at low values of M1, the slope of Y on M1 is steeper and that it 

 
4 I also right clicked on the plot, choose Line Series and then increased the width of the line from 2 to 4 to make the 
red line more prominent 
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gradually flattens as M1 gets larger. For example, the slope of the red line is much 
steeper between the M1 values of 1 and 2 than between the M1 values of 12 and 13.  

 

FIGURE 15.7. Quadratic curve 

 A helpful complement to this analysis is to identify the value of M1 where Y 
reaches it maximum/minimum, i.e., where the bend levels off. This can be determined 
using the equation 

Maxima/Minima = -3.043/(2*-.126) = 12.067  

Substituting this value into Equation 15.2 and holding the values of the other mediators 
and covariates constant at their means yields the predicted value of Y when M1 equals 
12.067, which is 

Ŷ= 2.806 + 3.043*12.067 + 0.171*.195 + 0.245*.244 + -0.126*12.067*12.067 = 21.26  

I can generate these values, their standard errors, and confidence intervals in the 
Mplus syntax by adding the following code just before the output line in Table 15.1: 

MODEL CONSTRAINT: 
 NEW (xmax ymax) ; 
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 xmax = -p1/(2*p4) ; 
 ymax = a1+p1*xmax+p2*.195+p3*.244+p4*xmax*xmax ; 

Here is the relevant Mplus output: 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

New/Additional Parameters 
    XMAX              12.067      0.474     25.452      0.000 
    YMAX              21.255      0.285     74.512      0.000  

with the relevant confidence intervals (not shown here) reported in the section labeled 
CONFIDENCE INTERVALS OF MODEL RESULTS.  

Note that when p4 is negative, the isolated values refer to the Ŷ maximum because 
the shape of the curve is concave downward. When p4 is positive, the values refer to the 
Ŷ minimum because the shape of the curve is concave upward. Also, the computed value 
of M1 (and Ŷ) can fall outside the range of the observed data.  

In Chapter 6, I introduced the notion of instantaneous change which, in this case, 
is the rate of change in Y at a given value of M1. I made an analogy to wanting to know 
the velocity at which a car is traveling between two towns, A and B, that are 120 miles 
apart in which Y is the distance traveled by the car per hour (mph). When the car is in 
Town A and about to begin its journey, the car has traveled 0 miles, so Y1 = 0. When the 
car reaches Town B, it has traveled 120 miles, so Y2 = 120. Let X be the amount of time 
the car spends traveling. Before the car leaves Town A, X1 = 0 hours. Suppose when the 
car reaches Town B, the car has been on the road for 2 hours. This means that X2 = 2 
hours. The rate of change is the change in Y divided by the change in X, or ΔY/ΔX = 
(120 – 0) / (2-0) = 60 miles per hour. This value reflects the average speed of the car 
during the trip. But suppose I want to know how fast the car was going 15 minutes into 
the trip. One way of determining this is to define values for X1 and Y1 at 14 minutes and 
59 seconds into the trip and then to define X2 and Y2 values at 15 minutes and one 
second into the trip. I then calculate ΔY/ΔX for this more narrowly defined time frame. 
Although the result would give me a sense of how fast the car was being driven 15 
minutes into the trip, it would not tell me how fast the car was being driven at exactly 15 
minutes into the trip. I want to know at the very instant of 15 minutes into the trip, how 
fast the car was going, i.e., what was its rate of change at that particular instant. It is this 
concept of instantaneous change that derivatives in calculus refers to. The velocity the car 
is traveling at an exact point in time in this analogy captures the notion of a derivative. 

For the current data, if I calculate the derivative or instantaneous rate of change in Y 
when M1 = 2, it will be much larger than when I calculate it for the case of M1 = 13. 
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Stated informally, changes in Y as a function of M1 will be more dramatic when M1 is 
near the value of 2 than when M1 is near the value of 13. By contrast, in a linear 
relationship, the instantaneous rate of change is the same at all values of M1. In Chapter 
6,  I presented a formula for calculating the instantaneous rate of change in Y at a given 
M1 value for a quadratic model. Using the path labels from the syntax in Table 15.1, it is 

p at M1 = p1 + (2)(p4)(M1)            [15.3] 

where p is the instantaneous rate of change, p1 is the path coefficient for M1 in the model, 
p4 is the path coefficient for the quadratic term in the model and M1 is set to the value of 
M1 you are interested in. I can program Mplus to compute the values of the instantaneous 
rates of change for, say, every other integer value of M1 between 3 and 13 (to avoid the 
extremes of M1, which occur infrequently) by re-running the syntax in Table 15.1 but 
adding the following commands just before the OUTPUT line (and again eliminating 
MOD(ALL 4) from the OUTPUT line):  

15a. MODEL CONSTRAINT:   
15b. NEW (m1_3,m1_5,m1_7,m1_9,m1_11,m1_13); 
15c. m1_3 = p1 + 2*p4*3 ; 
15d. m1_5 = p1 + 2*p4*5 ; 
15e. m1_7 = p1 + 2*p4*7 ; 
15f. m1_9 = p1 + 2*p4*9 ; 
15g. m1_11 = p1 + 2*p4*11 ; 
15h. m1_13 = p1 + 2*p4*13 ; 

 

All of the syntax should be familiar to you from previous chapters. Here is the output 
where each estimate is that for the instantaneous rate of change for the value of M1 listed 
after the underline in the variable name: 
 

MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
New/Additional Parameters 
    M1_3               2.286      0.117     19.475      0.000 
    M1_5               1.782      0.073     24.251      0.000 
    M1_7               1.277      0.043     29.904      0.000 
    M1_9               0.773      0.055     13.978      0.000 
    M1_11              0.269      0.095      2.819      0.005 
    M1_13             -0.235      0.141     -1.666      0.096      
 
When M1 equals 3, the estimated instantaneous rate of change in Y is 2.29 ±0.23 
(Critical Ratio (CR) = 19.48, p < 0.01). As M1 increases in value, the estimated 
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instantaneous rate of change decreases. When M1 equals 13, the instantaneous rate of 
change in Y is 0.23 ±0.28, which is statistically nonsignificant (CR = -1.66, p < 0.01).   
 Returning to our original question “does M1 impact Y and, if so, by how much?”, 
the answer is “it depends.” When M1 is low, changes in M1 impact Y by about 2 units, 
give or take. When M1 is high, M1 has diminished effects on Y, closer to 0. Stated 
another way, the effect of M1 on Y is “it depends” because M1 moderates the effect of 
M1 on Y. I find it helpful to calculate various instantaneous rates of change across the 
values of M1 to help me better appreciate how the effect of M1 on Y varies given the 
quadratic function describing the relationship. 
 When evaluating programs, some researchers find the reliance on instantaneous 
rates of change unsatisfactory and want to know, for example, what the overall effect on 
Y would be if we increased M1 by, say, one unit after taking into account (a) the non-
linear effect of M1 on Y, (b) the distribution of M1, and (c) the distributions of the 
covariates in the population. I can provide a tentative answer to this question using 
average marginal effects (AMEs), which I introduced in Chapter 5 and discussed in depth 
in Chapter 12. The basic logic as applied to the M1 curvilinear effect goes something like 
this: First, using Equation 15.2, I calculate a predicted outcome score, Ŷ1i, for each 
individual i in the sample. I then increase the value of M1 by a certain amount, k (e.g., 1.0 
units) for every person in the data set. I next re-calculate the value of the product term 
M1M1 given this new value of M1 and I then re-use Equation 15.2 to calculate a new 
predicted value for each individual, Ŷ2i, but using the changed M1 and M1M1 scores in 
place of the original ones. The marginal effect for a given individual is defined as Ŷ2 - Ŷ1, 
which is the predicted change in Y for the individual when his or her score shifts from 
M1 to M1+ k (including the corresponding shift in M1M1). In Chapter 12, I symbolized 
this as IME2i – IME1i where IME stands for “individual marginal effect.” The average of 
these differences across all individuals is the average marginal effect, AME. It reflects 
the average change in the mean of Y given a k unit increase in M1. Suppose I find that 
AME equals 1.14 when I set k = 1. This means that if I increase M1 by, say, one unit, the 
mean Y in the total sample should increase by 1.14.  
 Since all of the other predictors take on the same values for each individual when I 
calculate Ŷ for both Ŷ1i and Ŷ2i, the sole source of the difference between the mean of 
IME1 and IME2 is the increment in M1 and M1M1. Keep in mind, however, that the p1 

coefficient for M1 and the p4 coefficient for M1M1 have been calculated/defined so as to 
take into account the confounding influence of the other predictors per standard 
regression algorithms. When I compare the mean of IME1 to the mean of IME2 I am 
comparing two populations, one population in which every person has their original M1 
(and, by definition, M1M1) scores and one in which every person has their M1 score 
increased by k units. However, each population has the same distribution of values on all 
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other predictors so these values are taken into account, akin to matching. The AME value 
captures in a single number the effect of changing M1 on Y given the way M1 is 
distributed in the population, the way the covariates are distributed in the population, and 
given the curvature between M1 and Y.   
 As noted in Chapter 12, this description of AMEs does not map exactly onto the 
way that AMEs for continuous predictors are conceptualized and calculated in practice. 
Statisticians instead use derivatives and the concept of instantaneous rates of change. 
However, the above represents an informal way of thinking about AMEs that makes 
intuitive sense to many researchers.  
 My website has a program for calculating AMEs in a limited information estimation 
context. Given that the current program has all single indicators, I can use the program to 
estimate the AMEs for M1, M2 and M3 in the current example where M1 also takes into 
account the polynomial term.5 Here is the output: 

Average marginal effects 
    var    AME     SE       z      p   lower  upper 
     m1 1.1435 0.0403 28.3643 0.0000  1.0645 1.2225 
     m2 0.1714 0.1076  1.5927 0.1112 -0.0395 0.3823 
     m3 0.2447 0.1030  2.3760 0.0175  0.0429 0.4466 

 The AME for M1 was 1.14 ± 0.08 (CR = 28.36, p < 0.05), which takes into account 
the quadratic effect of M1 on Y. (I discuss the AMEs for M2 and M3 shortly). Thus, the 
estimated effect of a one unit change in M1on the mean of Y is to increase the mean by 
1.14 units. This value captures the effect of M1 on Y in a single number. 
 As noted in Chapter 12, I also can calculate an AME in Mplus within a FISEM 
framework but I do not obtain standard errors, confidence intervals, or significance tests 
for it. The Mplus code to calculate the AME for the current example is presented in 
Appendix A and is modeled after the syntax I presented in Chapter 12. The Mplus value 
for the AME for M1 in this case also was 1.14.  
 In sum, I can characterize the effect of M1 on Y either by (a) presenting selected 
values of instantaneous rates of change that span a meaningful range of values of M1, (b) 
by presenting the AME for M1, or (c) by presenting both indices. Suppose that the 
predetermined criterion for a meaningful effect of M1 on Y was 1.0 or larger. Based on 
the AME, I would conclude that M1 has a meaningful effect on Y because the lower limit 
of its confidence interval (1.06) is greater than 1.0. However, I also must keep in mind 
the moderating effects of M1 on the M1→Y relationship based on instantaneous rates of 

 
5 The equation I specified in the R program was y~m1+m2+m3+I(m1^2). Note my use of the specialized notation 
for power terms that is required in the AME program; see the program instructions. Also, technically, I have stepped 
outside of the Mplus FISEM context to use this program, so this qualification must be kept in mind. 
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change when characterizing this effect. 
 For M2 and M3 in which linear relationships were assumed, the path coefficients 
from the FISEM analysis can be used directly to characterize their presumed impact on 
the mean of Y without the above statistical gymnastics. Note that the values of the path 
coefficients for M2 and M3 are the same as the values for their corresponding AMEs in 
the R program, although the standard errors are slightly (but trivially) different. The 
coefficient for M2 was 0.17 ±0.20 (CR = 1.69, p < 0.09) and the coefficient for M3 was 
0.24 ±0.22 (CR = 2.26, p < 0.03). Suppose that the predetermined criterion for a 
meaningful effect of each mediator on Y was 0.10 or larger. The lower limit of the M2 
95% confidence interval (-0.03) is smaller than this value and the path coefficient also is 
statistically non-significant. I cannot confidently conclude that M2 has either a 
meaningful effect or a non-zero effect on Y.  The lower limit of the M3 95% confidence 
interval (0.02) also is smaller than the threshold for a meaningful effect but it is 
statistically significant. Thus, I cannot confidently conclude M3 has a meaningful effect 
on Y but I can conclude with confidence that it has a non-zero effect on Y. 

Overall Conclusions of the RET Analysis and Classic Mediation Tests  

Based on the above analyses, I can conclude that, overall, the program produced a 
meaningful effect on the outcome. The program also produced non-zero effects on all 
three mediators, but I can only confidently conclude that meaningful program effects 
were produced for M1. The program was designed on the assumption that M1, M2, and 
M3 are relevant mechanisms affecting Y. I did not find support for this conclusion for 
M2. For M3, the results suggest that M3 has a non-zero effect on Y. The path coefficient 
for M3 (which equaled 0.24) exceeded its meaningfulness standard (0.20), but when I 
took into account sampling error by virtue of the 95% confidence interval for M3, I could 
not confidently conclude that M3 did, in fact, exceed the standard. By contrast, M1 had a 
meaningful effect on Y, but the nature of its relationship with Y was curvilinear in accord 
with a quadratic function rather than a linear function. For people with high scores on 
M1, increases in M1 do not seem to have appreciable effects on Y.  

Although I personally believe the above analyses provide a fairly complete picture 
of the operative dynamics for purposes of program evaluation, some researchers also 
apply classic omnibus mediation tests to each mediational chain in the RET. I can do so 
using the joint significance test for each mediator, per Chapter 10. Using this test, I 
conclude that both M1 and M3 have non-zero omnibus mediation effects because all of 
the links in the mediational chains for both of them are statistically significant. However, 
I cannot make such a conclusion for M2 because at least one of its links is statistically 
non-significant.  
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 It also is possible to apply in a straight-forward way the product of coefficient test 
for M2 and M3 by adding the following syntax to Table 15.1 just before the OUTPUT line:   

MODEL INDIRECT: y IND treat ;  

Mplus then generates output for the total effect and for the indirect effects for M1, M2 
and M3. The reported results for the total effect and for M1 are incorrect because they do 
not properly take into account the curvature between M1 and Y. Ignoring those portions 
of the output, I obtain the following:   

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
  Specific indirect 2 
    Y 
    M2 
    TREAT              0.045      0.028      1.572      0.116 
 
  Specific indirect 3 
    Y 
    M3 
    TREAT              0.092      0.042      2.201      0.028 

Thus, the estimated omnibus mediation effect for M2 on Y is 0.04 ±0.06 (CR = 1.57, p < 
0.12) and for M3 it is 0.09 ±0.08 (CR = 2.20, p < 0.03).  
 Omnibus mediation tests for M1 are more difficult because of the non-linear 
relationship between M1 and Y. Normally we would multiply the path coefficient for 
T→M1 by the path coefficient M1→Y to obtain the omnibus mediation effect through 
M1, but there are different coefficient values for M1→Y depending on the value of M1. I 
can calculate the omnibus mediation effect for the different values for which I calculated 
instantaneous rates of change by adding the following syntax to Table 15.1 just before the 
output line, the first half of which I used earlier to calculate the instantaneous effects: 

MODEL CONSTRAINT:   
 NEW (m1_3,m1_5,m1_7,m1_9,m1_11,m1_13 
      om1_3,om1_5,om1_7,om1_9,om1_11,om1_13 ); 
 m1_3 = p1 + 2*p4*3 ; 
 m1_5 = p1 + 2*p4*5 ; 
 m1_7 = p1 + 2*p4*7 ; 
 m1_9 = p1 + 2*p4*9 ; 
 m1_11 = p1 + 2*p4*11 ; 
 m1_13 = p1 + 2*p4*13 ; 
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 om1_3 = p5*m1_3 ; 
 om1_5 = p5*m1_5 ; 
 om1_7 = p5*m1_7 ; 
 om1_9 = p5*m1_9 ; 
 om1_11 = p5*m1_11 ; 
 om1_13 = p5*m1_13 ; 

 

Here are the omnibus mediation values for every other integer value of M1 calculated in 
the above statements: 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
New/Additional Parameters 
    OM1_3              6.115      0.421     14.536      0.000 
    OM1_5              4.766      0.294     16.200      0.000 
    OM1_7              3.417      0.195     17.533      0.000 
    OM1_9              2.068      0.177     11.696      0.000 
    OM1_11             0.719      0.258      2.791      0.005 
    OM1_13            -0.630      0.379     -1.663      0.096  
 

The omnibus mediated effect when M1 = 3 was 6.12 ±0.84, CR = 14.54, p < 0.05. The 
omnibus mediated effect when M1 = 5 was 4.77 ±0.60, CR = 16.29, p < 0.05. And so on. 
 A somewhat more useful global index of a mediated effect is to multiply the path 
coefficient for T→M1 by the AME for M1, which yields 2.68*1.14 = 3.06, but it is not 
simple to derive a standard error and confidence interval for the index (although it can be 
done through bootstrapping). 

Influence Diagrams with Quadratic Relationships  

Researchers often present SEM results in the form of an influence diagram. For a causal 
path that reflects a quadratic effect of a mediator on an outcome, the diagram usually 
reports two coefficients (in unstandardized form), one for the power polynomial and one 
for the component part of the polynomial, like this: 
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Treatment vs. 

Control

0.98

0.64

0.51

M2

M1

M3

Y

0.96

0.26* 0.17

 

For the M1→Y link, the first listed coefficient is for the component term and the second 
listed coefficient is for the component term squared. Usually this figure would be 
supplemented with a table that provides margins of error for all the coefficients in the 
figure. The figure also would include a note explaining the two coefficients for the 
M1→Y link.  

LISEM Methods for the Analysis of Polynomial Regression 

In addition to FISEM, I can analyze the data using LISEM, which I illustrate here. This 
approach does not add new perspectives to the above analyses but it underscores how 
RET models often can be analyzed to good effect using LISEM in ways that I will make 
use of for other non-linear methods described in this chapter.  
 Here are the core equations (using sample notation) for the LISEM approach, the 
first equation focusing on the total program effect on Y, the second three equations on the 
effects of the intervention on each of the mediators, and the final equation on the 
relationships between the mediators and the outcome: 

Y = a + p Treat + d            [15.4] 

M1 = a1 + p1 Treat + d1           [15.5] 

M2 = a2 + p2 Treat + d2           [15.6] 

M3 = a3 + p3 Treat + d3           [15.7] 

Y = a4 + p4 M1 + p5 M2+ p6 M3+ p7 M1M1 + d4       [15.8] 
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I estimated the path/regression coefficients in each of these equations using OLS 
regression. Table 15.2 presents the coefficients and their standard errors that I obtained in 
the prior FISEM analyses and the same results for the OLS -based LISEM analyses. 
 
Table 15.2: FISEM and LISEM Results  
 
 FISEM  LISEM 
Path Coef S.E.  Coef S.E. 
      

p: T→Y  3.066* 0.246  3.066* 0.246 

p1: T→M1 2.675* 0.124  2.675* 0.124 

p2:T→M2 0.261* 0.056  0.261* 0.056 

p3:T→M3 0.377* 0.057  0.377* 0.057 

p4:M1→Y 3.043 0.188  3.043 0.196 

p5:M1M1→Y -0.126* 0.012  -0.126* 0.013 

p6:M2→Y 0.171 0.101  0.171 0.108 

p7:M3→Y 0.245* 0.108  0.245* 0.103 

 
The results are quite similar.  
 FISEM yields global fit indices of the model, which, as noted, are controversial. 
The chi square in this case equaled 0.509 with 1 degree of freedom (p < 0.48).  The single 
degree of freedom for the chi square test evolved from the exclusion of a direct effect 
from the treatment condition to Y independent of the mediators. As I discussed in 
Chapter 8, an analog of this test can be computed in LISEM because it fundamentally 
reflects the omission of the treatment condition variable from Equation 15.8. Specifically, 
the model predicts if I were to add TREAT as a predictor to Equation 15.8, that Y and 
TREAT should be conditionally independent holding constant the other predictors in the 
equation. This means the  coefficient for TREAT should be statistically non-significant if I 
add TREAT to the equation. When I did so, this was indeed the case (coefficient for TREAT 
was  -0.161, t(999) = .683, p < 0.49). Thus, there is convergence between FISEM and 
LISEM tests of the fit of the model. 
 In the FISEM analysis, I computed instantaneous rates of change for different 
values of M1 to better understand the curvilinear function between Y and M1 and I also 
computed estimates of omnibus mediated effects. I can do so for the LISEM analysis 
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using the program on my website called Monte Carlo CIs. I do not report the results of 
those tests here, but again, they were comparable to the FISEM. 
 The FISEM analyses conducted in Mplus have distinct, subtle advantages over the 
LISEM approach but my main point here is that if FISEM is not appropriate for one 
reason or another, one often can still evaluate the model in question using LISEM.  

Mean Centering  

A common recommendation when conducting polynomial regression is to mean center 
the predictors in the equation (Cohen et al., 2003). One reason for this recommendation 
surrounds multi-collinearity, namely the correlation between a predictor and its squared 
counterpart often will be large. As I discussed in Chapter 6, a high correlation of this sort 
will only be problematic if it interferes with the estimation algorithm of the model 
coefficients, which generally will not be the case. If you mean center the target predictor 
and then form its product term using the centered variable, the correlation between the 
two variables usually will reduce considerably, sometimes to zero, without disrupting the 
portions of the analysis that are substantively interesting. This also will be true if you 
center the target predictor around a value close to the mean but not exactly equal to the 
mean. In the current data, the uncentered correlation between m1 and its squared quadratic 
term was 0.979, yet the program ran fine. When I centered m1 and multiplied this 
centered term by itself to form the quadratic term, the correlation between m1 and its 
product term was reduced to 0.003. The mean value for m1 was 7.53. When I centered m1 
around 7 instead of 7.53 and multiplied this centered term by itself to form the quadratic 
term, the correlation between them was 0.324. I provide the syntax and output for the 
current example where I center the data in the document on my website titled Polynomial 
RET Modeling: Additional Considerations on the Resources tab. I also discuss in that 
document how to interpret mean centered results relative to the raw metrics of variables.    

Additional Considerations and Concluding Comments 

The above example outlines the basics of polynomial mediation modeling in RETs. There 
are a host of additional issues that can be addressed including model assumptions, 
preliminary analyses, higher order polynomial models, fractional polynomials, the use of 
bootstrapping, sensitivity analyses, latent variable modeling, dealing with measurement 
error, and the analysis of binary outcomes, to mention a few. I address these issues in the 
document on my website titled Polynomial RET Modeling: Additional Considerations on 
the Resources tab. If you are modeling latent variable quadratics, for example, see this 
document.  
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Polynomial regression is widely discussed in textbooks to address non-linear 
relationships. My own personal opinion is that it is a somewhat restrictive approach for  
social science research that ultimately can become too complex when theory meets data. 
A non-trivial challenge for polynomial regression is measurement error. As a rough 
approximation, the reliability of a multiplicative term is the product of the reliability of 
its component parts. If X has a reliability of 0.70, then the quadratic term for it, X2, will 
have a reliability of about (0.70)(0.70) = 0.49. The cubic term for it, X3, will have a 
reliability of about (0.70)(0.70)(0.70) = 0.34. The latter constitutes an indicator that is 
almost two thirds random noise! Between this and the somewhat limited nature of the 
non-linear functions that lower level polynomials (quadratic and cubic) can capture, I 
think we need a broader range of analytic alternatives for non-linear modeling. The 
answer certainly is not to just move to latent variable modeling of quadratic and cubic 
polynomials because of the non-trivial challenges that such a shift brings (see the 
document on my website Polynomial RET Modeling: Additional Considerations). The 
present chapter provides you with some alternatives, none of which are perfect but 
nevertheless that broaden the tools you can bring to bear.      

MEDIATION ANALYSIS AND SPLINE REGRESSION  

I introduced the concept of spline regression in Chapter 6. Spline based analyses might be 
used if polynomial regression cannot adequately capture the curvature of the relationship 
between a continuous mediator and a continuous outcome and/or when you desire to 
characterize data trends in straightforward, familiar ways to readers via the linear model.  

Key Facets of Spline Regression 

Spline regression divides the curve of interest into segments in a way that the within 
segment data have linear or near linear relationships between the mediator and the 
outcome but the linear relations differ across segments. The emphasis is the on describing 
the slopes of the lines within each segment using traditional path/regression coefficients 
as well as the between-segment differences in those coefficients.  
 Consider the case of an RET where the treatment condition, TREAT, is 
hypothesized to impact the outcome, Y, through two measured mediators, M1 and M2, 
with more minor unmeasured mediators being captured in the direct effect of the 
treatment on the outcome independent of the two major mediators. Figure 15.8 presents 
the influence diagram for the model I will evaluate (I exclude covariates to reduce clutter 
but include them in the analysis). I provide the data for the example on my website.  



                                                                                                             Nonlinear Mediation 34 

 

  

Treatment vs. 
Control

d2

d1

d3M1

M2

Y

p1

p2

p3

p4

p5

 
 

 FIGURE 15.8. Path model for spline based analysis 

Assume that all of the measures are multi-item scales with metrics from -3 to 3.  
There are three core equations in this model, one for each endogenous variable (note: I 
include the covariates in the equations and signify their coefficients with the letter b: 

M1 = a1 + p1 Treat + b1 covm1 + d1         [15.9] 

M2 = a2 + p2 Treat + b2 covm2 + d2                 [15.10] 

Y = a3 + p3* M1 + p4 M2 + p5 Treat + b3 covy + d3                     [15.11] 
 

I placed an asterisk by p3 because I am going to represent that particular path coefficient 
using multiple coefficients and predictors in the spline model to capture the curvilinear 
relationship between M1 and Y, as you will see shortly.  
When I plotted smoothers between the model variables, I saw evidence for a non-linear 
relationship between M1 and Y that I felt made conceptual sense (see Figure 15.9). In the 
smoother, there appears to be a floor effect and a ceiling effect in the smooth with the 
middle portion of the M1 scale showing increasing Y as a function of M1 but this is not 
so in the lower and upper portions of M1. I might decide based on the smoother that the 
bivariate distribution for Y and M1 can be split into three segments. Segment 1 occurs 
when people’s scores are less than about -0.8 on M1; segment 2 occurs when people’s 
scores are between -0.8 and +0.8 on M1; and segment 3 is where people scores are 
greater than 0.8 on M1, give or take. Note that the slopes for the first and third segments 
are relatively flat and near zero. However, the slope of the middle segment is decidedly 
nonzero. A nice property of spline regression is that we characterize the slopes within 
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each segment by staying within the confines of the familiar linear model. We focus 
attention on traditional regression coefficients and coefficient differences within and/or 
across curve segments. Also, keep in mind that the shape of a smoother can change when 
covariates are introduced into the system as opposed to the bivariate case.  
 

 
 

FIGURE 15.9. Smoother for m1 and y 

The points on the M1 variable that define the segments are called spline knots, or 
more simply, knots. Knots can be substantively important in some contexts as an 
indicator of a watershed event that shifts the nature of a bivariate relationship (Bacon & 
Watts, 1971; Harring, 2014). Decisions about the values of the knots in a spline model 
can be made a priori based on theory or post hoc either after examining the data or using 
specialized search algorithms (Muggeo, 2003). When using post hoc approaches for 
identifying knot values, the statistical theory for testing regression coefficients becomes 
complex, sometimes resulting in bias towards the occurrence of Type I errors (Muggeo, 
2008). One strategy for dealing with this scenario is to use conservative alphas and 
confidence intervals.  

I discussed in Chapter 6 selected mathematical underpinnings of spline regression 
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and will not repeat them here. To apply it to the analysis of RET data, I use a limited 
information SEM framework (LISEM) after which I discuss extensions to full 
information SEM (FISEM). In the current case, I address the three core questions of an 
RET, namely (1) does the intervention have a meaningful effect on the outcome, (2) does 
the intervention meaningfully impact the core mediators of the program, and (3) do the 
mediators meaningfully impact the outcome.   

Total Effect of the Program on the Outcome  

I first evaluate the total effect of the program on Y by regressing Y onto the dummy 
variable for the treatment condition plus the relevant covariates, in this case covy. Table 
15.3 presents the relevant Mplus syntax.  

Table 15.3: Mplus Syntax for Total Effect for Spline Model  
 
1.  TITLE: Total effect for spline model ; 
2.  DATA: FILE IS c:\temp\spline.txt ; 
3.  DEFINE: 
4.   CENTER covy (GRANDMEAN) ; 
5.  VARIABLE: 
6.  NAMES ARE id m1 m2 y treat covm1 covm2 covy ccovy ;  
7.   USEVARIABLES ARE y treat covy  ; 
8.  MISSING ARE ALL (-9999) ; 
9.  ANALYSIS:  
10. ESTIMATOR = MLR ;     
11. MODEL:  
12.   y ON treat covy  ; 
13. OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL MOD(ALL 4) TECH4 ;  

All of the syntax should be familiar. In Lines 3 and 4, I mean center the covariate, covy. I 
specify the of use robust maximum likelihood estimation on Line 10. The model is just 
identified so the traditional fit indices are moot. Here is the relevant output: 

MODEL RESULTS 

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
Y        ON 
    TREAT              0.075      0.062      1.205      0.228 
    COVY               0.030      0.034      0.881      0.378 
 
 Intercepts 
    Y                  0.014      0.042      0.340      0.734 
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The mean difference between the treatment and control conditions was 0.075 ±0.12 
which is statistically non-significant (Critical ratio (CR) = 1.21, ns). The estimated mean 
Y for the control group is 0.014 ±0.08 when the covariate is held constant at its sample 
mean. I obtain the corresponding mean, standard error, critical ratio, and p value for the 
intervention condition by reverse scoring T vis-a-vis inserting the following subcommand 
after Line 4 and then rerunning the syntax: 

treat = ABS(treat-1) ;   

The Y intercept (intervention group mean) in this second run was 0.089 ±0.09.   
 Given the statistically non-significant total effect, one might be inclined to end the 
analysis here. Indeed, if one follows the original Baron and Kenny (1986) guidelines, one 
would stop at this point. However, my emphasis in this book is to structure evaluation 
efforts to help us understand why a program is ineffective and how to improve it. Is the 
failure to find minimal program effects on Y because the program failed to impact the 
presumed mediators? Or is it because the program changed the mediators but the 
mediators were not relevant to the outcome? We need to dig deeper to answer these 
questions. 

Effect of the Program on the Mediators  

Given my LISEM orientation, I evaluate the effect of the program on the two mediators, 
M1 and M2, in separate analyses that are similar in format to the syntax in Table 15.3 but 
substituting M1 or M2 for Y and using the appropriate covariate. Table 15.4 presents the 
syntax for M1: 

Table 15.4: Mplus Syntax for M1  
 
1.  TITLE: Program effect for M1 ; 
2.  DATA: FILE IS c:\temp\spline.txt ; 
3.  DEFINE: 
4.   CENTER covm1 (GRANDMEAN) ; 
5.  VARIABLE: 
6.  NAMES ARE id m1 m2 y treat covm1 covm2 covy ccovy ;  
7.   USEVARIABLES ARE m1 treat covm1  ; 
8.  MISSING ARE ALL (-9999) ; 
9.  ANALYSIS:  
10. ESTIMATOR = MLR ;     
11. MODEL:  
12.   m1 ON treat covm1  ; 
13. OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL MOD(ALL 4) TECH4 ;  
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The model is just-identified so the indices of global fit are moot. Here is the relevant 
output: 

MODEL RESULTS 

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 M1       ON 
    TREAT              0.309      0.127      2.428      0.015 
    COVM1              0.179      0.067      2.681      0.007 
 
 Intercepts 
    M1                -0.169      0.088     -1.919      0.055 

Suppose that given the metric of M1 and in consultation with program staff and clients, 
we defined a meaningfulness standard as an absolute mean difference of 0.20 or greater. 
The covariate adjusted mean difference between the intervention and control groups (0.31 
±0.26) was statistically significant (CR = 2.43, p < 0.05) with a 95% confidence interval 
of 0.06 to 0.56. The lower limit of this interval is less than the meaningfulness standard. 
Thus, although I can conclude the program effect on M1 is statistically significant, I 
cannot conclude with confidence that it is meaningful after taking sampling error into 
account.   

When I conducted the analysis of the effect of the program on M2 using the same 
but slightly edited syntax from Table 15.4 to accommodate the shift in target mediators, 
the covariate adjusted mean difference between the intervention and control groups was 
0.087 ±0.24, CR = 0.72, ns). The 95% confidence interval was -0.15 to 0.33. The mean 
difference was not statistically significant nor meaningful. 

Effect of the Mediators on the Outcome  

To obtain perspectives on the estimated effects of the mediators on the outcome, I used 
the spline regression R program on my webpage. Click on the video link next to the 
program for how to use it. In addition to the M1 and M2 predictors, I included the 
centered baseline covariate y (called ccovy) as a predictor and requested a solution using 
two knots or breakpoints. Rather than rely on a priori determined break points, the 
program on my website solves for values of the breakpoints in the population that 
maximize model fit. It uses a grid search algorithm described in Muggeo (2003, 2008) to 
do so. Here is the output for this portion of the analysis: 
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Estimated Break-Point(s): 
            Est.   St.Err 
psi1.m1  -0.655    0.084 
psi2.m1   0.515    0.078 

The first break point between segment1 and segment 2 is -0.655 with a standard 
error of 0.084. If I double the standard error to obtain an estimate of the margin of error 
based on a 95% confidence interval, the population estimate of the break point is -0.655 
±0.17. The breakpoint between segment 2 and segment 3 is 0.515 ±0.16. The program 
outputs formal confidence intervals for the break points if you want more detailed 
information in order to calculate the MOEs. 

The program also includes useful feedback about your choice of the number of 
spline knots by comparing models with different numbers of break points using the 
Bayesian Information Criterion (BIC; see Chapter 7 for an introduction to the BIC and 
B). Here is the relevant output from the spline regression program: 

 
Suggested number of knots based on model BICs 
           0         1         2         3         4        5 
m1  214.8087  211.1635  128.5699  138.0008  149.0631  159.787 

The program compares models with 0 to 5 breakpoints, with preference being for the 
model that has the lowest BIC value. In this case, the best fitting model is one with two 
break points, which happens to be the number of break points I chose. This is reassuring 
for my initial judgment.   

Here is the output of the path/regression coefficients for each of the three m1 
segments followed by a scatterplot showing the regression lines within the breakpoints: 
 
Slopes for m1 segments  
              Est.    St.Err.    t value   CI(95%).l   CI(95%).u 
slope1   -0.092520   0.064039   -1.44470    -0.21866    0.033615 
slope2    0.899800   0.078066   11.52600     0.74604    1.053600 
slope3   -0.024759   0.067183   -0.36852    -0.15709    0.107570 
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The unstandardized coefficients are listed in the table under the column called Est. 

To the right of this column are the estimated standard errors of the coefficients, the 
critical ratios (labeled t ratios) for the tests of the null hypotheses of the coefficients, 
and the lower and upper limits of the 95% confidence intervals. If the confidence interval 
does not contain the value of 0, the test of the null hypothesis is statistically significant, p 
< 0.05. This was only the case for the coefficient for the second segment. Suppose the 
research team defined for this application a meaningful coefficient for both m1 and m2 as 
an absolute value of 0.20. In this case, only the second segment coefficient reflects a 
meaningful effect because its lower limit is larger than 0.20.      

Here is the output for the main table for the spline regression:  

Coefficients of the linear terms: 
                Estimate    Std. Error    t value    Pr(>|t|)     
(Intercept)   -0.6063205     0.1001744     -6.053      <0.001 
m1            -0.0925202     0.0640394     -1.445       0.150     
m2             0.0009608     0.0189411      0.051       0.960     
ccovy          0.0090823     0.0193140      0.470       0.639     
treat          0.0119986     0.0366857      0.327       0.744     
U1.m1          0.9923247     0.1014383      9.783          NA     
U2.m1         -0.9245632     0.1024501     -9.025          NA     
 
Residual standard error: 0.2844 on 246 degrees of freedom 
Multiple R-Squared: 0.686,  Adjusted R-squared: 0.6758 
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At the bottom of the table, we are given the overall R-squared that indicates how 
well we can predict the outcome from the three segments and the other predictors (m2 and 
ccovy). It was 0.686 with 246 degrees of freedom. We also are provided with the 
standard error of estimate of the equation (0.2844), which is analogous to the average 
disparity between the predicted and observed Y across individuals. In the table proper, 
we are provided with the coefficients for different predictors as well as their estimated 
standard  errors, their critical ratios and their p values for the null hypothesis tests of 
them. The coefficient for M2 was virtually zero and it is interpreted like any other 
coefficient in a regression equation. It is the estimated effect of the second mediator on Y 
holding constant M1 (and the nonlinearity of M1) and the covariate. We clearly cannot 
conclude M2 has a meaningful effect on Y. 

 The entry in the first row of the table labeled m1 is the regression coefficient for the 
for the first segment of M1. This information is redundant with the prior table and adds 
no new information. The predictors labeled U1.m1 and U2.m1 are slope/coefficient 
differences. U1.m2 compares the coefficient for the second segment of M1 against the 
coefficient for the first segment and U2.m1 compares the coefficient for the third segment 
against that for the second segment, i.e., the comparisons are for a segment versus the 
segment just prior to it. The second segment had a coefficient of 0.90, and if I subtract 
from this a negative 0.09 for the first segment, I obtain the result of  going to get the 
result of .99, which is the coefficient of U1.m1. The third segment had a slope of negative 
0.02 and if I subtract from this the coefficient for segment 2 (0.90), I obtain a difference 
of -0.92. This is the value of the coefficient for U1.m2. The slopes seem to be changing as 
we move across the segments, implying a non-linear relationship.  

The program provides estimated standard errors and critical ratios for U1.m1 and 
U2.m1 but not p values. This is because the sampling distribution for these statistics is 
impacted by the need to estimate the breakpoints in the model as well the coefficients 
within them and it is unclear if the sampling distributions precisely follow a z or t 
distribution. I usually approach the matter tentatively by conceptualizing the critical 
ratios as the estimated effect (in this case, a coefficient difference) divided by an index of 
sampling error (the estimated standard error); if the critical value is 2.0, for example, this 
means, roughly, that the effect was twice as large as what one might expect based on 
sampling error, on average. A critical value of 3.0 means the effect was three times as 
large as what one might expect based on sampling error, on average. If the reported 
critical value is quite large (e.g. a value of 3 to 5 or larger), then I conclude (tentatively) 
that the p value for the coefficient difference is indeed < 0.05. In the current case, the 
critical ratios were larger than 9. I think it is reasonable to conclude that the coefficient 
differences are not chance induced. Watch the program video on my website for 
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additional perspectives on this. Parenthetically, if none of the segment coefficients are 
statistically significant from one another, then this suggests a linear relationship with no 
knots may apply.  

In sum, it appears that M1 does meaningfully impact Y but in a complex way. At 
lower and upper levels of M1 (as defined by the values of the spline knots), changes in 
M1 have little impact on Y. However between the two values of the spline knots, as M1 
increases, Y tends to increase as well with an estimated slope of 0.90 ±0.15. 

Omnibus Mediation   

Although I view them to be of lesser import for purposes of program evaluation, I can 
evaluate the statistical significance of the omnibus mediation effects for each mediator 
using the joint significance test. For M2, both of the links in the mediational chain were  
“broken” (statistically non-significant) leading us to raise doubts about M2 as a mediator 
of the effect of the program on Y. For M1, the story is more complicated. The joint 
significance test implies omnibus mediation but only when focusing on the middle 
segment of M1. For the lower and upper segments of M1, the mediational chain is 
“broken.”   
 If you desire to apply the product coefficient method to the different M1 segments, 
you can do so but you need to use the Monte Carlo simulation strategy via the Monte 
Carlo CIs program on my website (see Chapter 8). For example, the coefficient for 
TREAT→M1 is 0.309 (standard error = 0.127) and for segment 2 of M1, the coefficient 
from M1→Y is 0.908 (standard error = 0.078). The asymptotic covariance matrix has the 
squared standard errors in the diagonal and zero in the off diagonal given the coefficients 
were derived independently. Using my program, the product of the coefficients (the 
indirect effect) is 0.208 with a 95% confidence interval of 0.054 to 0.517, which is 
statistically significant (p < 0.05). Similar calculations can be pursued for the coefficients 
for (a) TREAT→M1 segment 1 times M1 segment 1→Y,  (b) TREAT→M1 segment 3 
times M1 segment 3→Y, and (c) TREAT→M2 times M2→Y.   

Overall Model Fit  

The overall model as it appears in Figure 15.8 and as operationalized in LISEM is just 
identified, but when one factors in the covariates and considers the model as whole, there 
are numerous independence conditions implied by the model. As I discussed in Chapter 
8, these conditions can be exploited to evaluate overall model fit.  
 One example is the implied zero correlation between the two mediator disturbances, 
d1 and d2 per Figure 15.8.  This correlation probably is of little consequence because it is 
unlikely to affect the path coefficients of substantive interest, p1 and p2 given the overall 
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model structure. I can evaluate this possibility more fully by repeating the analysis of the 
effects of the treatment on the two mediators using Mplus but including the correlated 
disturbances coupled with the relevant the covariates. Table 15.5 presents the relevant 
Mplus syntax to do so.         

Table 15.5: Mplus Syntax for Correlated Disturbances  
 
1.  TITLE: Program for correlated disturbances ; 
2.  DATA: FILE IS c:\temp\spline.txt ; 
3.  DEFINE: 
4.   CENTER covm1 covm2 (GRANDMEAN) ; 
5.  VARIABLE: 
6.  NAMES ARE id m1 m2 y treat covm1 covm2 covy ccovy ;  
7.   USEVARIABLES ARE m1 m2 treat covm1 covm2  ; 
8.  MISSING ARE ALL (-9999) ; 
9.  ANALYSIS:  
10. ESTIMATOR = MLR ;     
11. MODEL:  
12.   m1 ON treat covm1  ; 
13.   m2 ON treat covm2  ; 
14.   m1 WITH m2  ; !correlate the two mediator disturbance terms 
15. OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL MOD(ALL 4) TECH4 ;  

This model is not just-identified because I am selective in which of the two covariates I 
allow to influence the respective mediators, namely covm1→m1 and covm2→m2, 
respectively. The global fit indices of the model pointed to good fit (chi square = 3.83, df 
= 2, p = 0.15; RMSEA = 0.06, 90% confidence interval = 0.00 to 0.15; p value for close 
fit = 0.32; SRMR = 0.035) as did the localized indices of fit.6 The estimated correlation 
between the m1 and m2 disturbances was -0.04 (±0.12, CR = 0.73, p < 0.47), which is 
trivial. The estimated values of p1 and p2 in the model were 0.30 (±0.24, CR = 2.52, p < 
0.01) and 0.09 (±0.26, CR = 0.72, p < 0.47), which are quite close to the original analysis 
that ignored the correlated disturbances. Omission of the correlated disturbances clearly 
matters little.  
 As another example of making use of an independence condition to evaluate model 
fit, the overall model posits that the path linking covm1→y should be statistically non-
significant if I hold constant m1(and its non-linearity via spline modeling), m2, treat, and 
ccovy. Here are the results for the coefficients when I estimate this equation using the 
program on my website: 

 
6 The CFI index is not appropriate in this case because of the generally low intercorrelations among all of the 
variables in the model; see Chapter 7.  
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Coefficients of the linear terms: 
                Estimate    Std. Error    t value    Pr(>|t|)     
(Intercept)     -0.502949     0.083883     -5.996      <0.001 
m1              -0.036107     0.056306     -0.641       0.522     
m2               0.005583     0.018998      0.294       0.769     
treat            0.009842     0.036728      0.268       0.789     
ccovy            0.012264     0.019355      0.634       0.527     
covm2           -0.019097     0.018202     -1.049       0.295     
U1.m1            1.013579     0.108835      9.313          NA     
U2.m1           -1.007941     0.113301     -8.896          NA            

 
The coefficient for covm2→y (-0.019) was trivial in magnitude and statistically non-
significant (CR = 1.05, p < 0.295), as predicted.  
 There are other independence conditions I could test but I leave that as an exercise 
for you. The general point, per Chapter 7, is that model fit can be evaluated in LISEM 
using statistics analogous to modification indices in full information SEM. You also can 
combine p values based on presumed conditional independence test to form an overall chi 
square test of model fit, as discussed in Chapter 8, although my preference is to focus 
attention on the theoretically meaningful, specific independence contrasts. All things 
considered, I found support for overall model fit for the spline model tested. 

Concluding Comments on Spline Modeling  

Based on the above analyses, my advice to program staff would be to revisit their 
decision to focus the program on M2 as well their strategies for trying to change M2. For 
M1, I would encourage the program staff to think about why M1 is only impactful on Y 
for a segment of the target population and to consider if there are activities they might do 
to remove the evident floor and ceiling effects in the M1 and Y relationship. In terms of 
bringing about change in M1, the program seems to be headed in the right direction but 
not enough so that I can conclude the program is having a meaningful effect on M1.  

An interesting result that occurred in this example was the fact that the analysis of 
the total effect of the program yielded a statistically non-significant effect but the more 
detailed analyses suggested that the program was indeed having an effect (through the 
middle segment of M1), albeit a limited one. If I had adopted the original Baron and 
Kenny mediation steps, I would have missed this fact. As noted in Chapter 9, the Baron 
and Kenny guidelines have been revised such that Step 1 of their sequence is no longer 
used. This is because it is now known that it is possible to find evidence for a (limited) 
total effect even when the traditional overall test of that program effect is statistically 
non-significant (see Shrout & Bolger, 2002; Kenny. & Judd, 2014; Wang, 2018).  

The logic of spline regression has been extended beyond the use of linear models 
within segments (see Wilcox, 2017, and de Boor, 2001). For a good introduction to spline 
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regression more generally and extensions of it, see Marsh and Cormier (2001). I used 
LISEM to apply spline regression perspectives. Harring (2014) proposed a method for it 
using FISEM with latent variables. The challenge with FISEM applications is estimating 
standard errors and p values for both knots and segment coefficients simultaneously in 
statistically rigorous ways. Harring (2014) presents an approach for using latent variables 
in spline modeling but the method generally is slow to converge. When multiple 
indicators of a latent construct are available, an alternative is to combine them into a 
composite single indictor and then pursue spline modeling as outlined here. If this is not 
feasible then choosing the best of the indicators might be workable.  

Harring (2014) notes that traditional spline regression typically implies abrupt 
changes in slopes from one segment to the next whereas a more realistic approach should 
perhaps allow for smoother transitions between phases (see also Griffiths & Miller, 1973; 
Seber & Wild, 1989). In the presence of smooth transitions, the non-linear regression 
method described in the next section may be more useful. It also is the case that the 
values of the two linear functions representing the different segments may not be equal at 
the knot, although the spline program on my website assumes this is the case. If there 
instead is mean discontinuity in the endogenous–exogenous relationship at a knot, then 
model alterations need to be made to accommodate this (see Marsh & Cormier, 2001).    

MEDIATION ANALYSIS AND TRADITIONAL NON-LINEAR REGRESSION 

An alternative to spline regression when analyzing non-linear relationships in RETs uses 
the traditional non-linear regression framework (Jaccard & Jacoby, 2000; Seber & Wild, 
2003). There are many types of non-linear functions one can use. These include 
logarithmic functions, exponential functions, power functions, sigmoid functions, and 
trigonometric functions, among others. On the Resources tab of my webpage under 
Chapter 15, I provide a link to an introductory chapter for constructing models using non-
linear functions. I recommend you look at it for a more extended discussion of working 
with non-linear regression. I assume here that you have read or skimmed it. 

The Key Facets of Traditional Non-Linear Regression 

When describing functions, mathematicians typically invoke three concepts, (1) 
concavity, (2) proportionality, and (3) scaling constants.  Concavity refers to whether the 
rate of change on a curve (the first derivative) is increasing or decreasing as one moves 
across the X values from lower to higher. A curve that is concave upward has an 
increasing rate if change that gets progressively larger as one moves across the X values. 
A curve that is concave downward has a decreasing rate of change that gets progressively 
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smaller as one moves across the X values. For proportionality, two variables are 
proportional to one another when one variable is a multiple of the other. More formally, 
Y is proportional to X if Y = cX, where c is a constant. The value c is called the constant 
of proportionality. For example, doubling X doubles Y, tripling X triples Y, and halving 
X halves Y. Two variables are said to be inversely proportional when there is some 
constant c for which Y = c/X.  In this case, doubling X halves Y, tripling X cuts Y by one 
third, and halving X doubles Y. Scaling or adjustable constants refer to adjustable 
parameters that have no substantive meaning but are included to shift a variable from one 
metric to another; e.g., to change meters to centimeters, we multiply meters by 100.    
 As an example of a non-linear model that uses an exponential function, suppose I 
collect data on two variables, Y and X, that I believe are related by the following form: 

Y = (a)(ebX)            [15.12] 

where a and b are adjustable constants and e is Neparian’s constant (which equals 
2.71828, approximately).  Figure 15.10 presents two examples of curves that conform to 
this model, where X is on a 0 to 4 metric and Y is on a 0 to 15 metric.  The first curve has 
a positive value for b and the second curve has a negative value for b.  

Equation 15.12 has interesting properties. It turns out the adjustable constant a is 
the predicted value of Y when X equals zero.  This is because when X = 0, the right most 
expression becomes e(b)(0) which is e0. You may recall from your introductory algebra 
classes that any number raised to the power of 0 equals 1. This means that when X = 0, 
Equation 15.12 reduces to (a)(1) = a. The parameter a in Equation 1 thus functions 
somewhat like an intercept in the traditional linear model. 

 

 

FIGURE 15.10. Examples of exponential functions 
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The term eb in Equation 15.12 is an index of the multiplicative change in Y  
associated with a one unit increase in X. If X increases by one unit, Y changes by a 
multiplicative factor of eb.  As examples, if b = 0.695, then e0.695 = 2.00, and for every 
one unit X increases, Y doubles (is multiplied by 2.0).  If b = -0.695, then e-0.695 = 0.50, 
and for every one unit X increases, Y is halved (is multiplied by 0.50).  If b = 0, then e0 = 
1.00, and for every one unit X increases, Y remains the same (is multiplied by 1.00). If b 
= 1.10, then e1.10 = 3.00 and for every one unit X increases, Y triples in value. This 
relationship is fundamentally different than a linear increase in Y as a function of X. 
Appendix B presents a proof of the multiplicative dynamic involved.       

To analyze data, I would input the Y and X values for individuals into the non-
linear regression program on my website and indicate that the model is Y = (a)ebX.  The a 
and b parameters are identified to the program as being adjustable constants that I want 
the program to estimate and e is identified as Napier’s constant. The program then 
derives estimates of a and b to minimize the sum of the squared differences between the 
predicted and observed Ys (or we might use some other fit or “loss” function other than 
ordinary least squares).  Given a reasonable solution, I can then plot the resulting curve. I 
can specify how a k unit change in X at different points on the X continuum translates 
into changes in the predicted Y using the non-linear model that was fit by substituting a 
value for X into the estimated equation to calculate a predicted Y and then comparing this 
with the predicted Y when a value of X + k is used.  For example, if for Equation 1 the 
parameter estimates for a and b are 1.0 and 0.695, the predicted value of Y when X is 1 is  

Y1  =  (a)ebX  = (1.0) e(0.695)(1) = 2.00 

and the predicted value of Y when X is 2 is  

Y2  =  (a)ebX  = (1.0) e(0.695)(2) = 4.00 

So, when X changes from 1 to 2, Y is predicted to increase by 4.00 – 2.00 = 2.00 units.  
 I illustrate an RET analysis using LISEM for a two mediator RET in which one of 
the mediators, m1, has a positive association with Y but with a floor and ceiling that 
follow a sigmoid form, per Figure 15.11a. The function is as follows: 

Y = a / (1 + e(-b * (m1 - c)))  

where Y is the outcome variable, m1 is the mediator, e is the Neparian constant, and a, b, 
and c are adjustable constants. The properties of the adjustable constants are well-known 
in this function; a defines the limiting value at the top of the sigmoid (i.e., where the 
ceiling occurs), the adjustable constant b defines the steepness of the sigmoid, and the 
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value c defines the m1 value for the sigmoid’s midpoint. The example values of a, b and 
c that I used to generate Figure 15.11b shows the same curve but with an opposite signed 
b value to illustrate how the model captures an inverse relationship. The values I used for 
the adjustable constants in Figure 15.11a were based on the estimated values of m1 in the 
RET I report below. Figure 15.12 shows several examples of the function but where I 
vary the value of the b adjustable constant to give you an appreciation of how the curve is 
affected by it and the flexibility that the function affords.  
 
(a)                                                                                      (b)    

 

FIGURE 15.11. Examples of function 
 
 

 

FIGURE 15.12. Examples varying parameter b 
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Figure 15.13 presents the influence diagram for the RET. I omit covariates from this 
example to simplify my presentation but including them is straightforward (see below). 
The two mediators are assumed to reflect the primary mechanisms by which the 
treatment condition influences the outcome, hence there is no direct effect from the 
treatment condition to Y. Y is measured on a metric from 0 to 100; m1 and m2 are each 
measured on metrics from 0 to 5. All measures are multi-item scales whose items are 
averaged to yield a total score.  The p3 path is thought to be non-linear in this example.   

  

Treatment vs. 
Control

d2

d1

d3M1

M2

Y

p1

p2

p3

p4

 
 

 FIGURE 15.13. Path model for non-linear example 

 I use limited information SEM to evaluate the model and estimate its coefficients. 
As is standard, I address the three core questions of an RET, namely (1) does the 
intervention have a meaningful effect on the outcome, (2) does the intervention 
meaningfully impact the core mediators of the program, and (3) do the mediators 
meaningfully impact the outcome.   

Total Effect of the Program on the Outcome  

I evaluate the total effect of the program on Y by regressing Y onto the dummy variable 
for the treatment condition (plus relevant covariates, if any). I accomplish this in Mplus 
using the exact same strategy I used for spline regression, so I do not repeat the Mplus 
code here (see Table 15.3).  The model is just identified so the traditional fit indices are 
moot. The mean difference between the treatment and control conditions was 11.99 ±4.08 
which is statistically significant (CR = 5.85, p < 0.05). The estimated mean Y for the 
control group was 40.61 ±2.20 and, via reverse scoring, the intervention group mean was 
52.59 ±3.46. Suppose based on discussions with program staff (see Chapter 10), a 
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meaningful effect was defined as an absolute population mean difference of 5.0 or larger. 
The 95% confidence interval for the mean difference between the two treatment 
conditions was 7.91 to 16.07. Because the lower limit of this interval was larger than the 
meaningful effect standard, I conclude the program had a meaningful effect on Y.     

Effect of the Program on the Mediators  

Given my LISEM orientation, I evaluated the effect of the program on the two mediators, 
M1 and M2, in separate analyses, exactly as I did for the spline regression example (see 
Table 15.4). I do not repeat the Mplus code here because it follows directly, with minor 
edits, from the code in Table 15.4.  For M1, the model is just-identified so the indices of 
global fit are moot. Suppose that given the metric of M1 and in consultation with 
program staff and clients, we defined a meaningfulness standard as an absolute mean 
difference of 0.75 or greater. The mean difference between the intervention and control 
groups (1.31 ±0.30) was statistically significant (CR = 8.86, p < 0.05) with a 95% 
confidence interval of 1.01 to 1.61. The lower limit of this interval is larger than the 
meaningfulness standard, so I conclude the program had a meaningful effect of M1.    

When I conducted the analysis of the effect of the program on M2 using the same 
but slightly edited syntax from Table 15.4 to accommodate the shift in target mediators, 
the covariate adjusted mean difference between the intervention and control groups was 
0.04 ±0.24, CR = 0.34, ns). The 95% confidence interval was -0.30 to 0.28. The mean 
difference was not statistically significant nor meaningful using the same 0.75 
meaningfulness standard 

Effect of the Mediators on the Outcome  

To obtain perspectives on the estimated effects of the mediators on the outcome, I used 
the non-linear regression R program on my webpage. Click on the video link next to the 
program for how to use it. Here is the non-linear equation I input into the program: 

y ~ d + a / (1+exp(-b* (m1-c))) + e*m2 

where y is the outcome variable. M1 and m2 are the two mediators, and a through e are 
adjustable constants to be estimated by the program. The constant d operates as an 
intercept term to deal with the different metrics of the variables. The constant e is a linear 
path/regression coefficient for the second mediator (p4 in Figure 15.13).  The path 
coefficient p3 in Figure 15.13 is captured by the expression: 

a / (1+exp(-b* (m1-c))) 

as defined earlier. It allows for the m1→y relationship to be non-linear and sigmoid in 
nature. I defined the following starting values for the adjustable constants for the 
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program: a=70, b=1, c=3, d=35, and e=1. When choosing starting values, you want to 
choose reasonable guesses of the true values of the adjustable constants in the population 
which requires you to have good familiarity with the both the function you are using and 
the data. If you choose unreasonable values, you may obtain an error message that causes 
the program to abort (in the R package I use, called nls, a common message for poor start 
values complains there is a singular gradient, but other facets of the analysis can cause 
this message as well). I comment on the selection of start values in more detail below.  
 The underlying statistical model assumes normally distributed population 
disturbances. The program provides several diagnostics to this effect but I do not cover 
them here. The diagnostics follow directly from material covered in previous chapters. 
All was in order with them. Here is the core output for the model: 
 
Model coefficients 
 
Formula: y ~ d + a/(1 + exp(-b * (m1 - c))) + e * m2 
 
Parameters: 
    Estimate    Std. Error    t value    Pr(>|t|)     
a   38.30572       2.28862     16.737     < 2e-16  
b    2.73175       0.53838      5.074     6.9e-07  
c    3.02207       0.08396     35.996     < 2e-16  
d   33.10155       1.50889     21.938     < 2e-16  
e    0.34623       0.45576      0.760       0.448     

 
Residual standard error: 11.06 on 295 degrees of freedom 
Correlation between predicted and observed values: 0.81044 

The correlation between the predicted Y scores and the observed Y scores was 0.81, 
which is high.7 The average disparity between the predicted and observed Y scores was 
11.06. The coefficient for the d adjustable constant is a scaling intercept and usually is 
not of substantive interest. The e adjustable constant is the path coefficient p4 in Figure 
15.13, estimating the (linear) effect of M2 on Y holding constant the other predictors in 
the equation. It equals 0.35 (CR = 0.76, ns). For every one unit that M2 increases, the 
mean of Y is predicted to increase by only 0.35 units on the Y metric (Y has an overall 
mean of 46.6 and a standard deviation of 18.75). Clearly, the effect is negligible.  

For M1, it is challenging to gain a sense of its estimated impact on Y via simple 
examination of the estimated adjustable constants. I use two strategies to assist me. First, 
I create a plot of the predicted Y scores across values of M1 based on the full model 
equation. When creating the plot using the program on my website called Multiple curve 

 
7 For non-linear models the squared R is not reliable as a measure of fit because the underlying assumptions of the 
linear regression model do not hold. It is generally considered problematic to interpret R-squared in this context.  
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plot, I hold the other mediators (and covariates, as applicable) at their “typical scores,” 
i.e., their sample mean values. For the current data, the mean of M2 was 2.39. Here is the 
model expression with the values of the adjustable constants from the output substituted 
into it that I used in the program: 

33.10 + 38.31/(1+exp(-2.73*(X-3.02))) + 0.35*2.39        

Figure 15.14 presents the generated plot which shows how the mean of Y is predicted to 
shift as one moves across the values of M1.  

 

FIGURE 15.14. Plot of predicted Y means as a function of m1 

The sigmoid is evident. It is centered at 3.02, the value of the c adjustable constant. 
One sees the obvious floor and ceiling effects where changes in M1 have little effect on 
changes in the mean Y. Also evident is the covariation between M1 and Y, roughly, in 
the 2 to 4 range of values of M1.  
 The second aid I use to interpret the results is profile analyses, which are offered as 
part of the non-linear program on my website. Specifically, I strategically specify 
multivariate profiles of M1 and M2 and then calculate the predicted Y mean values for 
those profiles. In the current case, I hold M2 constant by setting it equal to its 
approximate sample mean (2.40) for each profile but I vary M1 across the core integer 
values of the M1 distribution, namely 0, 1, 2, 3, 4 and 5. The program bootstraps the 
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confidence intervals of each predicted mean using methods described by Wicklin (2023). 
Here are the results8: 
 
Profile Predicted Mean  
  
M1 = 0.0, M2 = 2.40 33.94 (31.50 to 36.14) 
M1 = 1.0, M2 = 2.40 34.08 (32.05 to 36.18) 
M1 = 2.0, M2 = 2.40 36.15 (34.28 to 38.51) 
M1 = 3.0, M2 = 2.40 52.51 (49.48 to 55.94) 
M1 = 4.0, M2 = 2.40 69.76 (66.73 to 72.07) 
M1 = 5.0, M2 = 2.40 72.07 (68.72 to 75.98) 
 
I can see in these means the floor and ceiling effects of shifts in M1 and the large changes 
that occur between the values of 2 and 4 in M1. 

Omnibus Mediation   

Although I view them to be of lesser import for purposes of program evaluation, I can 
evaluate the statistical significance of the omnibus mediation effects for each mediator 
using the joint significance test. For M2, both of the links in the mediational chain were  
“broken” (statistically non-significant) leading us to raise doubts about M2 as a mediator 
of the effect of the program on Y. For M1, the story is more complicated. The joint 
significance test implies omnibus mediation but only when focusing on the middle 
segment of M1. For the lower and upper segments of M1, the mediational chain is 
“broken.”   
 If you desire to apply the product coefficient method to different M1 segments, you 
can do so but you need to use the Monte Carlo simulation strategy via the Monte Carlo 
CIs program on my website (see Chapter 8). Follow the same strategy as I outlined for 
spline modeling. 

Overall Model Fit  

The overall model in Figure 15.13 implies independence conditions that can be exploited 
to evaluate overall model fit. An obvious example is the implied zero correlation between 
the two mediator disturbances, d1 and d2; another is the implied zero direct path from the 
treatment condition to the outcome. I can test the latter independence condition by adding 
treat as a predictor to the nonlinear equation and re-running the analysis to determine if 

 
8 The program only evaluates 4 profiles in a given run, If you want to evaluate more, you can repeat the analysis but 
vary the profiles in each run.  
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the coefficient associated with treat becomes statistically significant. In other words, 
the original specification  

y~d + a/(1+exp(-b*(m1-c))) + e*m2 

now becomes 

y~d + a/(1+exp(-b*(m1-c))) + e*m2 + f*treat 

with the new starting values 

a=70,b=1,c=3,d=35,e=1,f=1 

Here are the coefficients when I executed this model: 
 
Model coefficients 
 
Formula: y ~ d + a/(1 + exp(-b * (m1 - c))) + e * m2 + f * treat 
 
Parameters: 
     Estimate    Std. Error    t value    Pr(>|t|)     
a    38.44361       2.64356     14.542    < 2e-16  
b     2.72060       0.54208      5.019    9.02e-07 
c     3.02715       0.09827     30.803    < 2e-16  
d    33.16919       1.66421     19.931    < 2e-16  
e     0.34682       0.45651      0.760      0.448     
f    -0.16665       1.62999     -0.102      0.919  
  

The coefficient for the treat predictor (-0.167) is statistically non-significant (CR = 
0.102, ns), which is consistent with the independence prediction.  
 I can test other independence conditions (e.g., the correlated disturbance for the 
mediators using the strategies I outlined for spline regression) and combine them into an 
overall chi square statistic per the methods discussed in Chapter 8. Again, my preference 
is to focus attention on the theoretically meaningful, specific independence contrasts. All 
things considered, I found support for overall model fit for the spline model tested. 

Concluding Comments on Traditional Non-Linear Modeling  

Based on the above analyses, my advice to program staff would be to revisit their 
decision to focus the program on M2 as well their strategies for trying to change M2. For 
M1, I would encourage the program staff to think about why M1 is only impactful on Y 
for a segment of their target population and to consider if there are activities they might 
do to remove the evident floor and ceiling effects in the relationship between M1 and Y. 
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In terms of bringing about change in M1, the program seems to be headed in the right 
direction.  

Applications of traditional non-linear regression to mediation analysis for RCTs are 
few and far between. Extending the approach to latent variable modeling is challenging. 
As I discussed with spline regression, when multiple indicators of a latent construct are 
available, an alternative is to combine them into a composite single indictor (see Chapter 
3) and then pursue non-linear modeling as outlined here with the single indicator. If this 
is not feasible, then simply choosing the best of the indicators might be workable. 

One challenge of using non-liner regression is the need to know your function well. 
If you are going to map data onto your function, you obviously need to know the 
ramifications of the different adjustable constants and mathematical properties of your 
function. I recommend using the Multiple curve program on my website to explore the 
curve shapes caused by different adjustable constant values and then consider how these 
map onto the data you are analyzing. For a good introduction to different functions you 
might consider using, see the Resources tab for Chapter 15.    

Another challenge for traditional non-linear modeling is the specification of starting 
values. Non-linear regression uses iterative strategies to solve equations and requires 
users to provide start values at the beginning of the process for the adjustable constants. 
For some models and data sets, the starting values can significantly affect results and can 
lead to failures to converge or convergence to a local rather than global minimum. 
Choosing reasonable start values can sometimes require considerable effort and data 
exploration. For some models and data sets, the starting values can affect the results non-
trivially and/or may lead to failure to converge or convergence to a local rather than 
global minimums. Unfortunately strategies for identifying start values are not 
straightforward. If there was a general strategy that was good, it almost certainly would 
already be implemented in modern software. Again, experimenting with the Multiple 
curve program coupled with theory, common sense, examination of smoothers in one’s 
data and exploring simplified versions of one’s function in the data can help.    

In the final analysis, I think that traditional non-linear regression methods are a 
useful tool to have in your statistical toolbox.   
 
MEDIATION ANALYSIS AND BAYES ADDITIVE REGRESSION TREES 
 
A fourth approach to the analysis of non-linear relationships is the use of regression trees. 
There are different forms of regression tree modeling that one can use. In this section, I 
consider Bayes additive regression trees (BART). Later I describe another tree-based 
framework called recursive partitioning modeling. Both are amenable to limited 
information SEM mediation analyses but in unique ways.  
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Key Facets of BART Analysis 

I illustrate the basics of regression trees in BART using a simple bivariate example, 
although BART usually is applied to more complex multivariate data. Consider the 
bivariate relationship between a mediator, M, and an outcome, Y, per Figure 15.15.  

 
 

FIGURE 15.15. Scatterplot for BART example 

I seek to predict Y from M. The traditional way of doing so is to fit a linear model 
and then generate predicted Y scores, Ŷ, from that model and map those scores onto Y. A 
useful fit index is the average squared disparity between the predicted and observed 
values, defined formally as the square root of the average squared disparities between Y 
and Ŷ across individuals. It is called the root mean square error (RMSE). If I am 
predicting annual income from the numbers of years of education and the RMSE is 
$1,000, this means my predicted incomes were “off,” on average, by $1,000 from the 
actual income of those individuals.9 An approach distinct from the use of linear models is 
to use regression trees. At step 1 and in the absence of any other information, I might set 
the predicted Y score for each individual to the mean of Y. I indicate this on the plot by 
adding a horizontal line at the mean Y value (which was 254), like this: 

 
9 There are different types of averages. The RMSE gives somewhat greater weight to extreme disparities than the 
traditional arithmetic average of the absolute disparities. 
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In the regression tree literature, the mean of Y is referred to as the root node of the 
tree. I can expand the “tree” by segmenting the bivariate data via a cutoff score on M. I 
choose this cutoff score so as to maximize the explained variance in Y as a function of 
the split on M. Figure 15.16 illustrates the result.  

 

 

FIGURE 15.16. Scatterplot for BART example with one cutoff 
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The red vertical line represents the value on M at which I made the cut. I can 
calculate the mean of all the Y scores to the left of the red line and this value is 
represented by the solid horizontal line to the left of the dashed line. That mean score was 
197. The mean of the Y scores to the right of the cutoff is represented by the horizontal 
line to the right of the red line. It equaled 298. I treat the mean of the Y scores to the left 
of the red line as the predicted scores, Ŷ, for individuals below the cutoff value of M. 
Similarly, I use the mean of the Y scores to the right of the red line as the predicted Ŷ for 
individuals above the cutoff value of M. In Figure 15.16, the predicted Y scores are not 
all that close to the observed Y scores and certainly I can do better. But I have at least 
done better than when I predicted everyone had a score equal to the overall mean of Y.  

To improve prediction further, I might decide to make additional cuts on M to 
create more than the two segments. In Figure 15.17, I make three cuts on M shown by the 
vertical red lines to define four segments.  

 

FIGURE 15.17. Plot of predicted Y means as a function of M for four segments 

I then use the mean Y for the segment an individual is within as the predicted Y for that 
individual. Note that the predicted Ys for this four segment model better map onto the 
observed Y values of individuals than the simpler two segment model. I can continue to 
add segments to the model by making more cuts on M until I reach a high degree of 
correspondence between the predicted and observed Y scores, correspondence that will 
exceed that of the traditional linear model if I make enough cuts. Such is the regression 
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tree approach. Note that taken to its extreme, I can keep adding segments until I have an 
N of one in each segment with the “mean” score of the segment (i.e., Ŷ) being exactly 
equal to the individual’s observed Y score in that segment. Such overfitting of the data is 
problematic because the resulting model of the relationship between M and Y, though 
accurate, will be sample specific and the model will unlikely generalize beyond the 
sample data. If we are going to use the regression tree approach, or some variant of it, we 
need to build in protections against such overfitting. 

The different points where segments in the graphs are created on the M dimension 
are referred to in the regression tree literature as nodes; they signify a binary split or 
branch in the data that splits the focal data in two. The branching in this case is 
hierarchical. For example, the branch to the left of the node in the two segment model in 
Figure 15.16 is further split into two branches in Figure 15.17 to form the two segments 
within the larger branch in the left half of Figure 15.16. As well, the branch to the right of 
the node in the two segment model in Figure 15.16 is further split into two branches in 
Figure 15.16 to form the two segments within the larger branch on the right half of Figure 
15.16. The nodes where the branching process terminates, in this case the four separate 
segments in Figure 15.17, are called terminal nodes. I make use of this nomenclature 
below but it is not essential that you know it for my presentation of BART logic.   

When analyzing multivariate data with one or more predictors, BART generates 
multiple trees to account for the data, say 200 different trees. Each tree has as its root 
node the mean of the outcome.10 Each tree is restricted to have only a small number of 
segments/branches, i.e., the tree is said to be shallow. This restriction helps deal with the 
problem of over-fitting because each tree will be only a “weak” predictor of the observed 
Y by virtue of its shallowness. In addition, each of the different trees is constructed so 
that it captures aspects of Y that are not captured by the other trees. More technically, a 
tree focuses on accounting for the residuals of Y from the other trees rather than Y per se, 
thus adding incremental explained variance to the process. The underlying algorithm then 
combines the results for the large number of “weak” trees into an overall prediction of the 
observed Y scores that, when considered collectively tend to be far more accurate than 
the separate component trees. BART goes yet further in its analytic approach relative to 
the above in that it uses Bayes estimation, which I discuss more below.  

A useful feature of BART is that it can readily model both linear and non-linear 
functions that link mediators to outcomes and also when including covariates in the 
T→M link. It is important to keep in mind, however, that BART’s primary focus is on 
prediction not explanation: It seeks to reproduce the multivariate response surface linking 

 
10 Technically, the Y values are transformed for purposes of applying a complex algorithm to the data, but these 
transformation occur “under the hood.” 



                                                                                                             Nonlinear Mediation 60 

 

mediators to an outcome or covariates to outcomes in ways that sometimes can obscure 
interaction effects among the mediators. To be sure, the method can be adapted to address 
complex dynamics among mediators but in the final analysis, its primary focus is on 
prediction. When using BART to make causal inferences, one makes the same 
assumptions of sequential ignorability described in Chapter 9, just like other methods of 
mediation modeling.    

Binary and Nominal Variables in BART  

In addition to continuous outcomes, BART can be used with binary outcomes. BART 
software generally reports results for binary outcomes using probability metrics, which is 
convenient. However the analyses under the hood typically are probit-based. Kindo et al. 
(2016) suggest extensions of BART for multinomial outcomes, although such 
applications are less common (see also Sparapani, Spanbauer & McCulloch, 2021). One 
difficulty with binary outcomes is that assessments of model convergence is more 
challenging than with continuous outcomes because the error variance for probit with 
normal latents is fixed at 1.0 (see Chapter 5). Sparapani et al. (2021) suggest using an 
adapted test of convergence based on Geweke (1992), which I describe in Appendix C 
and that are implemented in the programs on my website.  

BART can accommodate binary predictors as well as nominal predictors with more 
than two groups. Binary predictors are incorporated straightforwardly into BART using 
traditional 0, 1 dummy coding. For nominal variables with more than two levels, it is not 
uncommon to use what is known as one-hot coding. This is the same as traditional 
dummy coding for nominal variables except all k dummy variables for the k groups 
defining the nominal variable are entered into the prediction equation, not just the k-1 
dummy variables per traditional dummy variables in multiple regression. One-hot coding 
cannot be used in traditional linear regression because of collinearity. However, it can be 
used in BART given reliance on additive trees. One hot coding is useful in that it allows 
the trees in the BART model to split based on the presence or absence of each category 
for the nominal predictor. This is not the case for traditional dummy coding schemes that 
omit one of the dummy variables to create a reference group in linear regression. One hot 
coding is generally recommended for tree-based models but it also can create challenges 
for the BART algorithm (see Deshpande, 2025). Again, for binary predictors, just use 
traditional dummy coding. 

Another way of handling nominal predictors with more than two levels in BART is to 
use ordinal encoding. This strategy assigns a unique integer to each category based on 
some ordering on a presumed dimension of interest thought to map onto category 
membership. For example, political party identification might have three categories, 



                                                                                                             Nonlinear Mediation 61 

 

Republican, Independent, and Democratic. These might be scored 1, 2 and 3 on a single 
variable to reflect an underlying conservative-liberal dimension. The variable is then 
subjected to BART-based tree algorithms which do not assume linearity for the 
categories relative to the outcome.   

Bayes Estimation    

The BART estimation algorithm uses the MCMC method common to many Bayesian 
applications to generate random draws of data from the presumed posterior distribution 
so as to take into account (a) the hyperparameters of a prior distribution coupled with (b) 
the sampling model being used (see Chapter 8). Usually the number of such random 
draws or iterations is 1,000 or so, with each tree-based algorithm applied to each 
iteration. The final predicted score for each individual is then based on an aggregate of 
the 200 trees as applied to the 1,000 iterations, after eliminating burn-ins (see Chapter 8).            

BART relies on presumed priors (hyperparameters) when formulating parameter 
estimates. For BART, the priors serve an important role of preventing over-fitting of the 
data. Most BART software provides a set of default priors that work remarkably well in a 
wide variety of scenarios. There typically are three sets of priors that are specified, one 
focused on properties of the mean of Y, one focused on tree depth (the default prior 
emphasizes the use of depths of 2 and 3 but allows for other depths to come into play), 
and one focused on the variance of the residuals, which are assumed to be normal with a 
mean of zero.   

I do not want to get side-tracked into the mathematical details of the above. There 
are useful videos describing them that I provide links to on my website. See also the 
articles by Chipman, George and McCulloch (2010), Hill, Linero and Murray (2020), 
Sparapani, Spanbauer and McCulloch (2012), and Tan, and Roy, (2019). 

Because it is a Bayesian method, decisions have to be made about the number of 
iterations used for burn-in, the number of posterior draws to use, and thinning, all of 
which I discuss in Chapter 8. BART software allows you to vary these facets of the 
analysis. I provide two programs on my website using the R package BART for executing 
BART based analyses for RETs. In those programs, you specify the above parameters but 
I provide a set of reasonable defaults that you can use if you want.     

Common Support and Propensity Scores 

A special application of BART has been to RCTs in which the primary predictor is 
a binary treatment variable with a continuous outcome, Y, a set of covariates for Y but no 
mediators. BART is typically used in such cases where missing data or treatment 
dropouts have undermined random assignment such that the covariates are needed to re-
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establish proper between-condition balance for the covariates but for whatever reason has 
been disrupted. Traditionally, one might use the statistical equivalent of an analysis of 
covariance (ANCOVA) in such cases via SEM software, as I discuss in Chapter 27. 
Alternatively, one can use BART. BART has several advantages over the more 
traditional strategies. First, it can accommodate linear or non-linear relationships between 
the covariates and the outcomes in straightforward ways, as I demonstrate below. Second, 
it can address issues of common support for the treatment condition (Hill & Su, 2013). 
Informally, common support refers to whether there is sufficient overlap between the 
distributions of the covariates for the intervention and control groups so that for each 
individual in the intervention group that has a given score on a covariate, there exists a 
comparable individual in the control group with a similar score on that covariate. When 
common support is violated and there is non-overlap in the covariate distributions 
between the treatment and control conditions, accurate inferences about treatment effects 
can be undermined both in analysis of covariance and in BART. The assumption of 
common support also is called the positivity assumption (O’Flaherty et al., 2023).  

Hill and Su (2013) argue that strategies for evaluating common support should take 
into account not just overlap in the covariate distributions between the treatment and 
control conditions but also properties of the covariate-outcome relationship as well. The 
basic idea is to discriminate situations in which overlap might be lacking for a covariate 
that is a true confounder of the treatment-outcome relationship versus cases where 
common support is lacking for a variable that is not that predictive of the outcome and 
thus is not a meaningful confounder. Lack of common support on the latter is not as 
consequential as when it occurs on a true confounder.  

When common support is violated, it is not uncommon for researchers to delete 
cases from the analysis that create the problem. Of course, this strategy changes the 
fundamental nature of the inferential sample one is working with and, in turn, the 
population to which the results may apply. Case elimination also can reduce statistical 
power which can be an issue if your sample size is small. In multivariate scenarios with 
multiple covariates, it becomes even more difficult for researchers to know which cases 
to drop to achieve a reasonable degree of common support. Hill and Su (2013) used 
BART to develop what is called a 1 sd test that identifies cases one should consider 
dropping to achieve reasonable degrees of common support. I provide a program for this 
test in the BART II program on my website. The output is a list of participant ID numbers 
that you can consider dropping. An alternative to this test is a chi square test also offered 
by Hill and Su (2013) and implemented in Bon (2025). I like to conduct analyses both 
with and without the above adjustments to see how parameter estimates are affected. If 
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the parameter estimate differences are small, then I can ignore common support issues so 
as not to undermine the generalizability of my results by dropping cases.       

A related issue in BART modeling relative to the use of covariates to deal with 
undermined randomization is the use of propensity scores. This is sometimes used in 
place of common support analysis. A propensity score is a person’s probability of being 
in the intervention (versus the control) condition given one’s scores on a set of baseline 
covariates that are thought to be confounds relative to the treatment condition. With true 
random assignment, we expect this probability to be 0.50 or 50-50. However, when 
random assignment has been compromised for whatever reason, we may need to 
introduce covariates to deal with treatment condition imbalance for baseline confounders. 
Propensity scores are used by many researchers to address the matter. The idea is to 
identify baseline covariates on which condition imbalance has been unwittingly created 
between the treatment and control conditions and then to generate a predicted probability 
for each individual of being in the intervention condition based on a BART model that 
uses a binary outcome (0 = person is in the control condition, 1 = person is in the 
treatment condition) and the relevant covariates as predictors. From this analysis, one 
saves the predicted probabilities (which are the propensity scores) for use in the main 
BART analysis. In the latter, rather than including all the covariates in the BART 
equation, one uses only the single covariate of predicted probabilities (Rosenbaum & 
Rubin, 1983). The advantage of using the propensity scores is the reduction of the 
number of covariate dimensions to deal with treatment-control imbalance to a one-
dimensional score. This strategy works well in some circumstances but not others (King 
& Nielsen, 2019) and must be used with caution.  

Hahn et al. (2020) argue that the use of BART generated propensity scores followed 
by BART modeling of one’s primary outcome that includes the propensity scores as a 
covariate tends to work well given the tree-based structure of BART. Hahn et al. (2020) 
provide both simulated data and logic to support their arguments. I provide a program on 
my website called BART propensity scores for generating propensity scores from BART.     

In sum, one typically introduces covariates into a BART model when the focus is 
on controlling confounds, either for the T→M link, the T→Y link or the M→Y link. If 
random assignment is successful, the concern for confounds for the T→M and T→Y 
links is lessened. However, if random assignment is compromised on key confounds then 
it makes sense to include covariates to counteract condition imbalance, either by 
including the covariates individually or in the form of a propensity score. In both cases, 
potential issues with common support should be explored. The work of Hahn et al. (2020) 
suggests BART based propensity scores coupled with BART modeling often works well. 
I tend to use propensity scores in BART when the number of covariates is large.  
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Partial Dependence Plots  

Unlike linear regression, BART does not yield a coefficient for each predictor that 
lends itself to meaningful interpretation of the functional relationship between the 
predictor and the outcome. Friedman (2001) suggests the use of a partial dependence 
function (PDF), usually in the form of a plot, to examine the marginal effect that a 
predictor has on the expectation of Y (or more technically, on Ŷ) while averaging over 
the marginal distribution of the other predictors in the equation. By inspecting the PD 
plots, one gains a sense of the target relationship.11 Figure 15.18 presents an example of a 
PD plot for a mediator and an outcome that is basically monotonic but clearly non-
linear.12 I elaborate more on the use of these plots below.   

 

FIGURE 15.18. Partial dependence plot 

Predictor Relative Importance 

Another feature of BART analyses often highlighted in the literature is its generation of 

 
11 The distributions of the other predictors in the BART equation are maintained when generating Ŷ with only the 
value of the target predictor changing across the predictor profiles. A weakness of PDFs is that some of the predictor 
profile combinations that result might not correspond to observed combinations that occur in the data and, in indeed, 
some of the combinations may not even be possible 
12 Usually we do not interpret each wiggle in the line of such a graph but instead look at the general trend.  
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an index of relative importance of multiple mediators in impacting the outcome Y. 
Variable importance of a given predictor is indexed by counting how many times each 
predictor is used as a split point across the trees in the posterior sampling process. Such 
counts reflect how frequently a predictor is selected to make branching decisions within 
the BART model, with higher counts supposedly reflecting greater importance. The logic 
is that if a predictor is important it should appear more often in the fitted trees. Some 
methodologists argue, however, that the index is too crude, not all that helpful, and lacks 
a theoretical basis. For helpful adaptations of it, see Bleich et al. (2013). 

Identifying Correlates of Individualized Treatment Effects 

In traditional RCTs, researchers typically (but do not always) obtain a baseline measure 
of the outcome and a post-treatment measure of the outcome. To analyze change, change 
scores are created by subtracting the baseline score from the posttest score for each 
individual. Often researchers correlate these change scores with other variables to 
identify predictors of people who respond to treatment versus those who respond less 
well to treatment. I described the shortcomings of this approach in some depth in 
Chapters 4 and 18. It has non-trivial drawbacks.   
  A unique feature of BART analyses is that they provide an individualized 
estimate of change due to the intervention for the case in which the individual participates 
in the intervention condition minus when that same individual participates in the control 
condition, i.e., it estimates the classic counterfactual for the intervention effect (see 
Chapter 8). It does so without formal reference to a baseline assessment of the outcome 
and thereby circumvents some of the traditional challenges of working with such change 
scores. Consider the case of a participant in the intervention condition. Suppose I build a 
BART model using additive regression trees for the data as a whole that predicts the 
posttest Y from three covariates (ycov1 through ycov3) plus a dummy variable for the 
treatment condition, T (0 = in the control condition, 1 = in the intervention condition). 
This particular individual has a score of 1 for T because s/he participated in the 
intervention condition. I can use the individual’s scores on T and the covariates to derive 
a predicted posttest Y from the BART model I isolated in the data. I call this score Ypost 
| T=1 or “the estimated Y posttest score for the individual given the individual was in the 
intervention condition”. I then change this individual’s score of T=1 to T=0 and 
recalculate the predicted posttest score from the same BART model but now under the 
assumption that the individual was in the control group. The result is the score Ypost | 
T=0.  The difference between these two conditional values,  Ypost | T=1 - Ypost | T=0  is 
an individualized estimate of the covariate adjusted amount of change for the individual. 
It essentially is an estimate of the counterfactual for the treatment condition for the 
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individual. If I repeat this process for every individual, I can then isolate the difference 
between the conditional values for every study participant and then explore correlates of 
these “difference scores” for purposes of moderation analysis.  
 Because it has intriguing properties, I return to this approach in the next section of 
this book, the section on moderation (see Chapter XX). The strategy has both strengths 
and weaknesses. I make note of it here because it is a potentially important feature of 
BART modeling for RCTs and RETs that you should be aware of. 

Numerical Example 

I illustrate application of BART to RETs using the influence diagram in Figure 15.19. 
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FIGURE 15.19. BART RET example 

I omit covariates to simplify the diagram but in the worked example, I include two of 
them for the T→M link and two others for the M→Y link. They all are treated as 
exogenous. The two mediators are assumed to reflect the primary mechanisms by which 
the treatment condition influences the outcome, hence there is no direct effect from the 
treatment condition to Y. As discussed below, I can test the viability of this assumption 
with the data, but on an a priori basis in this particular study, I do not expect the direct 
effect of T→Y to be of consequence. Y is measured on a metric from 0 to 50. M1 is 
negatively related to Y and is scored on a 0 to 40 metric. M2 has a positive association 
with Y and is measured on a 0 to 10 metric. All measures are multi-item scales. The 
sample size is 442. The data I used are available on my website. I address the usual three 
questions, (1) is there an overall effect of the program on the outcome, (2) is there an 
effect of the program on each of the mediators, and (3) is there an effect of the mediators 
on the outcome. I consider each question in turn. I emphasize only the main results for 
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these three questions. For discussion of model checks and other supplementary analyses 
as well as programming strategies, watch the videos associated with the relevant BART 
and BART II programs on my webpage.   

Total Effect of the Program on the Outcome 

I used the BART II program (for treatment effect analysis) on my website and its default 
settings to regress Y onto the treatment condition dummy variable and the two covariates 
relevant to Y. Here is the key program output: 
 
ATE estimate from bartCause program 
    estimate        sd ci.lower ci.upper 
ate 2.698875 0.5456775 1.629367 3.768383 
bartCause estimates for each treatment condition 
         treat Estimate     Lower CI     Upper CI 
Grp 1        0 19.43706     18.82421     20.05602 
Grp 2        1 22.13594     21.50198     22.76213 

The program was designed to increase values of Y. The covariate adjusted mean Y 
for the intervention condition was 22.14 ±0.63 and for the control condition it was 19.44 
±0.62, a difference of 2.70 ±1.07. Because the 95% credible interval for the mean 
difference (1.63 to 3.77) does not contain zero, we consider the intervention effect as 
being statistically significant, i.e., non-zero. Suppose the researchers and program staff 
determined a priori that a meaningful population effect for the Y mean difference is 3 
units or greater. Because the 95% credible interval overlaps this value, we cannot 
conclude with confidence that the effect is meaningful. Thus, although the intervention 
produced a reliable non-zero effect on the outcome, we can’t be confident it produced a 
meaningful effect on Y.   

When I evaluated the need to potentially drop cases to achieve common support, the 
formal 1 sd test indicated there were no such cases.  An advantage of using BART is that 
it does not require the covariate relationships with the outcome to be linear; it should 
adjust for them adequately even if the relationships are non-linear. 

Program Effects on Mediators  

I used the same BART program in two separate analyses to examine the effects of the 
treatment condition on each of the mediators, M1 and M2, plus the two covariates linked 
to the respective mediators. Here are the results for M1: 
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ATE estimate from bartCause program 
     estimate        sd  ci.lower   ci.upper 
ate -1.844178 0.5687695 -2.958945 -0.7294099 
   
bartCause estimates for each treatment condition 
         treat Estimate     Lower CI     Upper CI 
Grp 1        0 13.80719     13.17522     14.44122 
Grp 2        1 11.96302     11.26558     12.63422 

The program was designed to decrease values of M1. The covariate adjusted mean 
M1 for the intervention condition was 11.96 ±0.67 and for the control condition it was 
13.81 ±0.63, a difference of -1.84 ±1.11. Because the 95% credible interval for the mean 
difference (-2.96 to -0.73) does not contain zero, we can consider the intervention effect 
as being statistically significant, i.e., non-zero. The researchers and program staff 
determined a priori that a meaningful population effect for the M1 mean difference is -2 
units or less, i.e., more negative. Because the 95% credible interval overlaps the value of 
-2, we cannot confidently conclude the effect is meaningful after taking into account 
sampling error. Although the intervention produced a reliable non-zero effect on M1, we 
can’t be confident it produced a meaningful effect.   

When I evaluated the need to potentially drop cases to achieve common support, the 
formal 1 sd test indicated there were 5 such cases, which represents only about 1% of the 
total sample. When I eliminated the cases and re-ran the analyses, the results were 
fundamentally the same. Lack of common support does not seem to be an issue.  

For M2, the program was designed to increase values of M2. The covariate adjusted 
mean M2 for the intervention condition was 6.29 ±0.06 and for the control condition it 
was 6.11 ±0.06, a difference of 0.18 ±0.10. Because the 95% credible interval for the 
mean difference (0.08 to 0.27) does not contain zero, we can consider the intervention 
effect as being statistically significant, i.e., non-zero. The researchers and program staff 
determined a priori that a meaningful population effect for the M2 mean difference is 1 
unit or more. Because the 95% credible interval is completely contained within the -1 to 
+1 interval for no effect, we conclude the effect is not meaningful. Thus, although the 
intervention produced a non-zero effect on M2, that effect was not a meaningful one.    

When I evaluated the need to potentially drop cases to achieve common support, the 
formal 1 sd test again indicated there were 5 such cases. When I eliminated the cases and 
re-ran the analyses, the results were fundamentally the same.  Lack of common support 
does not seem to be an issue.  
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Mediator Effects on the Outcome 

To evaluate the estimated effects of the mediator on the outcome, I used the first BART 
program on my website and regressed Y onto M1, M2 and the two covariates associated 
with Y. When the program fit a linear model to the data, the root mean square error was 
3.35. For the BART model, it was 2.05, which is lower, These values reflect the (positive 
square root) average errors when comparing the predicted versus observed Ys. For 
context, the mean of M1 was 12.85 with a standard deviation of 6.49. The mean of M2 
was 6.21 with a standard deviation of 0.52.   

Here is the PD plot for M1. 
 

 
   

The relationship between M1 and Y is negative and roughly linear in form with 
some flattening at the high end of M1 (above a score of 30). Unlike linear regression, the 
relationship between M1 and Y is not summarized by a single regression/path coefficient 
because BART does not assume linearity.13 Here are a sample of M1 values and the 
associated predicted mean Y for each one, which complements the PD plot: 

   M1      Pred y     Lower CI   Upper CI 

  2.86     26.09      24.25      28.14 
  3.73     26.16      24.45      28.05 
  4.60     25.76      24.34      27.18 
  5.48     24.71      23.39      25.89 

 
13 For the multiple linear regression model, the coefficient for M1 was -0.63 (t=15.38, p < 0.05). 
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  6.35     24.09      22.99      25.21 
  7.23     23.96      22.88      25.15 
  8.10     23.37      22.27      24.56 
  8.98     23.24      22.22      24.36 
  9.86     23.04      22.04      24.09 
 10.73     22.26      21.01      23.53 
 11.60     21.53      20.22      22.72 
 12.48     20.96      19.92      21.93 
 13.35     21.35      20.27      22.48 
 14.23     21.15      19.94      22.34 
 15.10     20.35      19.08      21.54 
 15.98     19.25      17.90      20.58 
 16.85     18.21      16.94      19.41 
 17.73     18.22      16.85      19.48 
 18.60     17.80      16.42      19.04 
 19.48     16.68      14.89      18.28 
 20.35     15.89      14.09      17.58 
 21.23     16.65      15.09      18.38 
 22.10     15.26      13.65      17.01 
 22.98     15.18      13.64      16.77 
 23.85     14.82      13.19      16.54 
 24.73     14.67      12.75      16.45 
 25.60     14.31      12.16      16.22 
 26.48     14.32      12.19      16.16 
 27.35     14.40      12.41      16.39 
 28.23     14.59      12.47      16.80 
 29.10     13.62      11.27      16.09 
 29.98     12.71      10.49      15.20 
 30.85     12.11       9.68      14.75 
 31.73     12.11       9.68      14.75 
 32.60     12.11       9.68      14.75 
 33.48     12.11       9.68      14.75 
 

Note the general trend that as M1 increases, the predicted mean of Y decreases. Prior to 
the study, the researchers and program staff agreed that a change in Y of 3 units or more 
was meaningful. Recall that the mean of M1 was 12.85 which has a predicted mean Y 
value of about 21 associated with it. If M1 changes to a value of 18.6, the mean Y is 
predicted to equal about 18 instead of 21an increase of 3 units. Of course, when 
evaluating such change, one must take into account the operative “noise” or sampling 
error which is reflected in the credible intervals. Here is the PD plot for M2: 
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The relationship is non-linear with a generally flat trend between M2 scores of 4 
and 6, followed by increasing Y with increasing M2 between scores of 6.0  and 7.0 or so; 
then, there is a flattening of the predicted Y. Here is a sample of M1 values and the 
associated predicted mean Y for each one which complements the PD plot: 

   M2      Pred y     Lower CI   Upper CI 

  4.49     18.75      16.77      20.90 
  4.58     18.75      16.77      20.90 
  4.67     18.75      16.77      20.90 
  4.76     18.75      16.77      20.90 
  4.85     18.75      16.77      20.90 
  4.94     18.65      16.67      20.63 
  5.03     18.75      16.80      20.91 
  5.12     19.51      17.41      21.68 
  5.20     19.66      17.59      21.71 
  5.29     19.15      17.25      21.01 
  5.38     19.27      17.87      20.73 
  5.47     19.05      17.63      20.47 
  5.56     18.91      17.67      20.17 
  5.65     18.88      17.69      20.14 
  5.74     18.55      17.40      19.45 
  5.83     18.66      17.44      19.62 
  5.91     19.06      18.35      19.83 
  6.00     19.30      18.48      20.17 
  6.09     19.80      18.99      20.68 
  6.18     19.48      18.43      20.39 
  6.27     19.47      18.62      20.27 
  6.36     19.86      19.05      20.76 
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  6.45     20.04      19.21      20.85 
  6.54     20.38      19.43      21.39 
  6.63     21.50      20.37      22.65 
  6.71     22.04      20.93      23.22 
  6.80     22.42      21.24      23.55 
  6.89     22.95      21.55      24.34 
  6.98     24.10      22.75      25.37 
  7.07     25.16      23.48      26.87 
  7.16     27.17      25.63      28.69 
  7.25     27.62      26.15      29.01 
  7.34     27.58      26.02      29.16 
  7.42     27.26      25.44      29.06 
  7.51     27.26      25.44      29.06 
  7.60     27.26      25.44      29.06 

Note the reported predicted mean Y values mimic the PD plot. The predicted Y at the 
mean of M2 (6.20) was about 19.5. Using an increase of 3 units in Y is meaningful, one 
can evaluate how changes in M2 map onto this standard in different parts of the overall 
curve linking M to Y.  
 Although BART is a powerful method for evaluating trends in the M→Y 
relationship, I personally prefer the smoothness of the lines and curves that evolve from 
using such methods as polynomial regression, spline regression, traditional non-linear 
regression, and generalized additive models (GAMs; see below). I find the wiggliness of 
the PD curves somewhat bothersome, especially when I can’t fully trust the wiggles. 
Critics would say to me that the world is inherently filled with “wiggles” and that the 
smooth curves I prefer are more unrealistic than the wiggles. There are arguments both 
ways.       

Overall Model Fit and RET Summary 

As with the other methods of non-linear analysis I have discussed that rely on LISEM, 
overall model fit can be explored by evaluating different targeted independence 
assumptions implied by the model. For example the diagram in Figure 15.19 implies that 
the direct path from T to Y when holding M1, M2 and the two Y covariates are held 
constant should be statistically non-significant. When I tested this using the BART II 
program, this was indeed the case.  

In sum, the RET analyses suggest that the intervention did indeed have an overall 
effect on Y but that I could not confidently say it was a meaningful effect. Both M1 and 
M2 were associated with Y, with the link between M2 and Y being decidedly non-linear. 
The intervention yielded non-zero effects on both M1 and M2 in the desired direction but 
the I could not confidently say the effects were meaningful. The program staff need to 
revisit the intervention activities to try to figure out how these paths can be strengthened. 
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Concluding Comments on Bayesian Additive Regression Trees 

BART based analyses have many positive qualities when analyzing RCTs and RETs. The 
method does not assume linearity and readily accommodates non-linear functions. It is 
Bayesian based and brings with it all the strengths (and weaknesses) of Bayes modeling. 
BART can be used in a wide range of contexts. It is grounded in regression tree modeling 
rather than linear modeling, providing a nice alternative to traditional methods. I 
sometimes use BART on a preliminary exploratory basis to gain a sense of the various 
functions linking my predictors to outcomes. Based on this knowledge, I might then 
pursue a more standard linear or non-linear approach, such as polynomial, spline, or non-
linear regression as outlined earlier in this chapter. BART advocates might shudder at 
such a strategy but I have found it useful in some contexts.  
 BART is often characterized as a machine learning approach. A tenet of many 
machine learning methods is the importance of dividing one’s data into two or more 
different sets, (a) a training set that you derive your model on and (b) a validation, set-
aside or testing set that you apply the derived model to so as to evaluate how well it 
performs. The analog in the older social science literature is known as cross validation in 
which you apply a regression model to half your data and then “cross-validate” it by 
applying the derived regression equation to the other half of the data to see if it predicts 
that other half of the data reasonably well. The idea is to recognize that some overfitting 
inevitably occurs in training set analyses and to correct for this and to see how well your 
model truly predicts outcomes, you need to examine how well the model works with a 
new set of data. Some analysts use more than one validation sample. The different 
subsets created are sometimes called folds.     
 The above philosophy makes sense in many prediction contexts, but it is not 
straightforward when the goal is causal analysis coupled with the estimation of causal 
coefficients. One objection is that when seeking to estimate the values of causal 
coefficients in a population, if you split your sample in half, then you inflate sample 
estimated standard errors of the coefficients with the result being more noise in your 
estimates. Why use only half the available data when you will obtain more stable 
coefficient inferences by using all of the data?  If your data set is relatively small to begin 
with, which often is the case in RCTs and RETs, then splitting it in half can result in too 
low statistical power, unacceptably high margins of errors, and it can undermine the 
robustness properties of the statistical method used (see Chapter 28). It turns out, BART 
models tend to work relatively well in many contexts even without cross-validation due 
to its Bayesian nature and the robustness of its defaults for the priors (see Hill, Linero & 
Murray. 2020). Having said that, some researchers prefer to “tune” hyperparameters as 
well as the number of trees and tree depth so as to maximize optimal performance (Hill et 
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al., 2020). They do so by evaluating the model's performance on different data sets if the 
available data is sufficiently large. For details on a variety of validation methods for 
BART modeling, see Souto1 and Neto (2024) and Hill et al. (2020).      
 
MEDIATION ANALYSIS AND GENERALIZED ADDITIVE MODELS  
 
Yet another approach to non-linear analysis uses smoothers via a method known as the  
generalized additive model (GAM).  The GAM has the general form   

Y = α + f1(X1) + f2(X2) +  ….  + fp(Xp)  +  ε 
 
where the predictors combine additively to predict the outcome but the function linking a 
given predictor to the outcome, signified by f, can be linear or non-linear in form. In 
ways, GAM is a generalization of the classic linear regression model where each 
component function is assumed to be linear. In GAM modeling, the error term usually is 
assumed to be normally distributed with a mean of zero, as is the case in standard 
regression. One application of GAM in RETs is the analysis via smoothers of the 
relationship between (continuous) mediators and (continuous) outcomes when the 
relationship is non-linear. Another application is to use GAM to control for covariates 
when the covariates are non-linearly related to the mediator or outcome being predicted. 
A third application is if randomization has been compromised and covariate control is 
needed to correct for imbalance and there is non-linearity in the covariate and other key 
variables in the model.     

The GAM relies on the use of smoothers to map the relationship between variables. 
GAMs can be used with different types of smoothers but it often is implemented using 
what is known as a thin plate smoother. Thin plate smoothers use splines to minimize 
the integral of squared second derivatives and have been characterized by analogy to a 
thin sheet of metal that is bendable so as to adapt to the ups and downs of a surface. They 
are a multivariate version of smoothing splines that yield significance tests associated 
with the null hypothesis that  

H0: fj(Xj) = 0 

for predictor j in the equation. For statistical details see Wood (2017) and Wilcox (2021).   
  Consider a bivariate regression analysis with a single continuous predictor and a 
continuous outcome. A traditional smoother estimates the predicted means of the 
outcome conditional on values of X but without the traditional constraint that the 
predicted means must be a linear function of the values on X. Smoothers estimate the 
outcome  means as a function of X and then in a plot draws a “line” through the means 
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associated with ordered X values on the horizontal axis. This “line” can be non-linear and 
irregular in shape. The smooth for a given predictor in a GAM is constructed using many 
smaller functions. Each of these smaller functions is called a basis function, each of 
which covers a different range of the observed X values. Each basis function is weighted 
by a coefficient that allows them to have different impacts on the shape of the overall 
smooth. The overall  smooth for the predictor in question is a sum of the multiple basis 
functions. Figure 15.20 illustrates examples of overall smooths (the dark black line) 
coupled with their underlying basis functions (in color).  
 

 

FIGURE 15.20. Smoothers with basis functions 

Running interval smoothers can extend smoothing in GAMs to any conditional 
robust measures of location (or scale). For example, instead of examining how the mean 
of Y varies across the X values, one can examine how the trimmed mean of Y varies 
across the X values, again, without linear constraints. Or one can focus on an M 
estimator, or a median, or even a variance. For such applications, see Wilcox (2021). The 
GAM program I use in R (called mgcv) is quite flexible and can be applied to logit 
regression, probit regression, negative binomial count regression and ordinal regression 
in addition to models with continuous outcomes.  



                                                                                                             Nonlinear Mediation 76 

 

When working with smoothers, we specify how smooth or “wiggly” the smoother is 
allowed to be. Figure 15.21 plots two smoothers for the same data where the smoothers 
vary in the allowed wiggliness: 

 
 

 
  

FIGURE 15.21. Two smoothers for the same data 

The smoother on the left seems too detailed and does not capture the general trend 
in the data to the extent that the smoother on the right does. Having said that, if we 
oversmooth, the smooth itself might not represent the general trend in the data. We need 
to find the right balance between smoothness and wiggliness. The mgcv program I use in 
R has effective algorithms for estimating the right amount of smoothness. However, this 
is an issue you need to be sensitive to. GAMs often include penalty functions for model 
fit when using smoothers to discourage data overfitting. 

Key Facets of GAM Analysis 

Smoothers 

In traditional linear regression, a regression coefficient is assigned to each predictor to 
indicate its relationship to the outcome. It is an estimated causal coefficient. The 
assignment of a single coefficient to a predictor is not possible when a predictor has a 
complex non-linear relationship with an outcome. A single number cannot capture the 
complexity of the non-linear dynamics. GAM software typically shows a smoother for 
each predictor and provides a p value for the test of a zero effect for each one where the 
null hypothesis is that the smooth is a flat horizontal line. The p values are approximate, 
so they must be interpreted accordingly. Because of this, p values in GAMs generally do 
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not rely on harsh cutoffs, like the somewhat arbitrary 0.05 level in traditional statistics. 
Accompanying this information is an edf statistic for each predictor which stands for 
effective degrees of freedom. The edf value reflects the complexity of the predictor’s 
smooth with higher values indicating greater complexity. A value of 1 indicates a linear 
relationship. Higher values reflect non-linearity of increasing complexity. One needs to 
be careful when interpreting the magnitude of an edf because that value actually reflects 
both the complexity of the function as well as the built-in penalties for complexity.  
 Also provided in GAM software output is an R squared between the predicted and 
observed outcome values and a deviance explained statistic that is analogous to a 
squared R but uses deviances instead of variances as their basis (see Wood, 2017). For 
continuous outcomes using the default estimator in the mgcv package (which is restricted 
maximum likelihood or REML), a “scale” estimate  is provided that is the residual 
standard error squared. The square root if it is comparable to the root mean square error 
and is, roughly, the average disparity between the predicted and observed Y values across 
individuals 

The mgcv package I use on my website reports the number of basis functions used 
in each smoother. The more basis functions used, the more complex the smoother can be. 
By default, mgcv uses 10 basis functions per smoother. One basis function is for 
estimation of the intercept, so there are 9 basis functions remaining for the smooth. One 
modeling concern is whether 9 basis functions are too few to capture the required 
complexity of the overall smoother. If you specify too few basis functions, then you have 
tied the hands of the algorithm for reproducing the data with a meaningful smooth. I 
show you below how to identify on mgcv output if this is a potential problem.  

A useful feature of GAMs is that in addition to analyzing the relationship between a 
predictor and an outcome using a smoother, you also can a priori define the relationship 
between the predictor and an outcome as linear and include the predictor in the model 
much like we would for a traditional regression analysis without smoothing. In this case, 
the predictor will be assigned a single coefficient analogous to a standard regression 
analysis. When working with binary or nominal predictors (such as a treatment dummy 
variable), it is common to use this parameterization, as I illustrate below.   

Concurvity 

In traditional multiple regression the matter of collinearity between predictors often is a 
concern. The same issue arises with GAMs but it is called concurvity. The mgcv 
software reports several concurvity indices. The indices evaluate if a smooth term, a, in 
the model can be decomposed into a part, b, that lies entirely in the space of one or more 
other terms in the model together with a remainder part that is completely within the 
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term's own space. If b is a large part of a then concurvity likely is a problem. The 
concurvity indices are ratio-like measures that range from 0 to 1, with 0 indicating an 
absence of concurvity and 1.0 indicating complete lack of identifiability. Values larger 
than 0.80 suggest that one needs to identify the other terms in the model that are 
responsible for the concurvity and action on it is needed (by dropping certain predictors).  

Profile Analysis 

To help interpret GAM results, I sometimes supplement the GAM with what are called 
profile analyses. A profile is a set of specific scores on each of the respective predictors 
in the GAM equation considered multivariately. For example, if the predictors are age 
and annual income, one profile might be people who are 35 years old who earn $50,000 
per year. Another profile might be people who are 50 years old who earn $40,000 per 
year. Suppose I predict the number of additional healthy years that males live from their 
current age and income using the GAM based model applied to a set of data (much like 
we derive predicted scores in a traditional regression equation). I might specify one 
profile as being 50 years old with an annual income of $100,000 and a second profile as 
being 50 years old with an annual income of $10,000. Suppose the predicted mean 
number of additional healthy years lived for the first profile is found to be 31 years and 
for the second profile it is 22 years. The difference in these predicted means is 9 years. 
This is interesting because it illustrates the estimated effect of high versus low income for 
people who are 50 years old as income is all that varies in the two profiles, at least for the 
two income values studied. 

When I conduct profile analyses with GAMs, I strategically define different 
predictor profiles that are theoretically or substantively interesting. I then compare the 
predicted mean outcomes for those profiles, providing me with insights into the 
underlying dynamics. The mgcv program calculates a Bayesian based standard error for 
each predicted profile mean to help you appreciate the levels of uncertainty surrounding 
the mean. The program on my website also calculates a bootstrap estimate of the standard 
error and confidence intervals using the nonparametric bootstrap method described in 
Wicklin (2023). The bootstrap approach allows you to explore a wider range of 
comparisons between profile predicted means, as I show below. However, the results 
should be interpreted cautiously because in some instances such bootstrapping is subject 
to undersmoothing that results in biased standard errors (Wood, 2017). It also is 
computationally demanding. I return to this issue below when I consider a numerical 
example using an RET.  
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Average Marginal Effects 

Another supplementary analysis to aid interpretation of a GAM is the calculation of 
average marginal effects (AMEs) for each predictor once the model has been fit to the 
data. Recall that the average marginal effect is the average change in the predicted 
outcome for a one-unit change in a predictor as averaged across all individuals in the 
data, controlling for the other predictors in the model. Technically, it is the derivative of 
the predicted outcome with respect to a predictor and reflects the rate of instantaneous 
change in Y as a function of X (controlling for the other predictors), but it often is 
interpreted in terms of the effects of a unit change in X on Y (see Chapter 5).14 The AME 
is useful for non-linear models in which the effect of a predictor on the outcome is not 
constant across values of the predictor. The AME provides a single number that 
represents the average impact of a predictor variable on the outcome across individuals 
while controlling for covariates taking into account the non-linearity.    
 I provide a program on my website called AMEs for GAMs that calculates average 
marginal effects for predictors in a GAM. When analyzing interaction effects or product 
terms that include the same predictor in multiple terms in the equation, the program still 
summarizes the AME with a single numerical value that takes into account all of the 
different ways the predictor appears in the equation. I illustrate the use of AMEs in a 
GAM later in the context of an RET example.    

Predictor Selection 

Some researchers seek to determine the relative importance of mediators within a set of 
mediators, a topic I discuss in depth in Chapter 16. GAMs can be used to provide some 
perspectives on the matter but in a limited way. Specifically a GAM model can divide the 
predictors into two subsets, one consisting of mediators that are judged to be of lesser 
import and one consisting of mediators that are judged to be of greater import. The 
mediators that are of lesser import are assigned weights of zero in the equation by setting 
their smoothers to be treated as flat horizonal lines. The “key” predictors are retained.    

GAMs are not the type of modeling framework where you can leisurely include  
many predictors in the equation to see which ones “stick” in terms of outcome impact. 
GAMs can be parameter-heavy and often carry nontrivial computational costs. GAMs are 
not immune to multicollinearity, which means a “kitchen sink” approach to predictor 
inclusion can be misleading. Predictor specification must be done with reflection.  

Having said that, an attractive feature of GAMs when pursuing predictor selection 
is their ability to accommodate non-linear relationships between predictors and the 

 
14 Sometimes the approximation of the AME to the effects of a unit change in X based on instantaneous change fails, 
so AMEs must be used with some caution in this regard.   
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outcome. The approach I operationalize in the GAM program on my website works with 
the penalty matrix that penalizes (more or less) smoother complexity to prevent 
overfitting. A new penalty is created on the null space and is conceptualized as an extra 
penalty for a given smoother with its own parameter. The algorithm for this parameter 
increases the penalty as a function of spaces on the smoother that show zero wiggliness. 
Ultimately, the penalty might be sufficiently great that the smoother term is penalized to 
zero, effectively dropping it from the model. These predictors will be shown on the 
output with what is functionally a flat horizontal smooth and an edf of zero or one that is 
close to zero. For details and relevant simulation work, see Wood (2017) and Mara and 
Wood (2011). See also the video for the GAM program on my website for sample output. 

RET Example 

I illustrate application of GAM to an RET framework using the influence diagram shown 
in Figure 15.22. There are two mediators and the treatment condition is thought to have 
an independent effect on the outcome independent of the mediators.  I omit covariates 
from the model to avoid clutter but to keep the example simple I use only one covariate 
for Y. M1 and M2 are each measured on a 1 to 5 metric and Y is measured on a 0 to 7 
metric. All of the measures, except the dummy coded treatment condition (0 = control, 1 
= intervention),  are continuous with presumed interval level properties. 

  

Treatment vs. 
Control

d2

d1

d3M1

M2

Y
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FIGURE 15.22. RET example using GAM 

In the interest of space, I do not describe preliminary diagnostics to check model 
assumptions. Explanations of those diagnostics using a different example are in the video 
associated with the GAM program on my website. All of them were well behaved in the 
current example. I now address the usual three questions, (1) what is the total effect of the 
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program on the outcome, (2) what is the effect of the program on the mediators, and (3) 
what is the effect of the mediators on the outcome.  

Total Effect of the Program on the Outcome 

Using the GAM program on my website, I invoked REML as the fitting algorithm and 
regressed Y onto the treatment condition dummy variable and a Y covariate called cov 
using the following equation expressed in R format: 

y ~ treat + s(cov)   

Here are the key results from the output: 
 
Parametric coefficients: 
            Estimate   Std. Error   t value   Pr(>|t|)     
(Intercept)  2.57348      0.07981    32.247    < 2e-16 *** 
treat        0.29516      0.11291     2.614    0.00929 **  
 
Approximate significance of smooth terms: 
           edf   Ref.df       F   p-value   
s(cov)   1.339    1.603   2.709    0.0518  
 

Because the smoother is zero centered for the parametric portion of the model by 
program default, the intercept is the adjusted predicted Y mean for the control group, 
2.57. An approximate margin of error (MOE) of this mean is the standard error (0.07981) 
doubled, which equals ±0.16. I then reversed scored the treat dummy variable and re-
ran the syntax to shift the intercept to reflect the adjusted predicted group mean for the 
intervention group. It equaled 2.87 ±0.16. The difference between the two means is in the 
last row of the table and equals 0.30 ±0.22, p < 0.05. From this result, I conclude that the 
treatment effect is not zero because the p value for it is statistically significant. Suppose 
that prior to the analysis, the research team defined a meaningful population effect as an 
absolute mean difference of 0.25. The meaningfulness interval is thus -0.25 to +0.25. The 
95% confidence interval from the data is approximately 0.08 to 0.5215. Because the 
confidence interval overlaps the meaningfulness standard/interval, I must suspend 
judgment for concluding about the meaningfulness of the treatment effect because of the 
“noise” or sampling error in the study; the population intervention effect may or may not 
exceed 0.25.  
 Here is the smoother for the covariate as generated by the program: 

 
15 I calculated the CI by subtracting (lower limit) and adding (upper limit) the MOE to the 0.30 estimate.   
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The gray area reflects the 95% confidence limits for the smooth and the small 
vertical lines at the bottom on the X axis are a one-dimensional representation of the 
covariate marginal distribution. It is analogous to a histogram with zero-width bins and is 
referred to as a rug. The smooth itself is the solid line with an upward slope. Although 
not strictly linear, it approximates linearity. The edf for the smooth is close to 1.0; see the 
above output table which reports an edf of 1.33. This is consistent with a near-linear 
relationship. The test of the null hypothesis that the smoother is a flat horizontal line (i.e., 
there is no effect) yielded a marginally statistically significant p value (p < 0.0518), so I 
decide to reject the null hypothesis because the p value is only approximate.   

Program Effects on Mediators  

To determine the effects of the intervention on the mediators, I need to regress each 
mediator onto treat. Because there are no covariates for this portion of the analysis and 
treat is binary, there is no need to use a generalized additive model for the analysis, 
although I could if I wanted to. I can use any robust analytic method of my choice. I 
might use the MLR estimator in Mplus or I could use a newer version of the sandwich 
estimator than what Mplus uses, namely the HC3 algorithm in the OLS regression 
program on my website. Here is the output for M1 based on the latter, which invokes a 
regression format:  
 
Robust Analysis 
              Coefficient   Std. Error        t value     p value 
(Intercept)    2.97013480   0.02024529   146.70745863   0.0000000 
treat         -0.00220861   0.02894989    -0.07629079   0.9392261 
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Robust Confidence Intervals:  
 
              Lower limit   Upper limit 
(Intercept)    2.93033373     3.0099359 
treat         -0.05912241     0.0547052 
 
The intercept is the control group mean for M1. It equaled 2.97 ±0.04. I reverse coded 
treat and re-ran the syntax to obtain the intervention group M1 mean and its margin of 
error as derived from the confidence intervals. It was 2.97 ±0.04. The mean difference for 
the intervention and control groups, extending to 3 decimals, was -0.002 ±0.057. It was 
statistically non-significant (Critical Ratio (CR) = 0.076, ns). Suppose that prior to the 
analysis, a meaningfulness standard was set at a population mean difference for M1 of 
0.25, creating a meaningfulness interval of -0.25 to +0.25. Suppose also that the latitude 
for no effect (see Chapter 2) was set to -0.20 to +0.20. Because the confidence interval is 
fully contained within the latitude for no effect, I can confidently conclude that the 
program had no meaningful effect on M1.  
 Comparable results were found for M2 but I do not report them here to save space. 
Overall, the intervention failed to bring about meaningful change in both M1 and M2. 
The program designers need to re-think seriously what they are doing to try to change 
these mechanisms.     

Mediator Effects on the Outcome 

I next return to using the GAM to explore the estimated effects of the mediators on the 
outcome. I again use REML as the computational algorithm and regress Y onto the two 
mediators, the covariate for Y, and the treatment dummy variable using the following 
equation in my program expressed in R format: 

y ~ treat + s(m1) + s(m2) + s(cov)   

Here are the key results from the output including plots of the smoothers:  
 
Parametric coefficients: 
              Estimate   Std. Error   t value   Pr(>|t|)     
(Intercept)    2.57744      0.07143    36.085    < 2e-16 *** 
treat          0.28724      0.10180     2.822    0.00502 **  
 
Approximate significance of smooth terms: 
         edf     Ref.df        F    p-value     
s(m1)    1.000    1.001   14.960   0.000129 *** 
s(m2)    6.441    7.586   12.293    < 2e-16 *** 
s(cov)   1.000    1.001    5.485   0.019645 *   
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R-sq.(adj) =  0.231   Deviance explained = 24.9% 
-REML = 583.72  Scale est. = 1.0043    n = 400 
 
 

 

 The overall deviance-based analog of R squared was 0.249 and the root mean 
square residual was the square root of 1.0043, which equals 1.00 (rounded). The 
smoother for M1 had an edf 1.00 suggesting it is in linear in form and the p value for it 
(0.00129) rejects the null hypothesis of it being a flat horizontal line. For M2, the smooth 
is clearly non-linear. The smoother had an edf of 6.44 and the p value for it also rejects  
the null hypothesis of it being a flat horizontal line. The shape of the smooth is such that 
as M2 increases from its lowest value, the mean of Y is predicted to increase up to a point 
(around 2.8), after which the mean of Y starts to decrease with a plateau occurring 
between the M2 values of 3 and 3.2, followed again by a decrease in the mean of Y.   

I can obtain additional perspectives on the magnitude of the effects of M1 and M2 
by calculating their average marginal effects (AMEs) using the program AMEs for GAMs 
on my website. To execute the program, I enter the full equation in R format: 

y ~ treat + s(m1) + s(m2) + s(cov)   

and focus on the portion of the output for M1 and M2. Here are the results: 
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Term   Contrast  Estimate  Std. Error       z   Pr(>|z|)     2.5%   97.5% 
 cov      dY/dX     0.421       0.180   2.343    0.01911   0.0689   0.773 
 m1       dY/dX     0.683       0.177   3.869    < 0.001   0.3371   1.029 
 m2       dY/dX     0.265       0.396   0.669    0.50349  -0.5114   1.041 
 treat    1 - 0     0.287       0.102   2.822    0.00478   0.0877   0.487 

 
 For M1, whose smooth was basically linear, the AME is 0.68 ±0.34, which suggests that 
for every one unit that M1 increases, the mean of Y is predicted to increase by 0.68 units 
after controlling for the other variables in the equation. This was statistically significant 
(CR = 3.87, p < 0.05). For M2, the smooth was complex and non-monotonic. The mean 
of Y is to predicted to increase as M2 increases at the lower end of M2 but then to 
decrease as M2 increases in the upper portion of M2, with a small plateau mixed in (see 
the smooth from above). The net result of these dynamics is an AME of 0.265 ±0.80; for 
every one unit that M2 increases, taking all the operative dynamics into account, the 
mean of Y is predicted to only change by 0.265, which is statistically non-significant (CR 
= 0.67, ns).     

If I want to probe the estimated effects of M2 on Y in more depth, I can do so using 
the profile analysis option of the program. For example, suppose I want to focus on the 
lower portion of M2 that ranges from 2.5 to 2.7, which is where the smooth suggests I 
should see increases in the predicted mean of Y as a function of increases in M2. Suppose 
I define the following two profiles via the first four columns of the following table : 
 
 Treatment M1 M2 Covariate Predicted Mean Y 
Profile 1 0 2.97 2.70 3.02 3.46 ±0.30 
Profile 2 0 2.97 2.50 3.02 1.92  ±0.55 

 
The profiles both focus on the control group and have the same values for M1 (set equal 
to the mean M1 for the control group) and the covariate (set equal to the mean baseline 
value of the covariate). The only value that differs between the two profiles is the value 
of M2, which is 2.70 versus 2.50, respectively. The program generates the predicted 
means for each profile (shown in the last column) and then evaluates the difference in the 
predicted Y means between the two profiles. In this case, the difference between the 
profile predicted means is 1.54 with a bootstrapped 95% confidence interval of 0.90 to 
2.13.16     

In the parametric portion of the model output, the results suggest that the treatment 
condition has a statistically significant effect on the outcome independent of the 

 
16 Because bootstrapping is somewhat controversial in GAMs, my program also reports standard errors for the 
predicted means derived directly by the mgcv program for comparative purposes.  
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mediators and the covariate (coefficient = 0.29 ±0.20 ,CR = 2.82, p < 0.05). The group 
difference is remarkably similar to that which I found in my total effect analysis. This 
usually will not happen but it did so here because the treatment had virtually no effect on 
M1 and M2. All of the effects of the treatment condition on Y operate through its direct 
effect on Y, not the mediators.  
 In sum, both M1 and M2 seem to affect Y in nontrivial ways but the function 
linking M2 to Y is such that the net effect of a one unit change in it has little effect at a 
global level on Y as reflected by the average marginal effect.   

Concluding Comments on RET Results 

The results of the RET provide important feedback for purposes of program evaluation. 
First, the program had an overall effect on the outcome, but we could not conclude it was 
meaningful. Interestingly, the program failed to have a meaningful impact on both of the 
targeted mechanisms (M1 and M2) suggesting that the program activities need to be 
reexamined to figure out how to better bring about change in the mediators. Both of the 
targeted mediators seem to affect Y, one in a linear fashion (M1) and the other in a non-
linear fashion (M2). The program designers need to get a better handle on the reasons for 
the non-linear function for M2 and Y and address those dynamics accordingly. This is 
because the non-linear function is such that changing M2 does not result in much change 
in Y given the operative non-monotonic dynamics. The program designers need to 
actively take into account the non-monotonicity.  
    The direct effect of the treatment condition on Y after controlling for the mediators 
indicate that the program somehow was affecting Y despite its failure to meaningfully 
change the mediators. Why? What unmeasured mechanisms is the program unwittingly 
changing to produce change in Y? 
   
Concluding Comments on Generalized Additive Models 

Generalized additive models are a powerful tool for analyzing RET data that contain  
non-linear relationships, either among the primary modeling variables or the covariates. 
Strengths of the approach include the ability to mix linear and non-linear relationships, 
the ability to address overfitting, and relatively straightforward interpretations. GAMs are 
a good tool to have in your analytic toolbox.  
 As applied to mediation modeling, GAM lacks the ability to use a product 
coefficient method to address omnibus mediation but one can rely on the joint 
significance test as a reasonable alternative. As I have stressed throughout this book, for 
purposes of program evaluation, omnibus mediation coefficients are of lessor import 
compared to the in-depth and careful analyses of the separate links in mediational chains. 
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I did not address matters of model fit for GAMs, but like all LISEM methods, over-
identified GAMS can be evaluated by using strategically defined independence tests (see 
Chapter 8). For the current RET example, the model is just-identified except for the 
vacuous correlated disturbances for M1 and M2, so such independence tests are moot.      
 My own experience with GAMs is focus on the general trends in the smooths that 
are produced rather than get too caught up in all the smaller “wiggles” that are invariably 
present. After all, both sampling error and measurement error are at work to create noise 
in the system. I think an orientation that seeks to find the signal amidst the noise and to 
keep the big picture implications front and center is key.  
 The mgcv package is flexible and powerful and I have only scratched the surface of 
its capabilities here. If you are serious about using GAMs, I recommend you explore the 
package in more depth as well as the GAM-related resources on my webpage.  

MEDIATION ANALYSIS AND CLUSTER ANALYSIS 

Cluster analysis refers to a class of statistical methods that identifies subgroups of 
individuals who show common profiles across a set of variables within a subgroup but 
whose profiles are distinct when contrasted with individuals in other subgroups. The 
subgroups are called clusters. In RETs, cluster analysis might be applied to multiple 
outcomes to define meaningful multivariate outcome patterns rather than just considering 
one outcome at a time. For example, in a sample of fourth and fifth grade children, 
Martinez-Vizcaino et al. (2021) cluster analyzed two outcomes related to physical fitness, 
(1) body mass index (BMI) and (2) cardiorespiratory fitness. They found evidence for 
four clusters or groups of individuals defined as follows: (1) children who were both fat 
and unfit, (2) children who were unfat but unfit, (3) children who were fat but fit, and (4) 
children who were unfat and fit. Membership in the four categories was thought to be 
impacted by three executive functions (1) inhibition, (2) working memory, and (3) 
cognitive flexibility. Although they did not do so, Martinez-Vizcaino et al. could have 
designed an intervention to impact each mediator and then examined how the mediators 
are associated with the cluster categories to which children belonged in an RET. 

 As another example, Mallett et al. (2011) were interested in understanding 
excessive alcohol use in adolescents and posited that such use would be impacted by two 
parenting variables, (a) how warm and affectionate versus cold and inexpressive of 
affection the adolescents’ parents were, and (b) how controlling and strict versus 
permissive the parents were. Mallet et al. cluster analyzed measures of these two 
parenting mediators (warmth and control) and found evidence for four types of parenting 
styles, (1) parents who were warm and controlling (what Mallet et al. called authoritative 
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parents), (2) parents who were warm and permissive (called permissive parents), (3) 
parents who were cold and controlling (called authoritarian parents), and (4) parents who 
were cold and permissive (called neglectful parents). These four types of parents were 
treated as a mediator of adolescent future alcohol use. Mallet at al. developed an 
intervention to shift parenting styes towards the authoritative parenting subgroup which, 
in turn, was negatively associated with their child’s use of alcohol in the ensuing year. In 
contrast to the Martinez-Vizcaino et al. study that applied cluster analysis to outcomes, 
Mallet et. applied cluster analysis to the presumed mediators. In both cases, the analyzed 
variables are treated as being meaningfully synergistic with one another and were 
analyzed accordingly rather than as separate variables. 

Cluster analysis can be particularly useful when there are larger numbers of 
variables involved. For example, instead of two mediators, perhaps there are six 
mediators for the case of physicians communicating with their patients (e.g., the variables 
of empathy, using a formal vs. informal style, soliciting feedback, emphasizing 
biomedical information, addressing psycho-social issues, and so on). If one thinks of 
physicians as potentially having scores of low, medium, or high on each dimension, there 
are 36 = 729 different combinations of communication “styles” across the 6 dimensions; 
there are likely to be many sparse “cells” in the analysis. A cluster analysis might reveal  
there indeed are only eight combinations of the six dimensions that meaningfully occur in 
practice, each said to represent a different communication style. One might then explore 
how these particular communication styles are linked to outcomes like patient satisfaction 
and adherence to medication protocols and, in turn, how one might develop an 
intervention to shift physicians from one communication style to a preferred style. 

Such approaches are distinct from using linear models to explore how a set of 
mediators are linked to outcomes because the mediators are treated as “multivariate 
wholes” that combine synergistically to impact outcomes. Or, when cluster analysis is 
applied to outcomes, the focus is on how the mediators are linked to meaningful outcome 
patterns across multiple outcome dimensions. To be sure, there are complex issues that 
must be addressed when working within such frameworks but cluster analysis is 
nevertheless a useful “non-linear” tool that can be used to good effect in many contexts.  

There are different types of cluster analysis. I consider here what is known as 
partition clustering (also called centroid clustering). There also is hierarchical 
clustering (known also as connectivity-based clustering) and mixture modeling, the 
latter of which I address in a later section of this chapter. There are other forms of cluster 
analysis besides these three, including distribution based clustering models and density 
based clustering models. Discussion of them is beyond the scope of this chapter. 
Interested readers should see Everitt et al. (2011) and Hennig et al. (2015).   
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Central to many forms of cluster analyses are distance scores between all possible 
pairs of individuals with the scores representing how similar/dissimilar a given pair of 
individuals is on the variables that are subjected to the cluster analysis. Individuals with 
small distance scores typically are grouped into the same cluster; individuals with large 
distance scores are grouped into different clusters. Distance scores are at the heart of 
certain clustering methods so I elaborate on them here. 

One common index of distance is the squared Euclidean distance score. It is 
defined as the sum of the squared differences between scores for two individuals across 
the target variables. For example, suppose adolescents rate statements about discipline 
strategies their mothers would use if they broke a serious family rule using a 0 to 10 scale 
(where 0 s strong disagreement with the statement, 5 is neither agreement nor 
disagreement, and 10 is strong agreement with the statement). Here are the statements: 

 
X1 = She would take things away from me (like my computer, cell phone or TV) 
X2 = She would ground me.  
X3 = She would hit me.  
X4 = She would cut me off from my friends - make me stop seeing them.  
X5 = She would yell at me. 
X6 = She would let me know how disappointed she is. 
X7 = She would be cold towards me.  
X8 = She would try to explain to me why I should not do it again. 

Here are scores that two adolescents might provide for the statements: 

              Squared 
 Adolescent 1  Adolescent 2  Difference  Difference 
 

X1  8    9        -1         1 
X2  2    0            2         4 
X3  0    2             -2         4 
X4  2    1               1         1 
X5  2    1               1         1 
X6  8    9             -1         1 
X7  0    0               0         0 
X8  2    2               0         0 
 

                           Sum:  12 

The third column is the difference between the ratings for the two adolescents and 
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the fourth column is the square of these differences. The sum of this latter column is the 
squared Euclidean distance score, which for these two individuals, is 12. If two 
individuals have identical profiles, the Euclidean distance score is zero. If they have 
maximally discrepant profiles, then for this example the Euclidean distance score would 
be 800. A score of 12 indicates profiles that are fairly similar. Sometimes instead of 
working with raw scores on the metrics, analysts will standardize scores on each variable. 
This is typically done when the variables have different metrics, such as when one 
variable is scored on a 1 to 5 scale and another variable is scored on a 1 to 100 scale. In 
the present example, all variables have a common metric (0 to 10), so standardization is 
not used. 

A second type of distance score is called the Euclidean distance score and is 
simply the square root of the squared Euclidean difference score. For the above example, 
it equals the square root of 12, which is 3.46. By taking the square root, the distance score 
is somewhat closer to the natural metric of the variables, but it  remains a bit counter-
intuitive. A third index is called the Manhattan distance score which is the sum of the 
absolute differences between profiles across variables. For the above two individuals, I 
calculate the absolute value of the entries in column 3 and then sum the scores, yielding a 
value of 8. This is a more intuitive distance index. If I divide it by the number of 
variables, 8, it reflects the average disparity between variables for the two individuals, in 
this case, 8/8 = 1.0. The Euclidean distance score gives more weight to larger disparities 
than smaller disparities when forming the aggregate. The Manhattan distance scores give 
equal weight to disparities when forming the aggregate, whether those disparities are 
large or small.  

K-means Cluster Analysis: Key Issues 

A popular approach to partition-based clustering is k-means cluster analysis. In this 
framework, each cluster is conceptualized as having a centroid (a mean value) on each 
target variable and the focus is on defining clusters so as to minimize within-cluster 
variation on each of the target variables relative to this centroid. The general strategy is to 
divide the data into groups such that the within-cluster variability within each group is as 
small as possible. Using the terminology of analysis of variance, it minimizes the sum of 
squares within-groups with the frequent side effect of maximizing the sum of squares 
between-groups. Different algorithms have been suggested for k-means cluster analysis 
including the Hartigan-Wong method, the Lloyd method, the Forgy method, and the 
MacQueen method (see Everitt et al., 2011, and Hennig, Meila, Murtagh and Rocci, 
2015, for a description of these methods). The Hartigan-Wong algorithm generally 
performs best (but not always). Most of the methods use an iterative strategy with the 
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following steps: (1) select k starting locations (multivariate centroids), (2) assign 
individuals to the group/cluster to which their scores are closest to the centroid, (3) 
calculate the within-group sums of squares or some other index of within group 
variability, (4) adjust the coordinates of the k locations to reduce this variance as much as 
possible, (5) re-assign individuals to groups and re-assess the within group variance to 
see if it is reduced, and (6) repeat this process until a stopping criterion is met.  

In k-means cluster analysis, researchers must specify a priori the number of clusters 
to extract. One mindset for this task is to think of each possible number of clusters as a 
different model that should well represent the population data. The task at hand, then, is 
choosing the model that best represents the data. There is a two cluster model, a three 
cluster model, a four cluster model, and so on and we want to choose the “best” of these 
models. There are a variety of diagnostics that researchers use to accomplish this task. 
Traditional k-means clustering performs well when the number of individuals in the 
population clusters is about the same (the proportion of individuals in a cluster is often 
referred to as cluster density) and the clusters each are spherical in shape. To be sure, k 
means cluster analysis can handle some deviations from these properties, but depending 
on additional facets of the population structure, k-means clustering can be misleading. I 
describe in this chapter three different clustering methods each of which is more flexible 
than traditional k-means cluster analysis, namely trimmed k-means cluster analysis, 
medoid cluster analysis, and consensus clustering. Before presenting these methods, I 
consider background material for three key issues, (1) choosing the number of clusters, 
(2) interpreting the clusters, and (3) relating cluster membership to other variables.  

Choosing the Number of Clusters 

When conducting a k-means cluster analysis, each individual is assigned to a 
subgroup/cluster at the final iteration. We can conceptualize the final cluster solution as a 
qualitative variable (the cluster the individual is in) that can be used in later statistical 
modeling. For example, in a two cluster model, the variable of cluster membership has 
two levels; in a three cluster model, the variable has three levels; and so on.  

One way to evaluate the different cluster models is to examine the overall percent 
of variation in scores that each model accounts for. This reflects cluster separation. There 
are different ways of indexing separation but one strategy is to calculate an overall index 
of variability across all of the measures across all individuals, which is usually referred to 
as a sum of squares total. Standard analysis of variance methods are then used to 
calculate the percent of this variation that can be accounted for by a two cluster model, by 
a three cluster model, by a four cluster model, and so on. Obviously, the percent of 
variance accounted for will improve as we increase the number of clusters. However, 
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what one looks for is where there are large changes in the percent of variance accounted 
for by each successive model versus where the changes become trivial, much like a scree 
test in factor analysis. This reflects what is called the elbow criterion. In practice, such 
elbows often are ambiguous, a  shortcoming of this method of evaluation. There are other 
drawbacks but researchers often use this as a first step to gain a sense of the number of 
clusters that are appropriate. Here are the percentages of variance accounted for by each 
model for up to 10 clusters when I applied the approach to the discipline example: 

            Model    Percent of Variance 
(Number of Clusters)                Accounted For 
 
     2     23.4% 
     3     36.3% 
     4     41.8% 
     5     46.4% 
     6     50.8% 
     7     53.7% 
     8     56.8% 
     9     58.9%   
   10     60.3% 
 
If I use as a rough cut-off of increments of 5% explained variance or more, a model with 
about four clusters seems viable.  

The algorithms of k-means cluster analysis assign individuals to groups with the 
intent to minimize the sum of squares within clusters, i.e., they minimize the sum of the 
squared distance between a person’s score on X and the mean of X for the group/cluster 
to which s/he belongs across all X. Some methodologists also apply an elbow or  scree 
test not just to the percent of variance accounted for by each model but also to the overall 
sum of squares within for each model or some similar index of within cluster variability. 
The sum of squares within values can be quite large and non-intuitive, so it is common to 
examine a plot of them to apply the scree test. The plot that results for the discipline 
example is shown in Figure 15.23. There is not a clear, definitive “elbow” in the plot 
where the sum of squares within flattens out, but the trend again seems to favor a 4 
cluster model, give or take. 
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Figure 15.23: Plot of sum of squares within 

A third approach to evaluating the models is to calculate information fit indices for 
each model in the form of the classic Akaike Information Criterion (AIC) or the Bayesian 
Information Criterion (BIC). One then determines which model has the largest likelihood 
of producing the data (see Pelleg and Moore, 2000). I elaborate this approach below for 
trimmed k-means cluster analysis.  

A fourth approach often used to choose the number of clusters is to compare the 
average silhouette width for each model. The silhouette width is an index that reflects 
both the compactness of scores within clusters and the separation of clusters (Rousseeuw, 
1987). Consider, as, an example, a three cluster model. For each individual in a given 
cluster, I can calculate the average distance that a person is from all other people in the 
same cluster. I average these values across all individuals in the cluster and refer to this 
quantity as A. Next, for each individual in that cluster, I calculate the average distance the 
person is from all other people in a different cluster and average these values. I do this for 
each of the other clusters. I refer to this value as B. I then subtract A from B to yield an 
index of separation relative to homogeneity. I divide this difference by the larger of A or 
B, yielding a value between 0 and 1.00. The larger the value, the better articulated the 
clusters are and the more we prefer the model. Silhouette values near 0.50 or larger are 
generally considered to reflect reasonable cluster structuring, although there is 
controversy about this. Here are the silhouette width values for the discipline example: 
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            Model   Average Silhouette 
(Number of Clusters)                      Width 
 
     2           0.22 
     3           0.35 
     4           0.42 
     5           0.26 
     6           0.30 
     7           0.32 
     8           0.34 
     9           0.35   
             10           0.36 
 
The results tend to favor a four cluster model. It turns out there are different types of 
silhouette indices each of which is interpreted somewhat differently. I describe others to 
you when I consider consensus clustering.  

The different indices for model “fit” sometimes converge on what is the best 
model and sometimes not. If there was always strong convergence between them, we 
would not bother computing and examining multiple indices because once you have 
examined one, you have your answer. Coupled with the interpretability of the clusters 
and the size of the clusters (we often are not interested in clusters that are extremely 
small), we typically use the above considerations (perhaps more) to make our final 
choice. Ultimately, the decision about the number of clusters to extract carries with it a 
degree of subjectivity. Analysts who work with machine learning methods often seek to 
formulate automated decision rules so that a “machine” can make the decision. I 
personally think that given today’s technologies, this is asking for trouble.  

Interpreting the Solution  

To gain additional perspectives on the chosen cluster model, we usually examine the 
mean scores for each variable across clusters, the standard deviations for each variable in 
each cluster (hoping they are small, which implies within-cluster homogeneity), and the 
relative sample size for each cluster, to gain a sense of how frequent the cluster occurs in 
the population. Here are the means for the four cluster solution for the discipline styles: 
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Discipline Style Cluster 1 Cluster 2 Cluster 3 Cluster 4 

     
Would take things away (like cell phone)     1.52     9.45     9.44     9.37 
Would ground me      1.90     9.17     9.11     9.42 
Would hit me      2.04     3.40     1.31     8.86 
Would cut me off from my friends      1.72     7.90     7.68     8.27 
Would yell at me     3.91     4.19     3.81     9.53 
Would tell me how disappointed she is     3.48     3.36     9.22     9.45 
Would be cold towards me      1.95     1.32     8,30     9.12 
Would explain why I should not do it     3.67     9.71     9.25     8.78 

Recall that the metric for each variable is from 0 to 10 with higher scores 
indicating greater levels of agreement. Cluster 1 is characterized by mothers who are 
likely lax because they do not exhibit any of the discipline strategies. Cluster 4 is 
characterized by mothers who are likely harsh because they exhibit use of virtually all of 
the discipline strategies. Cluster 2 is characterized by mothers who exert power assertion 
by depriving their adolescent child of desired objects (e.g., cell phones, access to friends 
and events) but who also try to explain the reasons why the transgression was bad. 
Cluster 4 is mothers similar to those in Cluster 3 but who also use guilt induction and 
rejection. The percent of mothers in the four clusters were 12%, 32%, 25%, and 31% for 
clusters 1 through 4, respectively. The within-group standard deviations for each variable 
(not shown here) tended to be around 2.0    

Some researchers conduct one way analyses of variance and associated pairwise 
mean comparisons for each input variable as a function of cluster membership to 
document cluster differences in means. Some statisticians argue that these tests are 
dubious because they inherently embrace a two-step process for inference, namely (1) the 
accurate recovery of a population cluster structure through the analysis of sample data 
followed by (2) the accurate recovery of differences in population cluster means through 
traditional F tests following Step 1. The accuracy of significance tests in the context of 
this two-step approach are not well documented. I sometimes pursue these tests but as 
rough rather than definitive guides about cluster differences. If I do so, I do so with 
caution. Some methodologists would argue to just ignore the significance tests. 

It is common for researchers to provide names for the different clusters to help 
interpret them. Such labels usually are subjective and can be subject to the naming fallacy 
I discussed in Chapter 3, i.e., the labels may not map all that well onto the actual cluster 
content; just because you have given the cluster a label does not mean that the cluster 
reflects what the label implies.       
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Relating Cluster Membership to Other Variables 

As noted, one can create a new nominal variable in the data to represent cluster 
membership, i.e., which of the four clusters the person is classified into. This variable can 
then be used in statistical modeling with other variables. For example, how do the 
different discipline style clusters relate to engagement in future problem behaviors on the 
part of adolescents? Is ethnicity of the mother related to the multivariate pattern of 
discipline strategies as reflected by the clusters?  And so on. 

One difficulty with such modeling is that membership in a given cluster is 
sometimes conceptualized as probabilistic rather than absolute. Thus, a given mother 
might have a certain probability of being in Cluster 1, a probability of being in Cluster 2, 
a probability of being in Cluster 3, and a probability of being in Cluster 4. If a particular 
mother is assigned to Cluster 2 in a k-means cluster analysis, then this is analogous to 
treating the four probabilities as having the values 0.0, 1.0, 0.0, and 0.0, respectively. 
However, this might be unrealistic. Perhaps the classification is not so clear-cut and the 
probabilities of being in the four classes are more akin to 0.0, 0.55, 0.45, and 0.0 for the 
mother. In the cluster analytic literature, the latter view of classification is called fuzzy 
clustering whereas a more absolute view of classification is called crisp clustering. 
Crisp clustering means that each observation is fully assigned to a cluster with a 
probability of 1.0. By comparison, fuzzy clustering and mixture approaches estimate a 
cluster probability for each observation for each cluster and then take this uncertainty into 
account when estimating parameters relating cluster membership to other variables. The 
matter of using fuzzy versus crisp clustering may not be all that problematic if the true 
probabilities of membership in the different clusters are well differentiated, a concept I 
consider in more depth when I cover mixture models. Strategies related to k-means 
clustering that use fuzzy cluster probabilities have been developed (see Kaufman & 
Rousseeuw, 1990). The bottom line is that when using crisp clustering methods, caution 
always must be taken when making inferences because of the assumption of certain 
cluster classification.  

Matters of Metric 

When the variables being studied are on the same quantitative metric, application of k-
means cluster analytic methods is reasonably straightforward. However if the variables 
are on different metrics, the situation is more complex. Suppose I want to conduct a 
cluster analysis on 10 different personality traits, but the traits are measured on different 
metrics, with some scales ranging from 0 to 10, others from 10 to 50, and so on. In 
general, variables with larger variability due to differing metrics will dominate the cluster 
analysis. In some cases, this will produce artifactual results.  
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Some researchers deal with such scenarios by standardizing variables before 
conducting the cluster analysis. The analysis is then undertaken on the standard scores. 
Care must be taken when using this strategy because when we standardize variables, it 
has the effect of equating the variances of each variable in the set, i.e., all the X will have 
a variance of 1.0. Does a standard deviation (SD) carry the same meaning for each X?  If 
the use of physical punishment has a small SD then does a standard score of 1.0 have the 
same meaning as a standard score of 1.0 for the use of guilt for which there is greater 
variability? The differences in variability could be meaningful and one needs to think 
through the implications of transforming away those differences.       

Alternative strategies for equating metrics in cluster analysis have been suggested 
by Steinley (2004). One alternative that preserves variance differences is to re-score each 
variable using POMP methods (see Chapter 3) so that all variable metrics range from 0 to 
10, where 0 is the lowest possible response on the scale, 10 is the highest possible 
response, and 5 is the scale midpoint. Consider a variable whose response metric is from 
10 to 30. First subtract the lowest possible score (in this case, 10) from each person’s 
score so the metric now ranges from 0 to 20 rather than 10 to 30. Next, divide each 
person’s transformed score by the highest score on the new metric (in this case, 20). Now 
the metric ranges from 0 to 1.0. Then multiply this result by 10. The new metric will be 
from 0 to 10 with the properties described above but without forced equal variances 
across variables. Traditional k-means clustering relies on variables having approximately 
equal variances. The trimmed k-means approach I discuss later relaxes this assumption.        

A third strategy sometimes used to supposedly equate metrics is to apply principal 
components analysis (PCA) to the target variables in ways that yield standardized 
component scores for each individual that are orthogonal to one another. An advantage of 
this approach is that it controls for the number of indicators of the same construct that are 
included in the cluster analysis. For example, if I study school contexts and most of my 
variables in the cluster analysis focus on school bonding and are highly correlated with 
one another, then the cluster solution will largely reflect school bonding rather than other 
features of the school context as well. The principal components strategy avoids this 
problem because all of the bonding variables would “load” on the same component. A 
disadvantage of the PCA approach, among others, is that we often are interested in the 
observed variables in their own right, not the components thought to underlie them.  

Mixture modeling, which I discuss later in this chapter, provides yet another 
approach to the problem of metric differences. Parenthetically, k-means cluster analytic 
strategies generally are not appropriate for variables with binary metrics (see the 
discussion by IBM Support, 2015). Mixture modeling can handle both binary metrics, 
continuous metrics, and mixtures of binary and continuous metrics. 
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In sum, when faced with variables in a cluster analysis that have different metrics, 
we usually need to enact procedures that will put them on functionally comparable 
metrics. One can do so by standardizing the variables, using POMP scoring, generating 
components scores, or resort to mixture modeling. Each approach has strengths and 
weaknesses.  

Trimmed K-means Cluster Analysis 

Trimmed k-means cluster analysis is a variation of traditional k-means clustering. It is 
designed to reduce the adverse impact of outliers on the cluster solution by trimming or 
removing a certain proportion of data points that may contain the outliers. The amount of 
trimming is specified as a proportion; 0.05 trimming represents the removal of 5% of the 
cases, 0.10 represents the removal of 10% of the cases, and so on. Traditional k-means 
cluster analysis can be viewed as a special instance of trimmed k-means cluster analysis, 
namely the case where trimming is set to 0.0.  

Several trimming approaches to cluster analysis have been developed. On my 
website, I provide access to the R package tclust called Robust clustering which offers a 
flexible method for trimmed cluster analysis (Fritz et al., 2012). As discussed in Chapter 
6, trimming is used in different ways in robust statistics but its application to multivariate 
cluster analysis is not a simple, straightforward enterprise. In cluster analysis, cases might 
be trimmed within a cluster because they contribute adversely to large within cluster 
variability but they also can be trimmed if they are bridge points that lie near the borders 
of two different clusters but not within either one. A useful feature of the tclust method is 
that instead of requiring the analyst to specify a priori the multivariate regions to be 
trimmed, the method takes the entire data structure into account to determine which parts 
of the sample data should be discarded. Such an approach has been called self-trimming.  

The mathematical details of the tclust method are described in García-Escudero et 
al. (2008, 2011) and Fritz et al., (2012). I do not delve into the details here; consult these 
references if you are interested in them. The approach uses a trimmed classification 
likelihood method that assumes multivariate normally distributed data. There are five key 
parameters you need to specify when applying the method. The first is the cluster 
weights, which can be parameterized as being either equal or unequal. When the weights 
are constrained to be equal, the algorithm gives preference to cluster solutions that have 
approximately equal sizes. When unequal weights are specified, the algorithm is tolerant 
of discrepant cluster sizes.  

The second parameter to specify places constraints on the within cluster 
covariance matrices between the target variables. Traditional k-means analysis assumes 
the covariance matrices are equal across the clusters. The tclust program allows you to 
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relax this constraint. There are two ways of relaxing it. The first focuses on the 
eigenvalues of each covariance matrix and applies a constraint to the largest and smallest 
eigenvalues across the matrices. If the ratio of these eigenvalues is constrained to equal 
1.0, then the covariance matrices will be comparable per traditional k-means clustering 
algorithms. If the ratio of the eigenvalues is allowed to be greater than 1.0, then this 
relaxes the equal covariance constraint. The user is allowed to set the maximum value 
that the ratio can take, such as a ratio of 50, with higher ratio numbers allowing for more 
discrepant covariance matrices across the clusters. The second strategy relaxes the 
covariance constraint by forming the ratio of the largest and smallest determinants of the 
covariance matrices. Again, letting this ratio be greater than 1.0 relaxes the equal 
covariance constraint. The larger either of these ratios is allowed to be by the user, the 
more “wiggle room” the algorithm has in relaxing the constraint, allowing for more 
heterogeneity in the clusters. The upper limit of the ratio you want to use is called the 
restriction factor. Values of the restriction factor close to 1.0 imply roughly “equally 
scattered” clusters. Values less than 1.0 are not permitted.  

The initial trimmed k-means method proposed by Cuesta-Albertos et al. (1997) is 
implemented in the tclust program by using the eigenvalue ratio restriction type, setting 
the restriction factor to 1, and specifying equal weights. If you further set the amount of 
trimming to zero, you obtain standard k-means cluster analysis. The tclust program is 
useful because it permits you to use more flexible trimmed models by manipulating the 
above parameters. When the restriction factor is made larger with the eigenvalue 
restriction, the effect is to allow relative cluster sizes to be unequal and for deviations 
from sphericity (Fritz et al., 2012). When the restriction factor is loosened with the 
determinants restriction, it allows for ellipsoids with differences in their relative volumes 
as well as promoting affine equivariance. Fritz et al. (2012) recommend the use of 
eigenvalue restrictions coupled with a restriction factor near 1.0 if you think spherical 
cluster structures are best. They recommend the use of determinant restrictions to 
promote affine equivariance and suggest using a large restriction factor (say, 50) to 
produce higher quality model likelihood fit indices, which I discuss below.17 In the final 
analysis, the tclust software gives you considerable flexibility in controlling the clustering 
algorithm that you use.   

Two additional matters you need to consider when using the tclust program are the 
specification of the number of clusters to target and the amount of trimming to use. 
Higher levels of trimming often have the advantage of “cleaning up” cluster definition 
but this comes at a cost because individuals who are trimmed are not assigned cluster 

 
17 Affine equivariance implies analyses will produce consistent results even after the data undergo linear 
transformations.  
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membership. This, in turn, reduces sample size if the cluster-defined nominal variable 
that results from the analysis is embedded into a larger (RET) framework with additional 
variables in it. This is because the cluster variable will have missing data on it. Some 
researchers lump all the trimmed cases into a separate category on the nominal variable 
when embedding the cluster variable into a larger framework, but the category itself is 
usually theoretically vacuous. The amount of trimming also can impact evaluations of the 
number of clusters to use in one’s final model (Fritz et al., 2012). The tclust program 
reports likelihood indices for model fit as a function of different numbers of clusters and 
different levels of trimming to help you make decisions about these two parameters, as I 
illustrate below.  

In the final analysis, you must use your judgment about what parameter values 
will produce the most meaningful cluster solution taking into account substantive 
considerations, cluster sample sizes, cluster homogeneity, and the empirics of the cluster 
analysis. Some methodologist argue that there is no one correct cluster solution; that it is 
more a matter of how you decide to split up the data and the justifications you make for 
those choices. Ultimately, however, when using trimmed k-means cluster analysis, you 
will have need to settle upon the type of covariance restrictions to use (eigenvalues or 
determinants), the size of the restriction ratio to use, whether you want to allow equal or 
unequal weights, the amount of trimming to use, and the number of clusters to extract. I 
often vary these choices across different computer runs to explore the robustness of 
choices I make.         

Numerical Example 

To illustrate the trimmed k-means approach with RETs, I use a variant of the Mallett et 
al. (2011) study that relates parental warmth and parental control to a continuous outcome 
that reflects adolescent propensities to refrain from or abstain from engaging in 
adolescent problem behaviors (such as smoking, getting drunk, using drugs) for a group 
of high risk adolescents. The outcome derives from a multi-item scale with scores that 
range from 1 to 5. The total score is the average of item responses; higher scores indicate 
a more positive propensity to refrain from problem behaviors. This measure was obtained 
6 months after parents of the adolescent had participated in an intervention (versus a 
control group) to affect their parenting styles with respect to expressions of warmth and 
the control they exert over their child. These mediators, parental warmth and control as 
reported by adolescents, were measured 3 months after the intervention. Each measure 
ranged from 0 to 10. Higher scores indicated being more warm/affectionate and more 
controlling, respectively. The scales were treated as having comparable metrics which 
was not unreasonable given their format. The intervention was designed to teach parents 
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about the four parenting styles mentioned earlier and to help them achieve a style 
characterized by authoritative parenting (high warmth and reasonably high levels of 
control and monitoring). The treatment condition variable was scored 0 = participated in 
the control condition, 1 = participated in the intervention condition. This hypothetical 
example uses only one covariate for the outcome. In real world modeling, more 
covariates would be included. Their inclusion is straightforward. The N was 750. Figure 
15.24 presents the RET influence diagram.  

 

  

Covariate 

Parenting Style    
(4 levels)

Intervention 
vs. Control

p1

d2

p2

p3

b1

Propensity to 
Avoid PBs

d1

 

FIGURE 15.24. RET example with cluster analysis 

The path coefficients are represented by ps and the coefficient for the covariate is 
represented by b. The parenting style variable is nominal with four levels corresponding 
to the four clusters that evolved from the cluster analysis (reported in more detail below). 
Because it is nominal, many researchers would not include a disturbance term for 
parenting style, but some choose to do so in recognition that there are variables other than 
the treatment condition that affect it (see Chapter 12 for elaboration). Given that the 
nominal parenting variable is both an “outcome” and a predictor in the mediational chain 
in which it is embedded, I will use limited information structural equation modeling 
(LISEM) for the analysis (see Chapters 8 and 13). 
 Per Chapter 7, there are two core equations to be estimated given there are two 
endogenous variables, namely (1) the propensity to avoid problem behaviors and (2) 
parenting style. One equation predicts the propensity to avoid problem behaviors from 
parenting style (dummy coded) and the covariate. The second equation predicts parenting 
style from the treatment condition using a multinomial logistic framework. I first, 
however, turn my attention to the cluster analysis to define the structure of the parenting 
style nominal variable. The data I analyzed are available for downloading on my website. 
 To conduct the cluster analysis, I use the program Robust clustering on my website. 
Based on past research on parental warmth and control, I expect a priori four parenting 
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clusters that correspond to those of Mallett et al. (2011), namely authoritative parents, 
permissive parents, authoritarian parents, and neglectful parents. I specify in the program 
four clusters as the number I initially want to target and ask for 5% trimming. I set the 
restriction type to determinants, the restriction factor to 50, and I allow for unequal 
weights in order to approach the analysis with more flexibility than the traditional 
trimmed k-means model by Cuesta-Albertos et al. (1997). For the sake of space, I do not 
present exploratory preliminary analyses I normally would pursue.      

The program output initially consists of a table of (log)likelihood values for 
models with different numbers of clusters (2 through 10) at different levels of trimming. 
This table is used to help decide on the number of clusters to use in one’s model and the 
degree of trimming. A formal definition of the likelihood values is provided by García-
Escudero et al. (2011) and Fritz et al., (2012) and also in Chapter 7. The closer the 
reported likelihood value is to zero (i.e., the less negative it is), the better the model fit. 
The table itself is not definitive for making decisions about the number of clusters and 
degree of trimming. Rather, it  is used in conjunction with other information, such as 
cluster plots, cluster sample sizes, and cluster centroids. Here are the cluster centroids, 
sample sizes and the log likelihood table from the output: 

 
Cluster centroids 

           C 1       C 2      C 3        C 4 
warmth  7.098451  7.020630  3.129776  3.245728 
control 2.980310  7.015685  6.985242   2.778886 

Cluster sizes  
        Sample size    Percent of Total 
C 1         303        42.556 
C 2         179        25.140 
C 3         143        20.084 
C 4          87       12.219  

 
Classification likelihoods for model fit by num of clusters (k) and trimming  
 
                            Level of trimming 
k      0      0.01     0.03     0.05     0.08     0.10     0.15      0.20 
 
2   -3176.9  -3114.4  -3011.4  -2913.9  -2777.1  -2680.2  -2429.9  -2219.4 
3   -3091.9  -3027.8  -2925.4  -2829.4  -2696.1  -2608.7  -2373.3  -2159.3 
4   -3055.1  -2988.1  -2880.8  -2779.8  -2645.6  -2554.0  -2335.6  -2135.5 
5   -3048.0  -2987.8  -2877.3  -2779.5  -2641.8  -2554.7  -2335.6  -2132.7 
6   -3053.9  -2987.2  -2877.9  -2775.7  -2658.1  -2549.2  -2327.8  -2130.6 
7   -3049.2  -2979.7  -2879.4  -2776.8  -2646.0  -2543.3  -2321.0  -2121.7 
8   -3048.1  -2986.2  -2885.7  -2794.4  -2640.6  -2541.8  -2330.8  -2125.1 
9   -3061.9  -2980.2  -2883.9  -2774.5  -2631.7  -2549.8  -2332.2  -2132.3 
10  -3049.4  -2997.4  -2888.1  -2780.6  -2634.2  -2548.1  -2328.1  -2116.6 
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The cluster plot appears in Figure 15.25 and plots the four cluster solution, which 
is what I asked the tclust program to do for this initial run.18  The cluster plot is analogous 
to a scatter plot for the target variables but with different symbols used for people in the 
different clusters. A sphere/ellipsoid around the cluster centroid is shown that surrounds 
individuals in the same cluster. It is a 95% confidence ellipsoid band. The trimmed cases 
are shown as empty circles and generally occur outside the confidence bands. 
 

 

Figure 15.25. Cluster plot for four cluster solution 

 García-Escudero et al. (2011) recommend as a rule of thumb using the classification 
trimmed likelihood table by first choosing the number of clusters, k, as the smallest value 
of k where the likelihood difference between the model with k clusters versus k+1 clusters 
is always close to zero, except for very small values of trimming. In the current case, this 
would be four clusters because across the different trimming levels, the model likelihoods 
for 4 clusters versus 5 clusters are quite close. For trimming, one seeks to identify an  
"elbow" point for the settled upon value of k where further increases in trimming do not 
meaningfully improve the likelihood. In this case, no such elbow point is evident. 

The cluster plot shows the four clusters as being relatively distinct and without 
much overlap. Each cluster also represents a reasonable segment size per the population 

 
18 Cluster plots are straightforward when only two variables are cluster analyzed. When more than two variables are 
analyzed, the two dimensional plots are generated using either principal components analysis or discriminant 
function analysis. See the document on my website titled Cluster Plots with Two or More Target Variables.  
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under study (see the estimated percentage of people in each cluster).19 The cluster plot 
makes evident how trimming “cleans up” the cluster solution by trimming away cases 
outside the ellipse bands. It also reduces within cluster variability. Note, however, that if 
trimming is set too high, entire clusters might be trimmed away or people who should be 
classified as being in a cluster may be excluded from it, potentially distorting 
relationships between cluster membership and other variables in the broader conceptual 
framework. Also, higher levels of trimming can make the clusters smaller in size perhaps 
reducing their interest value. Conversely, if trimming is set too low, then groups of 
outliers might form that are known as spurious clusters that have little substantive 
meaning. Ideally, one sets trimming values so as to downweight true outliers while still 
preserving a meaningful underlying cluster structure. I often examine cluster plots for 
different trimming levels to visually evaluate outlier removal and cluster definition. For 
the current example, a 5% trimming level seems reasonable. 

The pattern of cluster centroids for the four cluster model all make conceptual 
sense and map onto results from previous research (e.g., Mallett et al., 2011). They well 
reflect the parenting styles of permissive, authoritative, authoritarian, and neglectful 
parents. Although I do not present quantitative indices of within-cluster variability here, I 
gain a sense of it in the plots. It seems reasonable. I show the quantitative indices below.     

As you can see, choosing the number of clusters and amount of trimming is a 
subjective process. The final choice depends on the meaning of the data, selected 
statistical properties of the data, the aims of clustering, logical coherence, and past 
research. In this case, I decide to move forward with four clusters with 5% trimming.  

Parenthetically, sometimes the tclust program issues a warning during execution 
that the cluster solution is “artificially restricted.” This usually means that the restriction 
factor may have been set too low and the program wants to be sure that this is what you 
intend. If the specified value for the restriction factor is more or less arbitrary, you might 
increase the restriction factor until the warning disappears (Fritz et al., 2012).  

The restriction factor impacts what cluster shapes are permissible. When the value 
is close to 1, clusters that are spherical with similar scatter are preferred by the underlying 
computational algorithm. Figure 15.26 shows two cluster plots for the current data, one 
(on the left) generated using the parameter values specified earlier and a second plot (on 
the right) for a traditional trimmed k-means analysis with eigenvalue restrictions (instead 
of determinant restrictions), a restriction factor of 1 (instead of 50), and equal weights 
(instead of unequal weights). Both analyses used 5% trimming and extracted four 
clusters. Note the different cluster shapes in the two analyses. 

 
19 Sometimes researchers are reluctant to include clusters that are quite small unless they are of particular 
substantive interest and the absolute N within the cluster is reasonable in size (e.g., 30 or more). 
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Figure 15.26. Cluster plots with different parameterizations 

Which representation is correct? In some respects, the answer is “neither.” They 
each are just different ways of slicing up the data. Perhaps one solution has better 
statistical properties than the other, such as lower overall within cluster variability or 
better predictive validity of other constructs in an RET framework, but such matters need 
to be explored empirically and the matter resolved accordingly.  
 Within cluster variability of the target variables, in this case warmth and control, is 
important because when we create a nominal variable representing the four parenting 
styles, we essentially ignore within cluster variability and treat it as “noise” that can 
disrupt analyses with other variables in the RET framework. The cluster in the lower left 
of Figure 15.2 reflects neglectful parents (low on warmth, low on control). From tclust 
program output, the within cluster SD for neglectful parents for the solution on the left 
was 1.01 for warmth and 0.91 for control. For the solution on the right, the corresponding 
SDs were 0.91 for warmth and 0.98 for control. There is not much difference between the 
two solutions in this respect. One way of possibly reducing within cluster SDs is to add 
more clusters, but this also increases model complexity. Nor may the additional cluster be 
meaningful for one reason or another. I usually conduct additional analyses beyond the 
initial one I performed but with different trimming levels and different parametrizations 
to examine the within cluster SDs for models to see if changing the parameters makes a 
notable difference. In the current case, this was not the case. 
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Trimmed K-Means Cluster Analysis in RETs 

I now turn to the analysis of the RET data using the four cluster nominal variable as a 
mediator. I make use of the analytic approaches discussed in Chapter 13 for nominal 
mediators. I seek to address three major questions (1) is there an overall effect of the 
intervention on the outcome, (2) is there an effect of the intervention on the mediator, and 
(3) is there an association between the mediator and the outcome?  

As noted, there are two core equations for the SEM model in Figure 15.24, one for 
each endogenous variable: 

PS = a1 + p1 treat                   [15.13] 

Prop = a2 + p2 PS + + p3 treat + b cov + d2              [15.14] 

where Prop is the propensity outcome variable, PS is the nominal parenting style 
mediator, treat is a dummy variable for the treatment condition (0 = control, 1 = 
intervention), and cov is the covariate.  As noted earlier, I used LISEM to estimate the 
relevant equations given the challenges of working with nominal mediators in full 
information structural equation modeling (FISEM).   

Total Effect of the Program on the Outcome 

In FISEM, one estimates the total effect of the treatment on the outcome from the 
parameter estimates in the two model defining equations, namely Equations 15.13 and 
15.14. However, because I use LISEM, I must estimate the overall intervention effect 
separately from the equations. Specifically, I regress the outcome onto the treatment 
condition (treat) and the covariate for the outcome (to increase statistical power) and then 
evaluate the coefficient for the treat→Prop term. This coefficient reflects the covariate 
adjusted mean difference between the intervention and control conditions. I use Mplus 
with robust maximum likelihood to execute the analyses. Here is the Mplus syntax in 
which I mean center the covariate: 
 
TITLE: Analysis of parenting styles ; 
DEFINE: 
CENTER cov (GRANDMEAN) ; 
DATA: FILE IS c:\temp\rcluster2M.txt ; 
VARIABLE: 
  NAMES ARE id warmth control clus treat d1  
  d2 d3 d4 cov1 cov prop ;  
  USEVARIABLES ARE treat cov prop ; 
  MISSING ARE ALL (-9999) ; 
ANALYSIS:  
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  ESTIMATOR = MLR ;    
MODEL:  
   prop ON treat cov  ;  
OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL MOD(ALL 4) TECH4 ; 

 
All of the syntax should be familiar to you. The model is just identified so indices of 
model fit are moot. Here is the core relevant output: 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 PROP     ON 
    TREAT              0.299      0.059      5.089      0.000 
    COV                0.167      0.029      5.822      0.000 
 
 Intercepts 
    PROP               2.284      0.044     52.349      0.000 

 
The covariate adjusted mean difference on the outcome between the intervention 

and control groups was 0.299 (MOE = ±0.12, Critical Ratio (CR) = 5.09, p < 0.05). The 
mean for the control group is the intercept for PROP, which was 2.28 ±0.09. By reverse 
scoring the TREAT variable in the DEFINE statement by adding the statement TREAT = 
ABS(TREAT-1) and re-running the analysis, the newly reported intercept is the estimated 
mean for the intervention group. It was 2.58 ±0.08. Suppose prior to the study it was 
decided that a mean difference of 0.15 or more on the 5 point metric of the outcome is 
meaningful. The lower limit of the 95% confidence interval of this difference was 0.18 
which is larger than the meaningfulness standard. We conclude the intervention has a 
meaningful effect on the outcome.     

Program Effect on Mediator 

The program effect on the mediator is obtained by regressing the 4 level nominal variable 
of parenting style onto the treatment condition. I use multinomial logistic regression to 
accomplish this. The intervention was intended to increase relative to the control group 
the proportion of parents who use authoritative parenting styles (cluster 2). I can evaluate 
this hypothesis in Mplus using strategies from Chapter 13 and/or I can compute the 
relevant average marginal effects for the multinomial logistic regression using the AME 
ordinal-multinomial program on my website, which is a simpler approach. Here is the 
relevant output for the latter (I omit the section of the output for the covariate): 
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Average marginal effects 
 
 Group  Term Estimate Std. Error     z Pr(>|z|)  2.5 %  97.5 % 
     1 treat  -0.0510     0.0363 -1.40  0.16010 -0.122  0.0202 
     2 treat   0.2113     0.0312  6.77  < 0.001  0.150  0.2725 
     3 treat  -0.0747     0.0284 -2.64  0.00841 -0.130 -0.0191 
     4 treat  -0.0855     0.0242 -3.53  < 0.001 -0.133 -0.0380 

 
The group difference (intervention minus control) in proportions for each level of 

the nominal variable is reported in the column called Estimate. The four cluster 
(nominal) levels are listed in the column called Group, which is defined based on the 
input variable clus which has the cluster membership number for each individual coded 
within it. Trimmed cases that were not assigned to a cluster are coded as missing. The 
predicted proportion of parents in cluster 2 in the intervention group was larger than that 
in the control condition by 0.21 (±0.06, CR = 6.77, p < 0.05), or just over 20%. Suppose 
prior to the study it was decided that a proportion increase of 0.10 or more would be 
deemed meaningful. The lower limit of the 95% confidence interval for the intervention 
minus control proportion difference was 0.15 which is above this meaningfulness 
standard. We conclude the intervention had a meaningful effect on the mediator.20  

Parenthetically, examination of the marginal effect table also indicates the 
intervention (1) statistically significantly lowered the proportion of parents who used 
authoritarian parenting styles (by -.07 ± 0.06, CR = 2.64, p < 0.05), and (2) statistically 
significantly lowered the proportion of parents who engaged in neglectful parenting (by   
-.09 ± 0.05, CR = 3.53, p < 0.05), although these effects did not exceed their respective 
meaningfulness standards.  
 The AME ordinal-multinomial program on my website eliminates people with 
missing data on a listwise basis. As noted, individuals who were trimmed from the cluster 
solution were treated as cases with missing data for the variable of cluster membership, 
clus. This means that these people were listwise deleted from the current analysis. If I 
were to use Mplus to conduct the analysis instead of my program, I also would use 
listwise deletion rather than FIML, multiple imputation, or variants of them. Keep in 
mind that by doing so, your referent population for the current analysis has shifted 
somewhat to those who fit into the clusters and the inferences are for the clusters per se, 
not individuals who do not fit into the clusters. I see nothing inherently wrong 
substantively with this focus as long as I qualify my conclusions accordingly.               

 

 
20 I obtained basically the same result when analyzing the data in Mplus using the approach in Chapter 13. 
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Mediator Effect on Outcome 

To estimate the effect of parenting style on the adolescent propensity to avoid problem 
behaviors, I regress the outcome, PROP, onto the dummy coded parenting style plus 
treat plus the covariate for PROP, namely cov. With four levels for the nominal 
parenting style variable, I create four dummy variables that I label with a D (for dummy 
variable) followed by the cluster number that the dummy variable maps onto. For 
example, D1 is the dummy variable scored 1 if the parent is classified into cluster 1, 
otherwise zero; D2 is the dummy variable scored 1 if the parent is classified into cluster 
2, otherwise zero, and so on. In the regression analysis, I can only enter three of the four 
dummy variables because of the statistical dependencies inherent to them (see Chapter 5). 
The group or cluster that you choose to omit is called the reference group. When the 
regression analysis is executed, the coefficient for a given dummy variable is the 
covariate adjusted mean difference between the group scored 1 on the dummy variable 
and the reference group. It was my working hypothesis that adolescents with parents in 
cluster 2 (authoritative parents) will show higher levels of the propensity to abstain from 
problem behaviors than adolescents with parents in any of the other three clusters. To 
isolate these contrasts, I decided to omit D2 from the equation which then uses the cluster 
2 parenting style as the reference group.  

Here is the Mplus syntax that performs the analysis (note: Mplus by default 
listwise deletes cases that are missing data on any of the predictors in this analysis): 

 
TITLE: Analysis of parenting styles ; 
DATA: FILE IS c:\temp\rcluster2M.txt ; 
VARIABLE: 
  NAMES ARE id warmth control clus treat d1  
  d2 d3 d4 cov1 cov prop ;  
  USEVARIABLES ARE treat d1 d3 d4 cov prop ; 
  MISSING ARE ALL (-9999) ; 
ANALYSIS:  
  ESTIMATOR = MLR ;    
MODEL:  
   prop ON d1 d3 d4 treat cov  ;  
OUTPUT: SAMP RESIDUAL STAND(STDY) CINTERVAL MOD(ALL 4) TECH4 ; 

 
All of the syntax should be familiar. Here is the core output from the analysis: 
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MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 PROP     ON 
    D1                -0.204      0.069     -2.981      0.003 
    D3                -0.798      0.080     -9.958      0.000 
    D4                -1.096      0.098    -11.134      0.000 
    TREAT              0.140      0.053      2.632      0.008 
    COV2               0.152      0.026      5.772      0.000 

The coefficient for D1 (permissive parents) is -0.204 ±0.14, CR = 2.98, p < 0.05. 
This is the estimated covariate adjusted mean difference on the propensity outcome for 
adolescents with permissive parents minus adolescents with authoritative parents, the 
reference group. Because the number is negative, this means that a larger number was 
subtracted from a smaller number, implying the propensity mean for adolescents with 
authoritative parents was larger than that for permissive parents. Specifically, the latter 
mean was -.204 units larger than the former mean. Suppose the meaningfulness standard 
was set to a group mean difference of 0.10. The absolute lower limit of the 95% 
confidence interval for the observed difference was 0.06 which is less than the 
meaningfulness standard. This suggests that although the difference in propensity means 
for the two parenting styles is non-zero and statistically significant, it is not sufficiently 
large to confidently be declared meaningful after taking noise/error into account.   
 When I examine the coefficients that compare authoritative parenting with (a) 
authoritarian parenting (D3) and (b) neglectful parenting (D4), the outcome effects on 
adolescent propensities are stronger and meaningful. The adolescent propensity mean 
difference when comparing authoritarian parents to authoritative parents was -0.80 (MOE 
= ±0.16, CR = 9.96, p < 0.05) and for neglectful parents versus authoritative parents it 
was -1.10 (MOE = ±0.20, CR = 11.13, p < 0.05). The parenting style mediator matters. 

Parenthetically, there also was evidence for a statistically significant independent 
direct effect of the treatment condition on the adolescent propensity over and above 
parenting style (coefficient = 0.14, MOE = ± 0.11, CR = 2.63, p < 0.05), but it did not 
exceed the meaningfulness standard.  

Omnibus Mediation 

Although it is of lower priority for purposes of program evaluation, the omnibus 
mediation test of non-zero mediation can be evaluated using the joint significance test 
from the above analyses. The link between the treatment condition and the parenting style 
mediator was statistically significant and this also was true of the link between parenting 
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style and the adolescent propensity to avoid problem behaviors. We conclude the 
omnibus mediation effect is statistically significant and that some mediation is operating 
through this chain. Omnibus tests of mediation using the product of coefficients are not 
straightforward (see Muthén, Muthén & Asparouhov, 2016).   

Concluding Comments on Trimmed K-Means Cluster Analysis 
Trimmed k-means cluster analysis is a robust method for studying potentially complex 
combinations of variables. It can offer unique insights into RET data. One complication 
with its use in RETs is the referent population. Cluster analysis typically is pursued in 
observational studies to characterize meaningful subgroups of people in a population. In 
an RET, the reference population is hypothetical and somewhat unrealistic, namely half 
of the population has received prior exposure to an intervention while the other half has 
not. To understand the pre-existing cluster structure of those studied, one might want to 
conduct supplemental cluster analyses on the mediators only for control individuals. 
Then, conduct a similar analyses on only those in the intervention group to determine if 
the two cluster solutions are structurally comparable, i.e., have the same number of 
clusters and cluster content. If this turns out to be the case, then one probably can move 
forward with analyses of the combined groups using RET analytics. If not, more complex 
modeling might be required to understand how the intervention affects cluster structure. 

Partitioning Around Medoids 

A method that is less sensitive to outliers than traditional k-means analysis (and hence is 
a form of robust clustering) is partitioning around medoids (PAM; Kaufman & 
Rousseuw, 1990). Rather than focusing on cluster means, this approach identifies an 
exemplar individual in the data for each cluster who is nearest the center of the cluster in 
the sense that the distance between the medoid (the prototypical person) and all other 
individuals in the cluster is minimized. Initially, the medoids are randomly assigned to 
each cluster from the sample data. The algorithm then iterates through selection of 
medoids and cluster groupings until the distance from the medoid is minimized relative to 
all other data points in the cluster. PAM clustering tends to be reasonably robust to the 
presence of outliers but not completely so and not as effectively as trimmed k‐means 
analysis (Fritz et al., 2012). PAM has the advantage of assigning all observations to a 
cluster which trimmed k-means modeling does not do. This is both a strong point and a  
weak point. Choices about the number of clusters are based on the criteria outlined at the 
beginning of the Cluster Analysis section.  
 When I applied PAM to the parenting style data, here is the output for the 
traditional silhouette indices (i.e., the model average silhouette width): 
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Model silhouette indices by number of clusters 
 
Num clusters     Silhouette 
     2           0.4620058 
     3           0.4709906 
     4           0.5031146 
     5           0.4177514 
     6           0.3774794 
     7           0.3676880 
     8           0.3280502 
     9           0.3310338 
     10          0.3400331 
 

The results suggest a four cluster solution because it has the largest silhouette index. 
 Here are the medoids for the four cluster solution:  

Cluster medoids 
 
      warmth   control 
136    6.867    7.026 
417    6.985    2.891 
641    3.242    6.950 
688    2.915    2.869 

The first unlabeled column is the case number of the individual chosen as the medoid at 
the final iteration for  the cluster in question. The values are close to those found in the 
trimmed k-means analysis that focused on means. The program also reports a variety of  
characteristics of each cluster to help with model evaluation: 
 
Cluster characteristics 
 
     size    max_diss    av_diss    diameter    separation 
[1,]  200    4.117842    1.554902   7.828627    0.1186679 
[2,]  305    4.147463    1.595652   7.483545    0.1186679 
[3,]  149    4.084721    1.594416   7.573168    0.2411873 
[4,]   96    4.109244    1.567594   7.060317    0.3016427  
 

The size column is the number of cases in the cluster. The next two columns are the 
maximal and average dissimilarity between the observations in the cluster relative to the 
cluster’s medoid. They are expressed in units of Manhattan distance scores, namely the 
sum of the absolute differences between scores for any two individuals. If you divide the 
result by the number of target variables (in this case, 2), you obtain the statistic in units of 
the average disparity per variable. The smaller these values, the better. The diameter of a 
cluster is the largest (Manhattan) dissimilarity score between any two cases in the cluster. 
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The last column is the maximal dissimilarity between the cases in the cluster and the 
cluster’s medoid, divided by the minimal dissimilarity between the cluster’s medoid and 
the medoid of any other cluster. If this ratio is small, the cluster is well-separated from 
the other clusters. The smaller the value, the better.  

Here is the cluster plot generated by the program: 

 

A disadvantage of the PAM method is that it seeks out spherical cluster solutions 
so it is not as flexible as the trimmed k-means approach. Although the PAM method is 
not as susceptible to outliers because it does not rely on means, the algorithm can still be 
undermined by one or more strategically placed outliers.  

Consensus Clustering 

Another clustering method that is becoming increasingly popular is called consensus 
clustering for which I offer an R program on my webpage. Consensus clustering is a 
relatively new technique that applies different variants of cluster analysis to one’s data 
and then seeks to find a consensus in the results across the different forms of analysis. 
Consensus clustering varies the type of distance scores used, the type of clustering 
algorithms used, and it defines different randomly determined subsamples of the data. It 
conducts separate cluster analyses across all of these facets and then looks for consensus 
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or a “majority result” across the analytic facets. Traditional cluster analyses use only one 
approach. Consensus clustering uses many. Because of this, consensus clustering can be 
computer intensive and a memory hog on  your computer, so be aware of this.  

The program on my website implements two types of distance scores, Euclidean-
based scores and Manhattan scores. It uses four types of clustering algorithms, k-means 
clustering, two forms of PAM clustering, and Fuzzy C-Means clustering. The program 
also analyzes five different subsamples, called replicates, in which each subsample 
results from randomly eliminating a different 20% of the cases from the total sample. 
Across these facets, it applies almost 40 different variants of cluster analysis. You can use 
other options than these in the originating R package, called diceR. However, the ones I 
specify above are reasonable for a wide variety of purposes. Check out the diceR manual 
if you want more flexibility.    
 I applied the consensus clustering program to the parenting style data as focused on 
four clusters. Here is the output providing initial information on model fit for purposes of 
choosing the number of clusters to use: 
 
Indices for Choosing the Number of Clusters 
   Num of clus   Within SD     Between %       SDbw     Silhouette 
        2         2.113831      11.81964     1.5742519     0.4380592 
        3         1.974828      23.08694     1.4927377     0.4851494 
        4         1.873323      30.83661     1.1132245     0.5184889 
        5         1.850097      32.58604     1.1378094     0.4219375 
        6         1.831895      33.95020     1.0754391     0.4062005 
        7         1.831924      33.99233     1.0538183     0.3714394 
        8         1.830928      34.10825     0.9924359     0.3194116 
        9         1.824157      34.63857     0.9681186     0.3556226 
        10        1.825236      34.60507     0.8994221     0.3424690 

 
The first column is an index of the within cluster variability (expressed as a descriptive 
standard deviation) model and the second column is an index of the percent of the total 
variance accounted for by the between cluster variation. The third column is the SDbw 
index which is increasingly used in cluster analysis. It is sometimes referred to as the 
S_Dbw index). The SDbw index is a specialized type of silhouette index that takes into 
account both intra-cluster density (compactness) and inter-cluster separation. Smaller 
SDbw values suggest solutions with better separated clusters coupled with higher internal 
densities. The index has two components, one focused on compactness and the other on 
separation (Halkidi &Vazirgiannis, 2001, 2008). The density-based compactness index, 
called Scat(k), reflects the average scatter within the clusters such that a small value is an 
indication of compact clusters. The density-based separation index, called Dens_bw(k), 
reflects the  average number of points between the k clusters in relation to the density 



                                                                                                             Nonlinear Mediation 115 

 

within clusters. A small Dens_bw(k) value indicates well-separated clusters. The two 
indices are summed to form SDbw; the smaller the value of SDbw the better are the 
properties of the clusters taken as a whole. See Halkidi and Vazirgiannis (2001) for the 
mathematical details. The index has some ambiguity in it because the same SDbw score 
can result from different sets of values of Scat(k) and Dens_bw(k). The final column is 
the traditional silhouette index described at the outset of this chapter; the higher the 
value, the better the cluster solution.    

We generally look for “elbows” in each index in the first three columns, namely 
the point where the index first shows relatively large decreases/increases in values and 
then, at the elbow, the trend shifts towards flattening or near-flattening. The program 
shows plots to help identify the elbow points. For example, here is the plot for the percent 
of the total variance accounted for by the between cluster variation: 

 
 
In general, the indices point to a four cluster solution. Again, none of these indices are 
perfect and each provides a slightly different perspective on model appropriateness.  
 Here is the output for the mean centroids and the cluster sample sizes: 
 
Table of Cluster Attribute Means (Rows) by Clusters (Columns) 
          Cluster 1   Cluster 2   Cluster 3   Cluster 4 
warmth       3.0112      7.0485      7.0736      3.1043 
control      2.9393      6.9902      2.8578      7.0548 
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Cluster Sizes 
  Cluster   Frequency    Percent 
     1          98       13.0667 
     2         203       27.0667 
     3         301       40.1333 
     4         148       19.7333 

 
These results comport reasonably with the prior cluster analyses, although the clusters 
appear in a different order (which is arbitrary). 
 Here is the resulting cluster plot: 
 

 
  

Note that the clusters are largely spherical, which is consistent with the particular 
clustering algorithms used by the program. 
 With this information in hand, I would then pursue the RET analyses described 
earlier for the trimmed k-means analysis.   

Concluding Comments on Cluster Analysis and RETs 

Cluster analysis is an interesting approach for studying “types” of people or “types” of 
ecologies as defined by complex combinations of multiple variables. The “types” are 
used to define an overarching nominal variable that represents the different clusters 
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isolated in the cluster analysis. The nominal variable is then embedded in a larger 
conceptual framework for purposes of further empirical evaluation. In an RET, the 
nominal variable can take on the role of a mediator, a moderator, a covariate, and/or an 
outcome. 
 Cluster analysis must be used with care. The strategy reduces multiple continuous 
or many valued quantitative variables to somewhat cruder representations captured by a 
nominal variable, a practice that should not be implemented lightly. For example, in the 
parenting style example, I ultimately through cluster analysis reduced the continuous 
variables of warmth and control to four categories for a nominal variable, (1) “high” on 
warmth and “high” on control, (2) “high” on warmth and “low” on control, (3) “low” on 
warmth and “high” on control, and (4) “low” on warmth and “low” on control. In Chapter 
3 on measurement practices, I cautioned against transforming continuous variables into 
crude dichotomies or trichotomies, emphasizing the loss of information that can come 
with such a practice. When relating parenting styles to risk behavior propensities, would 
it not be better to explore the matter by using the continuous measures of warmth and 
control directly perhaps in conjunction with an interaction (product) term and then use 
regression-like methods to explore the underlying dynamics rather than resorting to the 
cruder use of a nominal typology? The answer probably is “yes” unless one feels that the 
cruder representation captures the essence of the underlying dynamics better.  

A scenario where a cluster analysis might be called for is when you have many 
continuous variables that you suspect combine multiplicatively or complexly to 
determine an outcome. In such cases, it simply may not be feasible to model the complex 
interactions of all the variables as determinants of the outcome. For example, if I have 8 
such continuous variables, a product term approach to interaction analysis would require 
using 247 different product terms in the same equation to capture the two-way, three-
way, four-way, five-way, six-way, seven-way, and eight-way interactions. Many of these 
interaction combinations might not even occur with sufficient frequency in practice to 
merit study and may be subject to data sparseness. Cluster analysis provides a way for 
identifying the most commonly occurring cluster profiles of people across the 8 variables 
and then studying how these particular profiles relate to other variables. I discuss other 
potential uses of cluster analysis in the section of the book on moderator analysis (see 
Chapter XX).  

 When applying cluster analysis, it is important to keep in mind that the people 
within a cluster are not homogenous on the target variables; that there inevitably is within 
cluster variability on the variables. Here is one way of thinking about such variability that 
I helps keep cluster analysis in perspective: Consider an analogy where two non-
overlapping large regions share a border. A person who lives at the outer part of one 
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region near its border may be in fairly close proximity to a person who lives close to the 
border in the other region. If we treat the regions as analogies for clusters, although these 
individuals are assigned to different clusters, they may very well be more like each other 
than they are to individuals within their respective (clusters) regions but who live far 
away from the border. In short, there invariably will be noise in the analysis and this 
noise must be respected when making conclusions. Pursue your cluster analyses humbly. 

Of the cluster analytic methods I have discussed, my personal preference is for the 
trimmed k means method because of its robustness properties and its flexibility. 
Consensus clustering has desirable properties but it is outlier sensitive and not as flexible 
as trimmed k-means clustering.  

One final methodological note. When faced with missing data in a cluster analysis 
(independent of trimming), FIML generally cannot be used because cluster analysis does 
not use maximum likelihood. This leaves us with either listwise deletion or multiple 
imputation. Multiple imputation is challenging because each imputed data set might 
result in a different number of clusters. In addition combining clustering results from 
multiply imputed data is not straightforward because of possible label switching between 
the data sets and the fact that there is no clear set of parameters that summarize the 
clustering results. One informal method to address these problems is to conduct multiple 
imputations using a principled method (e.g., chained equations) and then determine if the 
major conclusions from a cluster analysis applied to each data set replicate across the 
different imputed data sets (Basagaña et al., 2013). One notes qualitatively disparate 
results, such as the number of clusters, cluster labels, the assignment of individuals to 
clusters, and cluster centroids. If the results generalize, then we are more confident that 
missing data is not problematic. More formal methods have been suggested by and are 
reviewed by Lee and Harel (2023).  

MEDIATION ANALYSIS AND LATENT PROFILE/CLASS ANALYSIS 

Key Facets of Latent Profile/Class Analysis 

Closely linked to cluster analysis that groups individuals into meaningful subgroups are 
the methods of latent profile analysis (LPA) and latent class analysis (LCA). Both fall 
under the general class of statistical models called mixture models. Latent class 
analysis is the term used when the analysis is applied to variables with exclusively binary 
metrics. Latent profile analysis is the term used when the analysis is applied to 
exclusively continuous metrics. When both binary and continuous variables are used, the 
generic term mixture model is used to refer to the analysis. I strongly recommend you 
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read the previous section on cluster analysis before reading the current one. It gives 
context to the material I am about to cover.  

Both LCA and LPA can be viewed as a form of factor analysis. In traditional factor 
analyses, we specify a set of observed variables whose correlational pattern we seek to 
explain. If I fit a one factor model to the data, I am hypothesizing that the correlations 
between the variables are due to an unknown common cause for each of them, i.e., due to 
some unknown “factor” as reflected in Figure 15.27. The unknown “factor” is assumed to 
be a continuous variable and our goal is to identify what the “factor” must be. According 
to the classic factor model, the correlation between, say, X1 and X2, can be explained 
completely by the fact that the latent factor influences both X1 and X2, i.e., it is a 
common cause of them.    
 

X2 X3 X4 X5 X6 X7

Factor 
(Continuous)

e2 e3 e4 e5 e6 e7

X1 X8

e1 e8

 

FIGURE 15.27. Factor analysis model 

If I were to somehow identify the factor underlying the observed variables, measure 
it, and partial it out or hold it constant, the correlation between X1 and X2 should vanish 
(as would all the other correlations between the variables that are a function of the 
factor).  As I seek to figure out what the factor is, I examine the magnitude and pattern of 
the factor loadings and, based on those loadings, deduce what the substantive content of 
the factor must be. The classic example is the often observed correlations between 
different types of intelligence/ability tests, such as verbal abilities, math abilities, spatial 
abilities, and so on. These tests often are moderately to highly correlated and the 
underlying “common cause” to explain them is thought to be a general intelligence factor. 
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If I could measure general intelligence and statistically control for it, the correlations 
between the different intelligence/ability tests would vanish. Many methodologists often 
think of factor analysis is a data reduction method but that is not why it was developed. It 
was developed to explain why variables are correlated due to unknown and unmeasured 
common causes.     

With LPA and LCA, we engage in the same process, but instead of the underlying 
factor being continuous, it is conceptualized as being nominal, per Figure 15.28. 
According to this model, the correlation/covariance patterns among the items or measures 
can be accounted for by the fact that an unknown nominal variable (factor) with an 
unknown number of levels is a common cause of them.  
 

X2 X3 X4 X5 X6 X7

Factor 
(Nominal)

e2 e3 e4 e5 e6 e7

X1 X8

e1 e8

 

FIGURE 15.28. Factor analysis model but with a nominal factor 

LCA and LPA use the model in Figure 15.28, or variants of it. For example, the Xs 
might represent the disciplinary styles identified earlier in my discussion of cluster 
analysis and my claim as a theorist is that the correlations or covariances between them 
can be accounted for by an unknown nominal variable with an unknown number of levels 
that serves as a common cause. If I could identify and measure that nominal variable and 
then control for it, all the correlations between the Xs would reduce to zero. In mixture 
modeling, a level of the underlying latent factor is often called a class. LCA and LPA 
often use maximum likelihood estimation from SEM software to derive estimates of the 
“factor loadings” for such a model, that is the path coefficients from the latent variable to 
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the observed measures. Because the underlying factor is categorical, however, the 
number of loadings that need to be estimated increases as a function of the number of 
levels of the factor, i.e., the number of classes.    

Each level of the underlying nominal factor in Figure 15.28 represents a subgroup,  
“cluster” or class. Just as I had to determine the number of clusters in trimmed k-means 
and PAM clustering to use in my model, the same task confronts me here.  Thus, I can fit 
a model where the underlying factor has 2 classes, another model where it has 3 classes, 
another model where it has 4 classes, and so on. For each model, I obtain an index of 
model fit that reflects how well the model reproduced the observed correlations or 
covariances between the variables, in this case X1 to X8.  I then compare the relative fits 
of the different models and choose the best fitting model. This then defines the number of 
classes I use. 

Like k-means cluster analysis, each individual in the sample is classified into a 
given class for the latent factor. However both LCA and LPA use the logic of fuzzy 
clustering rather than sharp clustering as discussed in the section on cluster analysis. As 
such, individuals are assigned a distinct probability of being in each class, with the 
probabilities across the classes summing to 1.00.  The individual is then “assigned” to the 
class that has the highest probability of the individual being in. 

Model Fit for LPA and LCA  

The indices for evaluating model fit are not the same as those described for k-means 
clustering because the fit function is now focused on reproducing the correlation or 
covariance structure among the variables, which is not the focus of k-means clustering. 
K-means clustering instead seeks to minimize within-cluster variance while maximizing 
between-cluster variance. The two methods are decidedly distinct and based on different 
statistical goals.  

Two indices of model fit used when evaluating LCA and LPA models rely on the 
information theoretic indices of AIC and BIC (see Chapter 7). Thus, we select a model 
with a given number of classes that has the highest likelihood of producing the data based 
on these indices. Another strategy is to use what is called the Vuong-Lo-Mendell-Rubin 
test. This is a significance test that compares the fit of a model with the fit of a model 
with one less class. If the p value is statistically significant, then this means that the 
model with more classes fits the data better than the model with one less class. The idea 
is not to add classes that do not show statistically significant improvement in fit based on 
this test (see Nylund, Asparouhov & Muthén, 2007). Recent work relies on a bootstrap 
version of the Vuong-Lo-Mendell-Rubin test because it is more robust than the original 
method. 
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Another set of indices that are sometimes taken into account when evaluating 
models with differing numbers of classes is the confusion matrix and its associated 
entropy index. The entropy index ranges from 0 to 1.00, with higher values indicating 
greater classification certainty. It is a summary index of how well differentiated the class 
assignments are. Values greater than 0.80 are deemed good, but there is some controversy 
about using this standard (Ramaswamy et al., 1993). A low entropy value (closer to 0) 
suggests  classes are not well-defined, and individuals may have a higher probability of 
belonging to multiple classes. Technically, the entropy index is not a measure of model-
data fit. It merely tells us how well differentiated the classes in the model are. I discuss 
these indices in more detail when I consider the numerical example.   
       Yet another criterion used by analysts to determine the number of levels of the 
underlying factor is to consider the substantive meaningfulness of the results of a given 
model and how that is impacted by adding an additional level.  If as a result of increasing 
the number of classes by 1, a particular subgroup is split into two subgroups that makes 
more conceptual sense in the broader theoretical context, then one might prefer the more 
complex model.  However, if the division by adding a class yields a new class that makes 
no substantive sense, one might be reluctant to pursue the more complex model.  

Once a final model is settled upon, like k-means cluster analysis, mean values for 
each X variable for each cluster are reported for LPA and for LCA, probabilities are 
reported. The classes are interpreted accordingly, as I illustrate below. LPC and LPA also 
provide estimates of the proportion of the population that is in each subgroup thereby 
providing a sense of the class size.   

Multi-Step Model Evaluation Strategy 

In the traditional LPA and LCA literatures, distinctions are made between auxiliary 
predictor variables and distal outcomes. A model with auxiliary distal outcomes is when 
the LPA/LCA analysis includes not only the latent nominal variable defined by the latent 
classes but there also are distal outcomes that are thought to be influenced by that latent 
variable. A model with auxiliary predictors is when the LPA/LCA analysis includes not 
only the latent nominal variable defined by the latent classes but there also are predictors 
or presumed causes of the latent variable. When both the LPA/LCA and the auxiliary 
variables all are included simultaneously in the same model, it is referred to as a one step 
model.   
 There are challenges that occur when including auxiliary variables in LPA or LCA 
modeling. This is because inclusion of either type of auxiliary variable can have 
unwanted influences on class membership and produce biased coefficient estimates and 
standard errors for the broader model (see Asparouhov & Muthén, 2014, for details). 
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Over half a dozen methods for conducting meaningful statistical tests in LPA and LCA 
contexts that involve auxiliary variables have been proposed. Most of the methods have 
the same structure: First, the latent profile/class measurement model is estimated without 
the auxiliary variables; then, in a follow-up analysis, a model is evaluated that determines 
the relationship between the latent class variable and the auxiliary variables (Asparouhov 
& Muthén, 2021). A strategy known as the 3 step approach that is available in Mplus 
has become increasingly popular but Asparouhov and Muthén (2021) note several 
shortcomings of it. They propose an alternative strategy known as the BCH method 
(BCH stands for Bolck, Croons, and Hagenaars, who originated the method), which tends 
to work better. I illustrate the BCH method below in the context of a numerical example. 

Strengths and Weaknesses of LPA and LCA  

An advantage of the mixture modeling approach is that it can be used with binary or 
continuous measures or any combination of them. For continuous measures, the metrics 
do not have to be comparable, so this cluster analytic issue becomes moot. When 
predictors and outcomes of cluster membership are modeled, a fairly well-developed 
technology for taking into account the uncertainty associated with class assignment is 
available.  The approach has a great deal of modeling flexibility. 

Having said that, the approach also has some non-trivial limitations. For latent 
profile analysis (LPA) with continuous indicators, the measures are assumed to be 
multivariately normally distributed, which is unlikely in practice. However, the method is 
reasonably robust to violations of the assumption. In most LPA applications, the variance 
of a given indicator across clusters is constrained to be equal, which also may be 
unrealistic. If one relaxes this constraint, the underlying numerical algorithm can be 
poorly behaved, but not necessarily so. In most LPA applications, the indicators are 
assumed to be uncorrelated within clusters, which also often is unrealistic. This is 
tantamount to asserting that a single categorical latent factor can account for all of the 
correlations/covariances between the target variables. As I show below, one can relax this 
assumption, but doing so can sometimes lead to convergence problems. Also, one 
generally needs a strong theory to guide the specification of allowable within-cluster 
correlations. The counterpart assumption of within class item independence in LCA is 
known as local independence.   

Used with care and attention to the intricacies of the methods, both LCA and LPA 
can be powerful approaches to clustering data. However, there also are challenges in their 
use that must be taken into account. For more background on applying these models, see 
Vermunt and Magidson (2002) and Finch and Bronk (2011).   
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Numerical Example 

The example I use is a hypothetical intervention based RET designed to change the 
drinking habits of college students (all of whom are drinkers) by targeting two mediators. 
Drinking habits were measured using 9 items with an established time reference of the 
past semester, as appropriate, and each of which was responded to on a dichotomous 0 = 
No, 1 = Yes metric. The 9 item are  
 
I like to drink 
I drink hard liquor 
I have drank in the morning during the past semester 
I have drank at work or during school during the past semester 
I drink to get drunk 
I like the taste of alcohol 
I drink to help me sleep 
Drinking has interfered with my relationships during the past semester 
I have frequently visited bars this past semester   

I first subject these items to a latent class analysis (LCA) to identify clusters or classes of 
individuals that account for the correlations/covariances between the items. My goal is to 
use the LCA analysis to identify the kinds of drinkers the students represent. I 
hypothesize there will be three types of drinkers, (1) seldom or light drinkers, (2) social 
drinkers, and (3) heavy drinkers. I want to determine if the intervention has the effect of 
increasing the number of people who are seldom or light drinkers for the treatment versus 
control conditions and reducing the number of heavy drinkers. The sample size is 1,000 
individuals. The example uses hypothetical data that parallels, in part, the example at 
https://stats.oarc.ucla.edu/mplus/dae/latent-class-analysis/. The intervention adopted what 
is known as a harm reduction approach to addressing drinking in youth. This approach 
does not try to convince youth who drink alcohol to abstain from such behavior, a task 
that research has shown is quite difficult. Rather, the idea is encourage youth that if they 
drink, to do so responsibly and in ways that will not harm themselves. In addition, a 
second component of the intervention was to educate students about the negative 
consequences of heavy drinking. The intent of the intervention was to increase the 
number of seldom or light drinkers and reduce the number of heavy drinkers.   

The mediator I call Mediator 1 (med1) reflected a program component that 
emphasized the negative consequences of heavy drinking. The second mediator, Mediator 
2 (med2), was reflected by a program component that encouraged people to reflect on 
their drinking behavior and create their own goals  and personal drinking limits, 

https://stats.oarc.ucla.edu/mplus/dae/latent-class-analysis/
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consistent with a harm reduction approach. A measure of Mediator 2 was obtained that 
reflected setting goals for lower levels of drinking, with higher scores indicating the 
explicit setting of goals for reduced drinking. Each mediator was measured on a -10 to 
+10 scale with higher scores indicating more “buy-in” to the concepts emphasized by the 
mediator. These measures were obtained at the time of completion of the intervention, 
i.e., at an immediate posttest. The outcome measure was completed one semester later. 
Figure 15.29 presents the RET influence diagram. I include covariates in the diagram for 
pedagogical purposes but they are limited in number to keep the example simple. The 
figure does not show curved arrows for the exogenous variables to avoid clutter but they 
were included in the modeling. The treatment condition was scored 0 = control group, 1 = 
intervention group. The key path coefficients of interest are labeled with ps and the 
covariate coefficients are labeled with bs. Disturbance terms are only shown for 
continuous endogenous variables (see Chapters 3 and 12) but within class residual 
correlations between the nine items were evaluated via tests of local independence. 

  

Mediator 1

Intervention 
vs. Control

p1

d2

p2

p3

b1

d1

Mediator 2

Latent 
Classes

M1cov

M2cov

Ycov

b2

b3

p4

p5

Item 1

Item 2

Item 3

Item 4

Item 5

Item 6

Item 7

Item 8

Item 9  

FIGURE 15.29. RET example with LCA 

Evaluation of the LCA Measurement Model 

To isolate and evaluate the outcome measurement model, I first need to conduct LCA 
analyses on just the nine items for drinking habits using the number of classes I think is 
most appropriate. I execute the Mplus syntax in Table 15.6 in which I tell Mplus to assign 
3 classes to the underlying factor, i.e., my hypothesized number of classes or levels. 
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Table 15.6: Mplus Syntax for LCA Model with 3 Classes  
 

1.  TITLE: Latent Class Analysis With 3 Classes 
2.  DATA: FILE IS lca4M.dat ; 
3.  VARIABLE: 
4.   NAMES ARE id item1 item2 item3 item4 item5 item6 item7 item8 item9  
5.             treat m1 m2 ycov m1cov m2cov med1 med2 grp; 
6.   USEVARIABLES ARE item1 item2 item3 item4 item5 item6 item7 item8 item9; 
7. 
8.   !By declaring all used variables categorical, we invoke LCA by default 
9.   CATEGORICAL ARE item1 item2 item3 item4 item5 item6 item7 item8 item9; 
10.  MISSING ARE ALL (-9999) ; 
11. !Specify name of latent variable (in this case, class, and # of classes 
12. CLASSES = class(3); 
13. ANALYSIS:  TYPE=MIXTURE; ESTIMATOR=MLR ; STARTS=60 ; 
14. PLOT: 
15.  TYPE IS PLOT3; 
16.   SERIES IS item1 (1) item2 (2) item3 (3) item4 (4) item5 (5)  
            item6 (6) item7 (7) item8 (8) item9 (9); 
17. MODEL: 
18. OUTPUT: Mod(All 4) Cinterval Tech10 Tech14 Svalues ; 

Most of the syntax should be familiar when read in conjunction with the comment 
lines. Line 9 declares all the variables as categorical. Mplus will determine internally that 
they all are binary. Line 12 tells Mplus the number of classes or levels of the latent factor 
to use (in this case 3) and the label to apply to the factor, in this case ‘class.’ Line 13 tells 
Mplus to make a general call to mixture modeling and to use robust maximum likelihood.  
It also tells Mplus to use double the number of random defaults than the default (the 
default is 30). This helps to avoid local minima. Line 14 asks Mplus to generate a plot for 
the class profiles, which I show you later. The series statement on Line 16 tells Mplus 
what variables to put on the X axis of the plot and what labels in parentheses to use for 
each one. In this case, I labeled item1 as 1, item2 as 2, and so on through item9 as 9. You 
can rearrange items on the X axis if you want. To access the plot, after the run is 
complete, click on the Plot menu item on the Mplus interface, then click on ‘view plots’ 
and then select ‘sample proportions and estimated probs.’ In the section “line plot for 
multiple variables in a series, choose ‘estimated probabilities only.’ Line 17 is the 
traditional Mplus model command. I do not need to specify a model in this case because 
the Mplus default model when all variables are defined as categorical variable is a one 
factor LCA model. On the OUTPUT line, the SAMP and Residual options are only 
available for LPA, not LCA. STDYX is available, but requires ALGORITHM=INTEGRATION 
on the ANALYSIS line. Tech10 provides output that evaluates local independence; Tech14 
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shows the bootstrap variants of the Vuong-Lo-Mendell-Rubin test. The option Svalues is 
optional and can be used in later runs (as shown below) to preserve class ordering.   

Here are the results for commonly used model fit tests: 
 
MODEL FIT INFORMATION 
 

Information Criteria 
 
          Akaike (AIC)                    9047.086 
          Bayesian (BIC)                  9189.411 
          Sample-Size Adjusted BIC        9097.306 
 
Chi-Square Test of Model Fit for the Binary and Ordered Categorical 
(Ordinal) Outcomes 
 
          Pearson Chi-Square 
 
          Value                            441.780 
          Degrees of Freedom                   482 
          P-Value                           0.9052 
          Likelihood Ratio Chi-Square 
 
          Value                            354.075 
          Degrees of Freedom                   482 
          P-Value                           1.0000 

 
TECHNICAL 14 OUTPUT 

 
   PARAMETRIC BOOTSTRAPPED LIKELIHOOD RATIO TEST FOR 2 (H0) VERSUS 3 CLASSES 
 
    H0 Loglikelihood Value                        -4512.084 
    2 Times the Loglikelihood Difference             35.082 
    Difference in the Number of Parameters               10 
    Approximate P-Value                              0.0000 

The program shows two versions of a chi square statistic to evaluate the null 
hypothesis of perfect model fit. The likelihood ratio chi square compares the likelihood of 
the observed data under the model to the likelihood under a saturated model. By contrast, 
the Pearson chi-square compares observed frequencies to expected frequencies. Both 
statistics are adversely affected by sparse data, i.e., multivariate patterns of responses 
across the 9 item responses that occur infrequently. When the two chi-square value 
variants are quite different, you probably should not trust either of them. The large 
degrees of freedom indicates you have many cells in your frequency table so you are 
more likely to have low frequencies or zero frequencies in many cells. This creates 
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problems for the chi square test. As a check on this, the Mplus output for TECH10 
documents the different response patterns and the frequencies with which they occur. It 
also reports for each response pattern if the expected frequency is statistically 
significantly different from the observed frequency. In the current case, a significant 
difference occurred for only 1 pattern out of the 181 tested patterns (see the section 
labeled MOST FREQUENT RESPONSE PATTERNS AND CHI-SQUARE CONTRIBUTIONS). 
Mplus also estimates in section TECH10 the contribution of empty cells to the Pearson chi 
square which was 83.67 out of 441.78 chi square units (see the TECH10 section).  In the 
current case, I would not give much weight to the global chi square tests.   

To gain more focused perspectives on model fit, I evaluate the modification indices 
for local independence, which indicate if items within classes might be meaningfully 
correlated even though the model assumes they are not (Asparouhov & Muthén, 2015; 
Visser & Depaoli, 2022). A value greater than 4 for a modification index is indicative of 
a statistically significant result for a local non-independence. Here is the relevant output: 

MODEL MODIFICATION INDICES 
 
Minimum M.I. value for printing the modification index     4.000 
 
Latent Class 1 
 
No modification indices above the minimum value. 
 
Latent Class 2 
 
No modification indices above the minimum value. 
 
Latent Class 3 
 
No modification indices above the minimum value. 
 

Yet another set of statistics diagnostic of local non-independence are the bivariate 
residuals (BVR) which provide statistics for all possible pairs of items within each class 
(Visser & Depaoli, 2022). These test the statistical significance of the association 
between a given pair of items, with a statistically significant result suggesting the 
violation of local independence. Here is the Mplus summary of the tests for the current 
example (also reported in the Tech10 section): 
 
Overall Number of Significant Standardized Residuals          0  

Again, violations of local independence do not appear to be problematic.  
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Another factor that some theorists take into account when evaluating models is how 
well the different classes are differentiated (Masyn, 2013). The entropy index mentioned 
earlier is an omnibus statistic that reflects how well the model distinguishes the classes to 
which individuals belongs. A common standard is for the entropy index to be 0.80 or 
greater but this is not a “hard” rule of thumb. Indices as low as 0.50 can be workable 
depending on the context and interpretability of the classes. Technically, entropy is not a 
fit index relative to model-data fit. It simply conveys how well differentiated 
classifications are. 

A more intuitive representation of classification quality is a table of the average 
posterior probabilities (AvePP) also called the confusion matrix, The rows of the matrix 
are the classes to which an individual has been assigned under the heuristic that the 
individual is a member of the class that s/he has the highest probability of being in as 
predicted by the model. The columns are the average probability values for people 
defined by the row class for a given class:  

Average Latent Class Probabilities for Most Likely Latent Class Membership 
(Row) by Latent Class (Column) 
 

           1        2        3 
 
1   0.826    0.159    0.015 
2   0.052    0.795    0.152 
3   0.009    0.114    0.876 

 
For example, for the individuals who were classified into Class 1 because that class 

had the highest probability of the three classes for them, their average probability of 
being in Class 1 was 0.826, of being in Class 2 was 0.016, and of being in Class 3, it was 
0.015 (the three of which sum to 1.0). For the individuals who were classified into Class 
2, their average probability of being in Class 1 was 0.052, of being in Class 2 it was 0.795 
and of being in Class 3, it was 0.152. And so on. Ideally, the diagonals of the matrix are 
near 1.00 and the off diagonals are near 0.00, but this rarely is the case. The AvePP 
values I observed here are not unreasonable; a common standard is that each of the 
diagonals should be > 0.70. The entropy index was 0.57, a bit on the low side.      

Another  facet of model evaluation is to compare the fit of the model against 
competing models with fewer and more classes. I re-ran the syntax in Table 15.6 but 
where I specified the number of classes to be either 2, 4, or 5 instead of 3 classes. Here 
are selected comparative fit statistics for each model generated by the programs: 
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 2 Classes 3 Classes 4 Classes 5 Classes 
     

BIC 9155.52 9189.41 9241.84 9293.56 
Person chi square 470 (df=492) 442 (df=482) 434 (df=472) 408 (df=462) 
Bootstrap Vuong p < 0.001 p< 0.001 p < 1.00 p<1.00 
Entropy 0.72 0.57 0.62 0.69 
Smallest class size 0.13 0.13 0.03 <0.01 
Warning message No No Yes Yes 
   

The Bayesian Information Criterion (BIC) favors the 2 and 3 class models, with the 
2 class model having the most favorable (lowest) BIC. In practice, it is common for the 
BIC to decrease for each additional class added. Some researchers like to inspect the 
trend for an elbow of separation and choose the model at the elbow point, much like the 
scree test in factor analysis. The bootstrap based Vuong et al. test for adding a class was 
supportive of the 3 class solution. The chi square difference tests are of questionable 
relevance (see my prior discussion), with model misfit also being magnified by the large 
N. The 4 and 5 class solutions each yielded warning messages that raised red flags about 
their respective results; one warning was for extreme logit thresholds and the other was 
for a non-positive definite first order derivative product matrix. The 4 and 5 class 
solutions also produced cluster sizes beyond the third class that had very few cases in 
them (see the smallest class row in the table, which refers to the proportion of the 1,000 
cases), Small clusters sometimes are of lesser interest or they reflect spurious classes. As 
I discuss shortly, I ultimately settled on the three class solution because the two class 
solution obscured substantively important differences in the characterization of classes.  

Another criterion I consider for determining model appropriateness is the 
substantive meaningfulness of the classes. Mplus reports an estimate of the probability of 
individuals in each class endorsing each item (analogous to the proportion of people in 
each class who endorse the item) in the section called RESULTS IN PROBABILITY 

SCALE. Here are these results: 

        Class 1   Class 2   Class 3   Item  
 ITEM1    0.958     0.934     0.261   I like to drink                       
 ITEM2    0.652     0.320     0.194   I drink hard liquor                       
 ITEM3    0.399     0.058     0.060   I have drank in the morning               
 ITEM4    0.340     0.099     0.077   I have drank at work or during school                      
 ITEM5    0.800     0.228     0.092   I drink to get drunk                      
 ITEM6    0.467     0.318     0.174   I like the taste of alcohol               
 ITEM7    0.492     0.122     0.108   I drink to help me sleep                     
 ITEM8    0.656     0.127     0.111   Interferes with my relationships 
 ITEM9    0.343     0.332     0.180   I frequently visited bars last semester 
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People in classes 1 and 2 like to drink as indicated by their responses to item 1 in 
which  95.8% and 93.4% endorse the item, respectively; by contrast, those in Class 3 are 
less likely to endorse liking to drink (26.1%). For item 5, 80.0% of those in Class 1 say 
they drink to get drunk, while only 22.8% of those in Class 2 and 9.2% of those in Class 
3 say this is the case. Individuals in Class 1, as a whole, like to drink (95.8%), drink hard 
liquor (65.2%), many have said they have drank in the morning and at work (39.9% and 
34.0%), and over 65% say drinking interferes with their relationships. This class seems to 
be characterized as “heavy drinkers.” By contrast, people in Class 3 seem to be “seldom 
or light drinkers”; only about a quarter of them say they like to drink (26.1%), few say 
they like the taste of alcohol (17.4%), few frequently visit bars (18.0%), and for the 
remainder of the questions they rarely answered “yes.” Individuals in Class 2, in contrast 
to the other two classes, seem to fit the mold of “social drinkers”; they like to drink 
(93.4%), but they don’t drink hard liquor as often as Class 1 (32.0% versus 65.2%). They 
rarely drink in the morning or at work (5.8% and 9.9%) and rarely say that drinking 
interferes with their relationships (12.7%). They frequently visit bars, similar to Class 1 
(33.2% versus 34.3%). Both the social drinkers and heavy drinkers are similar in how 
much they like to drink and how frequently they go to bars, but they differ in key ways 
such as drinking at work and in the morning, and the impact of drinking on their 
relationships. Thus, the three classes seem to represent (1) “heavy drinkers,” (2) “social 
drinkers,” and (3) “seldom/light drinkers.”   
 When I examined the two class solution, the heavy and social drinkers were 
collapsed into a single class. In my judgment, this analysis mixed together individuals 
with distinct drinking dynamics, hence my preference for the three class model.   
 To assist interpretation, Mplus provides a line plot of the above data (I made minor 
edits to the plot after copying it into the Microsoft Paint program): 
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The red line is the heavy drinkers, the green line is the social drinkers, and the blue 
line is the seldom/light drinkers. The different items on which the LCAS was conducted 
are listed on the X axis and the probability of endorsing each item is shown on the Y axis.  
You should keep in mind that there is some degree of circularity involved when 
interpreting indicator differences between classes because the indicators were used to fit 
the model in the first place. Nevertheless, identifying indicators that are most divergent 
among the classes and indicators with similar patterns can help characterize the classes.   
 A final useful piece of information that Step 1 produces are the estimated sizes of 
the classes. Often we avoid including classes that are too small to be of interest. Here is 
the Mplus output: 
 
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES 
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP 
 
Class Counts and Proportions 
 
    Latent 
   Classes 
 
       1              128          0.12800 
       2              584          0.58400 
       3              288          0.28800 
 

Social drinkers comprise about 58.4% of the population, heavy drinkers comprise about 
12.8% of the population, and seldom/light drinkers comprise about 28.8% of the 
population. Keep in mind that the reference population represented by the LCA is one in 
which half the population has received the intervention to impact their alcohol-related 
habits while the other half has not given that the analysis is on the post-intervention 
measures of the outcome. It is an atypical population in this regard. Even just the control 
group alone might be considered atypical because, after all, they have chosen to 
participate in a study, they have completed and thought about the alcohol related items in 
questionnaires, and they may have been paid for their participation. None of this is 
necessarily damaging to program evaluation, but you do need to keep such matters in 
perspective when interpreting LPA/LCA structures in RETs.   
 With the LCA measurement model in hand, I turn to answering the three core 
questions of an RET, namely (1) is there a total effect of the intervention on the drinking 
habits of the students, (2) is there an effect of the intervention on the presumed mediators, 
and (3) are the presumed mediators associated with drinking habits of the students. Given 
the presence of auxiliary variables, I use the BCH method because it tends to be among 
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the best relative to the other multiple step approaches.21 To apply the formal three step 
method, see explanations by Asparouhov and Muthén (2014).     

Total Effect of the Intervention 

As I discussed in Chapter 13, an efficient way of determining the total effect of an 
intervention on a nominal outcome in an RET is to use LISEM that regresses the nominal 
outcome onto a dummy coded treatment variable and any relevant covariates vis-a-vis 
multinomial logistic regression but focused on target contrasts that reveal the effect 
estimate. Because I discussed this approach in Chapter 13, my presentation of it is 
succinct here. If need be, review the section on multinomial outcomes in Chapter 13.  
 The first step in the analysis, often called the enumeration step,  is to use Mplus to 
generate the intermediate statistics, called BCH weights, that are then used in the final 
analysis. Table 15.7 presents the Mplus syntax to generate the weights. 

Table 15.7: Mplus Syntax for Enumeration Step: Total Effect  
 

1.  TITLE: Latent Class Analysis first step for BCH total effect 
2.  DATA: FILE IS lca4M.dat ; 
3.  VARIABLE: 
4.   NAMES ARE id item1 item2 item3 item4 item5 item6 item7 item8 item9 
5.             treat m1 m2 ycov m1cov m2cov med1 med2 class ; 
6.   USEVARIABLES ARE item1 item2 item3 item4 item5 item6 item7 item8 item9 ; 
7.   CATEGORICAL ARE item1 item2 item3 item4 item5 item6 item7 item8 item9 ; 
8.   MISSING ARE ALL (-9999) ; 
9.   CLASSES = c(3); 
10.   AUXILIARY = ycov treat  ; 
11. ANALYSIS: TYPE=MIXTURE; ESTIMATOR=MLR ; STARTS=60 ; 
12. MODEL: 
13. OUTPUT: ;  
14. SAVEDATA: 
15.  FILE IS lca1.txt ; 
16.  FORMAT IS free ; MISSFLAG = -9999 ; 
17.  SAVE = bchweights; 

 
Most of the syntax should be familiar as most is identical to the syntax in Table 15.6 that 
conducts the formal LCA analysis. Line 10 is new and uses the AUXILIARY subcommand 
to tell Mplus to pass the variables ycov and treat in addition to the nine binary outcome 
items and the BCH weights to the new data file that the program generates. I do not need 
to specify items 1 to 9 on this line because the program knows they should be passed, by 
default, and this also is true of the BCH weights. The MODEL line (Line 12) can be left 

 
21 Mplus offers two versions of the BCH method. I describe the more general version of the two. 
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blank because Mplus uses the default LCA model, per the structure of the first from 
Table 15.6. The OUTPUT line also can be left blank because the primary focus of the 
program is on generating the BCH weights; the output will by and large look the same as 
that generated by the syntax in Table 15.6. Lines 14 to 17 instruct Mplus to generate and 
save the BCH weights (Line 17) in addition to the items and auxiliary variables in the file 
listed on Line 15 (you can include a file path, if necessary, otherwise the data are written 
to the same folder where the input file is located). Line 16 specifies the data format and 
the missing data value that is to be used to flag missing data. You can use a value or 
symbol of your choice. 
 I do not review the program output here because it appears very much like the 
output for the syntax in Table 15.6. However, at the end of the output file, the program 
will notify you of the order in which the variables have been written to the new data file: 
 
SAVEDATA INFORMATION 
 
  Save file 
    lca1.txt 
 
  Order of variables 
 
    ITEM1 
    ITEM2 
    ITEM3 
    ITEM4 
    ITEM5 
    ITEM6 
    ITEM7 
    ITEM8 
    ITEM9 
    YCOV 
    TREAT 
    BCHW1 
    BCHW2 
    BCHW3 
 
  Save file format           Free 
  
This information is important because for the final program, you need to specify the 
above variables in the same order on the NAMES ARE subcommand when inputting the 
data. The three variables listed at the end of the list (BCHW1 BCHW2 BCHW3) are the names 
for the generated BCH weights. 
 In the final analysis, I input the above variables into a new program that calculates 
the LISEM based total effect using the syntax in Table 15.8.  



                                                                                                             Nonlinear Mediation 135 

 

Table 15.8: Mplus Syntax for Final Analysis: Total Effect  
 

1.  TITLE: Latent Class Analysis second run for BCH total with constraints 
2.  DATA: FILE IS lca1.txt ; 
3.  VARIABLE: 
4.   NAMES ARE ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 
5.            ITEM8 ITEM9  YCOV TREAT BCHW1 BCHW2 BCHW3 ; 
6.   USEVARIABLES ARE TREAT YCOV BCHW1 BCHW2 BCHW3 ; 
7.  CLASSES = c(3); 
8.  MISSING ARE ALL (-9999) ; 
9.  TRAINING = BCHW1-BCHW3 (bch)  ; 
10. ANALYSIS: TYPE=MIXTURE; STARTS=0; ESTIMATOR=MLR ;  
11. MODEL:   
12.  %OVERALL% 
13.    c#1 ON treat ycov (p1a b1a)  ; 
14.    c#2 ON treat ycov (p1b b1b) ; 
15.    [c#1] (a1) ;  [c#2] (a2) ; 
16. MODEL CONSTRAINT: 
17.   NEW (PRED1C PRED2C PROB1C PROB2C PROB3C SUMC 
18.   PRED1T PRED2T PROB1T PROB2T PROB3T SUMT  
19.   DIFF1 DIFF2 DIFF3); 
20.   !Generate predicted odds for controls as intermediate terms    
21.   PRED1C = exp(a1+p1a*0+b1a*0.937) ; 
22.   PRED2C = exp(a2+p1b*0+b1b*0.937) ; 
23.   SUMC = PRED1C+PRED2C+1; 
24.   !Generate predicted control probabilities for the three categories  
25.   PROB1C = PRED1C/SUMC ; 
26.   PROB2C = PRED2C/SUMC ; 
27.   PROB3C = 1/SUMC ; 
28.   !Generate predicted odds for treatment as intermediate terms   
29.   PRED1T = exp(a1+p1a*1+b1a*0.937) ; 
30.   PRED2T = exp(a2+p1b*1+b1b*0.937) ; 
31.   SUMT = PRED1T+PRED2T+1; 
32.   !Generate predicted treatment probabilities for the three categories  
33.   PROB1T = PRED1T/SUMT ; 
34.   PROB2T = PRED2T/SUMT ; 
35.   PROB3T = 1/SUMT ; 
36.   !Calculate differences in probabilities 
37.   DIFF1 = PROB1T-PROB1C ;  
38.   DIFF2 = PROB2T-PROB2C ; 
39.   DIFF3 = PROB3T-PROB3C ; 
40. OUTPUT: Cinterval  ; 

 
Line 2 points to the data file where the prior program saved the variables it 

generated. Line 7 specifies that the nominal outcome variable has 3 classes and that the 
variable is to be called c in the remaining syntax. It refers to the nominal latent factor 
from the prior analyses. Line 9 uses the Mplus TRAINING subcommand to identify the 
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variables that contain relevant information about latent class membership, in this case the 
three BCH variables. I refer to the three variables using the shorthand BCHW1-BCHW3 
which lists the first variable in the sequence followed by a dash and then the last variable 
in the sequence. It then refers to BCHW1 BCHW2 BCHW3 but more succinctly. The (bch) 
label at the end indicates that all the variables expressed via the shorthand notation refer 
to the BCH weights. In Line 10, note that I set the STARTS variable equal to 0. This tells 
Mplus not to use random starts but instead to rely on the information passed to it from the 
prior analysis. In statements 11 to 15, I need to specify the multinomial regression model 
for each of the first k-1 classes, where k is the number of classes. I do so in the 
%OVERALL% model option so that I can assign different labels (in parentheses) to the 
parameters in each class. The notation c#1 refers to the first class, which are the heavy 
drinkers. The notation c#2 refers to the second class, which are the social drinkers. The 
reference group is the omitted class, or the seldom/light drinkers. Line 13 is the 
multinomial regression equation that regresses the binary outcome of c#1 versus c#3 
onto the predictors treat and ycov. The logit coefficients for these predictors are 
assigned the labels p1a and p2a in parentheses for later reference. Line 14 has the same 
format but now for the binary outcome of c#2 versus the reference group, c#3 but using 
a different set of labels. Line 15 defines the intercepts for each equation and assigns them 
the labels a1 and a2, respectively. 
 The logic of the MODEL CONSTRAINT commands in Lines 16-39 was described in 
detail in Chapter 13 for a logistic multinomial regression model. The commands are 
designed to isolate from the traditional multinomial output three contrasts associated with 
the covariate adjusted predicted probabilities (or proportions) per Table 15.9.    

Table 15.9:  Contrast Table for Numerical Example 

 Treatment Control Contrast 

Heavy Drinkers (C1) P(C1|T=1) P(C1|T=0) P(C1|T=1) - P(C1|T=0) 

Social Drinkers (C2) P(C2|T=1) P(C2|T=0) P(C2|T=1) - P(C2|T=0) 

Seldom/Light Drinkers (C3) P(C3|T=1) P(C3|T=0) P(C3|T=1) - P(C3|T=0) 

 
I label the three levels of the nominal outcome as C1, C2, and C3. In the first column of 
the table called Treatment (where treat is designated as T and scored equal to 1), I 
calculate using the MODEL CONSTRAINT commands the (covariate adjusted) proportion of 
heavy drinkers in the treatment condition (C1|T=1), the (covariate adjusted) proportion of 
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social drinkers in the treatment condition (C2|T=1), and the (covariate adjusted) 
proportion of seldom\light drinkers in the treatment condition (C3|T=1).  I then do the 
same in the second column but for the control condition. Finally, in the final column 
(labelled Contrast), I difference the two proportions in a given row and test the statistical 
significance of the proportion difference. In the current RET, I predict that the proportion 
of heavy drinkers will be less in the treatment condition than in the control condition and 
that the proportion of seldom/light drinkers will be larger in the treatment condition than 
in the control condition. Lines 21, 22, 29 and 30 invoke the mean of the ycov covariate 
(0.937) to hold it constant at its “typical” value but you can hold it constant at any value 
you choose (such as per the logic of causal mediation modeling described in Chapter 8).   
 Here is the traditional output in the form of logistic regressions from the analysis: 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
Categorical Latent Variables 
 
 C#1        ON 
    TREAT             -1.155      0.293     -3.937      0.000 
    YCOV               1.150      0.168      6.839      0.000 
 
 C#2        ON 
    TREAT             -0.381      0.225     -1.695      0.090 
    YCOV               0.770      0.135      5.711      0.000 
 
 Intercepts 
    C#1               -1.446      0.255     -5.671      0.000 
    C#2                0.018      0.188      0.094      0.925 

 
and here is the output from the MODEL CONSTRAINT commands 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
New/Additional Parameters 
    PRED1C             0.692      0.135      5.109      0.000 
    PRED2C             2.094      0.364      5.755      0.000 
    PROB1C             0.183      0.025      7.273      0.000 
    PROB2C             0.553      0.037     15.020      0.000 
    PROB3C             0.264      0.031      8.428      0.000 
    SUMC               3.786      0.449      8.428      0.000 
    PRED1T             0.218      0.051      4.251      0.000 
    PRED2T             1.431      0.213      6.721      0.000 
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    PROB1T             0.082      0.017      4.807      0.000 
    PROB2T             0.540      0.035     15.234      0.000 
    PROB3T             0.378      0.033     11.387      0.000 
    SUMT               2.649      0.233     11.387      0.000 
    DIFF1             -0.100      0.029     -3.512      0.000 
    DIFF2             -0.013      0.050     -0.262      0.793 
    DIFF3              0.113      0.045      2.522      0.012 

 
that, in turn, can be used to produce the contrast table shown in Table 15.10. 

Table 15.10:  Contrast Results Expressed in Percentage Form 

 Treatment Control Contrast 

Heavy Drinkers (C1) 8.2 18.3 -10.0 

Social Drinkers (C2) 54.0 55.3 -1.3 

Seldom/Light Drinkers (C3) 37.8 26.4 11.3 

 

The contrast for heavy drinkers was statistically significant (difference = -10.0 ±5.8, CR 
= 3.51, p < 0.05) in the predicted direction as was the contrast for seldom/light drinkers 
(difference = 11.3 ±9.0, CR = 2.52, p < 0.05).  
 Given the use of logistic modeling, the values of these contrasts can vary depending 
on the value at which the covariate is held constant. I routinely repeat the above analyses 
but vary the value at which I hold ycov constant, per what I showed in Chapter 13. I do 
not do so here in the interest of space but the process is straightforward.   
 Suppose that prior to the analyses, the decision was made in consultation with 
program staff and other relevant constituencies that a meaningful amount of change for a 
given contrast was an absolute percentage difference 3% or more. The estimated 
confidence interval for the heavy drinker treatment minus control difference was -15.8 to 
-4.2. Since the meaningfulness standard of -3.0 did not overlap the confidence interval, I 
conclude the difference was meaningful. The estimated confidence interval for the 
seldom/light drinker treatment minus control difference was 2.3 to 20.3. Because the 
meaningfulness standard overlapped the confidence interval, I conclude that although the 
difference is non-zero (i.e., statistically significant with a p value < 0.05), I can’t 
confidently conclude the difference is meaningful taking into account sampling error.22  

 
22 Confidence intervals for percentages or proportions sometimes are asymmetric. You can obtain asymmetric 
intervals using bootstrapping with ML estimation but this is not always straightforward for BCH based analyses. 
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Program Effects on Mediators  

The second question I address is whether the intervention has meaningful effects on the 
mediator. When I tried to estimate these effects in the context of the full model in Figure 
15.29, I received error messages to the effect that Mplus could not do the analysis using 
the BCH framework nor by the alternative three step method either. I therefore shifted to 
a LISEM framework and performed the T→M analyses only on the left hand portion of 
the model in Figure 15.29. I conducted separate analyses on each mediator. Table 15.11 
illustrates the syntax I used for the first mediator.  

Table 15.11:  Mplus Code for LISEM Program Effects on Mediators 

1.  TITLE: Analysis of program effects on mediator 1 
2.  DATA: FILE IS lca4M.dat ; 
3.  DEFINE: 
4.    m1cov = m1cov-(-.0077) ; 
5.  VARIABLE: 
6.   NAMES ARE id item1 item2 item3 item4 item5 item6 item7 item8 item9  
               treat m1 m2 ycov m1cov m2cov med1 med2 class ; 
7.   USEVARIABLES ARE treat med1 m1cov ; 
8.   MISSING ARE ALL (-9999) ; 
9.  ANALYSIS: ESTIMATOR=MLR ;  
10. MODEL: 
11.   med1 ON treat m1cov ; 
12. OUTPUT: SAMP STAND(STDYX) MOD(ALL 4) RESIDUAL CINTERVAL TECH4 ;    

All of the syntax should be familiar. I mean centered the covariate in Line 4 for 
interpretational convenience but, in theory, I can subtract any covariate value of interest, 
as desired, or just leave it as is. This transformation affects the interpretation of the 
intercept. The model is just identified so indices of model fit are moot. Here is the 
relevant output: 

MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 MED1     ON 
    TREAT              0.521      0.070      7.481      0.000 
    M1COV              0.115      0.035      3.254      0.001 
 
Intercepts 
    MED1               1.490      0.051     29.005      0.000 
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The coefficient for TREAT reflects the estimated covariate adjusted mean difference 
between the treatment and control conditions for Mediator 1. It equaled 0.52 ± 0.14, CR 
= 7.48, p < 0.05), which was statistically significant. The mean for the intervention group 
was larger than that for the control group (because the mean difference is positive). The 
estimated covariate adjusted Mediator 1 mean for the control group is the intercept, 
which was 1.49 ±0.10 (see Chapter 11). I can obtain the covariate adjusted Mediator 1 
mean for the intervention group by reverse scoring the treatment condition within the 
DEFINE command (by adding a line of syntax that reads TREAT = ABS(TREAT -1) ; ), 
re-running the syntax, and then noting the revised intercept value. The mean was 2.01 
±.09.    

Suppose prior to the analyses, the decision was made in consultation with program 
staff and other relevant constituencies that a meaningful amount of change on the 
mediator would be an absolute mean difference of 0.33 or more. The estimated 95% 
confidence interval for the condition difference was 0.38 to 0.66. Since the 
meaningfulness standard of 3.0 did not overlap the confidence interval, I conclude the 
difference was meaningful.  
 When I made adjustments to the above syntax to analyze the second mediator, I 
found that the estimated covariate adjusted mean difference between the treatment and 
control conditions was 0.01 ± 0.12, CR = 0.14, ns), which was statistically bob-
significant. The effect also was judged to be non-meaningful when its 95% confidence 
interval was compared to the meaningfulness standard.    

Mediator Effects on the Outcome 

The final question focuses on the estimated effect of the mediators on the nominal latent 
factor. I use the multiple step BCH method in an LISEM context that regresses the latent 
class outcome onto Mediator 1, Mediator 2, the treatment condition dummy variable, and 
the covariate ycov. Table 15.12 presents the syntax to generate the initial BCH weights in 
the enumeration analysis.  

Table 15.12:  Mplus Code for Enumeration Step for Mediation Effects on Outcome 

1.  TITLE: Analysis of program effects on mediator 1 
2.  DATA: FILE IS lca4M.dat ; 
3.  VARIABLE: 
4.   NAMES ARE id item1 item2 item3 item4 item5 item6 item7 item8 item9 
5.        treat m1 m2 ycov m1cov m2cov med1 med2 class ; 
6.   USEVARIABLES ARE item1 item2 item3 item4 item5 item6 item7 item8 item9 ; 
7.   CATEGORICAL ARE item1 item2 item3 item4 item5 item6 item7 item8 item9 ; 
8.   CLASSES = c(3); 
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9.   AUXILIARY = med1 med2 treat ycov  ; 
10. ANALYSIS: TYPE=MIXTURE ; ESTIMATOR=MLR ; STARTS=60 ; 
11. MODEL: 
12. OUTPUT:  
13. SAVEDATA: 
14.  FILE IS lca1.txt ; 
15.  FORMAT IS free ; 
16.  SAVE = bchweights; 

All of the syntax should be familiar. This program produced the same results as the initial 
analysis I reported to select the three class LCA model using the syntax in Table 15.6. 
However, note that the current program added an AUXILIARY subcommand in Line 9 to 
pass the needed auxiliary variables to the new data set for the final analysis. Although the 
program produced the same LCA results as before, the ordering of the LCA classes was 
different which does affect the output in certain ways. In Mplus, this sometimes happens 
because of the initial random starts used to estimate the model. It turns out, you can 
control the class ordering by specifying start values for each class. Doing so is not 
necessary as long as you are careful to keep track of what the classes are across different 
model runs.  
 To preserve the class orders from the original analysis in Table 15.6, I use the 
printed output from the Svalues option on the OUTPUT line of Table 15.6. Here is what 
the output looks like: 
 
MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES 
 
     %OVERALL% 
     [ c#1*-0.90411 ]; 
     [ c#2*0.41091 ]; 
 
     %C#1% 
     [ item1$1*-3.13590 ]; 
     [ item2$1*-0.62764 ]; 
     [ item3$1*0.40803 ]; 
     [ item4$1*0.66311 ]; 
     [ item5$1*-1.38877 ]; 
     [ item6$1*0.13269 ]; 
     [ item7$1*0.03166 ]; 
     [ item8$1*-0.64392 ]; 
     [ item9$1*0.65020 ]; 
 
     %C#2% 
     [ item1$1*-2.64299 ]; 
     [ item2$1*0.75391 ]; 
     [ item3$1*2.79664 ]; 
     [ item4$1*2.20837 ]; 
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     [ item5$1*1.21799 ]; 
     [ item6$1*0.76498 ]; 
     [ item7$1*1.96930 ]; 
     [ item8$1*1.92465 ]; 
     [ item9$1*0.70046 ]; 
 
     %C#3% 
     [ item1$1*1.04288 ]; 
     [ item2$1*1.42182 ]; 
     [ item3$1*2.74542 ]; 
     [ item4$1*2.48186 ]; 
     [ item5$1*2.29030 ]; 
     [ item6$1*1.55828 ]; 
     [ item7$1*2.10753 ]; 
     [ item8$1*2.08541 ]; 
     [ item9$1*1.52016 ]; 

  
I copy and paste the above syntax (excluding the title line that reads MODEL COMMAND 
WITH FINAL ESTIMATES USED AS STARTING VALUES) just after Line 11 in Table 
15.12. This will then have the effect of preserving the class order but without changing 
the results.   

In Chapter 13, I described two strategies for evaluating mediator effects on a 
nominal outcome, (a) profile analysis and (b) average marginal effects. I consider the 
former here, but you can import the logic of both approaches as outlined in Chapter 13 to 
the current context.   

For profile analysis for Mediator (M1), I define two predictor profiles where the 
values of all variables across the two profiles are the same except for M1. Following the 
logic of natural effects in causal mediation frameworks described in Chapter 8. I might 
set all values of one profile (Profile 1) to control group means or what the typical scores 
would be “naturally.” I then set the values of the second profile (Profile 2) to the same 
values except for M1, which I increment by 1.0 relative to the other profile to then 
determine the effect of a one unit increase in M1, like this:  

 M1 M2 TREAT YCOV 

Profile 1 1.49 -0.022 0 0.931 

Profile 2 2.49 -0.022 0 0.931 

I then compare these two profiles using the MODEL CONSTRAINT option in Mplus to 
determine how the unit increase in M1 affects (a) the percentage of heavy drinkers in the 
latent outcome variable, (b) the percentage of social drinkers in the latent outcome 
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variable, and (c) the percentage of seldom/light drinkers in the latent outcome variable. I 
accomplish this using the same logic for calculating the total effect of the intervention in 
Table 15.8 but now I document the effect of a one unit increase in M1. Table 15.13 
presents the syntax for the final BCH analysis for the above two profiles using the saved 
data from the enumeration step (be sure to respect the order in which the enumeration 
program writes the variables to the lca1.txt file on the NAMES ARE line in the below 
syntax).   

Table 15.13:  Mplus Code for LISEM Mediator Impact on Nominal Outcome 

1.  TITLE: Analysis of program effects on mediator 1 
2.  DATA: FILE IS lca1.txt ; 
3.  VARIABLE: 
4.   NAMES ARE ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 
5.             ITEM9 MED1 MED2 TREAT YCOV BCHW1 BCHW2 BCHW3 ; 
6.   USEVARIABLES ARE MED1 MED2 TREAT YCOV BCHW1 BCHW2 BCHW3 ; 
7.  CLASSES = c(3); 
8.  TRAINING = BCHW1-BCHW3 (bch)  ; 
9.  ANALYSIS:  TYPE = MIXTURE; STARTS=0; ESTIMATOR = MLR ; 
10. MODEL: 
11.  %OVERALL% 
12.   c#1 ON med1 med2 treat ycov (p3a p4a p5a b3a)  ; 
13.   c#2 ON med1 med2 treat ycov (p3b p4b p5b b3b)  ; 
14.   [c#1] (a1) ;  [c#2] (a2) ; 
15. MODEL CONSTRAINT: 
16.  NEW (PRED1P1 PRED2P1 PROB1P1 PROB2P1 PROB3P1 SUMP1 
17.  PRED1P2 PRED2P2 PROB1P2 PROB2P2 PROB3P2 SUMP2  
18.  DIFF1 DIFF2 DIFF3); 
19.  !Generate predicted odds for profile 1 as intermediate terms    
20.  PRED1P1 = exp(a1+p3a*1.49+p4a*(-.022)+p5a*0+b3a*0.931) ; 
21.  PRED2P1 = exp(a2+p3b*1.49+p4b*(-.022)+p5b*0+b3b*0.931) ; 
22.  SUMP1 = PRED1P1+PRED2P1+1; 
23.  !Generate predicted profile 1 probabilities for the three categories  
24.  PROB1P1 = PRED1P1/SUMP1 ; 
25.  PROB2P1 = PRED2P1/SUMP1 ; 
26.  PROB3P1 = 1/SUMP1 ; 
27.  !Generate predicted odds for profile 2 as intermediate terms   
28.  PRED1P2 = exp(a1+p3a*2.49+p4a*(-.022)+p5a*0+b3a*0.931) ; 
29.  PRED2P2 = exp(a2+p3b*2.49+p4b*(-.022)+p5b*0+b3b*0.931) ; 
30.  SUMP2 = PRED1P2+PRED2P2+1; 
31.  !Generate predicted profile 2 probabilities for the three categories  
32.  PROB1P2 = PRED1P2/SUMP2 ; 
33.  PROB2P2 = PRED2P2/SUMP2 ; 
34.  PROB3P2 = 1/SUMP2 ; 
35.  !Calculate differences in probabilities 
36.  DIFF1 = PROB1P2-PROB1P1 ;  
37.  DIFF2 = PROB2P2-PROB2P1 ; 
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38.  DIFF3 = PROB3P2-PROB3P1 ; 
39. OUTPUT:  Cinterval  ; 

All of the syntax should be familiar as its logic maps directly onto the analysis of 
the total effect in Table 15.8. I use the symbols P1 for Profile 1 and P2 for Profile 2 in 
place of T and C from Table 15.8. Here is the relevant output: 

MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
Categorical Latent Variables 
 
 C#1        ON 
    MED1              -2.257      0.264     -8.558      0.000 
    MED2              -0.252      0.188     -1.340      0.180 
    TREAT             -0.363      0.371     -0.977      0.328 
    YCOV               1.400      0.228      6.151      0.000 
 
 C#2        ON 
    MED1              -1.291      0.206     -6.279      0.000 
    MED2              -0.080      0.146     -0.549      0.583 
    TREAT              0.016      0.284      0.054      0.957 
    YCOV               0.941      0.180      5.221      0.000 
 
 Intercepts 
    C#1                1.622      0.464      3.499      0.000 
    C#2                2.282      0.417      5.472      0.000 
 
New/Additional Parameters 
    PRED1P1            0.649      0.195      3.327      0.001 
    PRED2P1            3.446      0.833      4.135      0.000 
    PROB1P1            0.127      0.027      4.763      0.000 
    PROB2P1            0.676      0.043     15.818      0.000 
    PROB3P1            0.196      0.037      5.290      0.000 
    SUMP1              5.094      0.963      5.290      0.000 
    PRED1P2            0.068      0.028      2.431      0.015 
    PRED2P2            0.948      0.234      4.056      0.000 
    PROB1P2            0.034      0.012      2.698      0.007 
    PROB2P2            0.470      0.059      7.926      0.000 
    PROB3P2            0.496      0.060      8.214      0.000 
    SUMP2              2.016      0.245      8.214      0.000 
    DIFF1             -0.094      0.017     -5.675      0.000 
    DIFF2             -0.206      0.045     -4.550      0.000 
    DIFF3              0.300      0.047      6.401      0.000  
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Here is the table of percentages taken from the above output in the New/Additional 
Parameters section: 

Table 15.14:  Contrast Results for M1 Profile Analysis in Percentage Form 

 Profile 2 Profile 1 Contrast 

Heavy Drinkers (C1) 3.4 12.7 -9.4 

Social Drinkers (C2) 47.0 67.6 -20.8 

Seldom/Light Drinkers (C3) 49.6 19.6 30.0 

 

A one unit increase in M1 reduced the percentage of heavy drinkers by -9.4 percent, a 
statistically significant difference (CR = 5.68, p < 0.05). It also reduced the percentage of 
social drinkers by 20.8 percent and increased the percentage of light and seldom drinkers 
by 30.0 percent.   
 Given the use of logistic modeling, the values of these contrasts can vary depending 
on the value at which the covariate and treatment condition is held constant. I routinely 
repeat the above analyses but vary the value at which I hold these variables constant per 
Chapter 13. I do not do so here in the interest of space and leave it as an exercise for you. 
 I then repeat a corresponding analysis for a one unit increase in the second 
mediator. Here are the two profiles I initially examined in this analysis: 

 M1 M2 TREAT YCOV 

Profile 1 1.49 -0.022 0 0.931 

Profile 2 1.49 0.978 0 0.931 

 
I found that a one unit increase in M2 did not produce statistically significant changes in 
the percentages associated with any of the three contrasts.      
 Suppose that prior to the analyses, the decision was made in consultation with 
program staff and other constituencies that a meaningful amount of change for a given 
contrast for a one unit increase in M1 or M2 was an absolute percentage difference of 2% 
or more. The estimated confidence interval for the Profile 2 heavy drinkers minus the 
Profile 1 heavy drinkers was -12.8 to -6.0. Since the meaningfulness standard of -2.0 did 
not overlap the confidence interval, I conclude the percentage difference was meaningful. 
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Applying similar logic to the other contrasts yielded similar conclusions for Mediator 1. 
Mediator 2 analyses did not yield any meaningful effects.   
 If you are interested in making statements about the omnibus mediation effect, you 
can use the joint significance test to do so. The joint significance test for M1 yielded a 
statistically significant result because the T→M1 coefficient was statistically significant 
as was at least one of the contrasts for the M1→Y link. This was not the case for M2. 
 One also can test the direct effect of the treatment condition on Y over and above 
the two mediators and the Y covariate using the profile logic. For example, here are two 
profiles I might use to explore this question:  

 M1 M2 TREAT YCOV 

Profile 1 1.49 -0.022 0 0.931 

Profile 2 1.49 -0.022 1 0.931 

I then compare the results for the three contrasts as focused on these two profiles. I did 
not find statistically significant direct effects of the treatment condition for any of the 
contrasts when I performed these analyses.   

 Concluding Comments on Numerical Example 

In conclusion, the RET analyses revealed the program had a meaningful overall effect on 
the nominal drinking outcome. The intervention had a statistically significant effect on 
M1 by increasing participant awareness and knowledge of the negative consequences of 
heavy alcohol use but it failed to affect M2 that addressed the harm reduction component 
of the intervention. The program designers need to revisit the activities they are using to 
impact M2 because they are not, in fact, changing it. However, this remedial step is 
further qualified by the fact that the M2 mediator was not meaningfully related to the 
outcome, suggesting that even if they were able to change M2, it probably would not 
produce changes in drinking styles. Perhaps the harm reduction approach should be 
abandoned or at least one might abandon the way it is conceptualized and implemented in 
the present context. 

Concluding Comments on Latent Profile/Class Analysis 

Latent profile and latent class analyses are distinct from traditional cluster analyses in the 
sense that the latter seeks to cluster together individuals who show similar profiles on a 
set of target variables whereas the former seeks to separate individuals into membership 
in levels of a latent nominal factor that can explain the correlations between the target 
variables. By “explain" I mean that if I hold the nominal factor constant, the covariances 



                                                                                                             Nonlinear Mediation 147 

 

or correlations between the target variables will be zero (more or less). These are 
different goals and can yield different results when exploring the substantive dynamics of 
the target variables in an RET. Neither approach is the “correct” one. The type of analysis 
that is appropriate depends on your analytic goals. Both methods are good tools to have 
in your statistical toolbox for the analysis of RETs. 

The choice of the target variables or observed indicators for LPA or LCA is 
important. The adage of garbage-in-garbage-out definitely is applicable. You should be 
able to articulate a good rationale for variable inclusion. I can’t emphasize this point 
strongly enough. 

It always is wise to carefully examine your variable distributions and the 
intercorrelations between your variables prior to embarking on an LPA or LCA. Of 
particular concern are indicators that have base rate issues, such as binary items that have 
very few endorsements near universal endorsements or continuous items with very low 
(or high) means. Large or small base rate issues require much larger Ns to conduct valid 
analyses. Blatant and extreme non-normality for continuous indicators also is a red flag 
as is highly unequal variances across items. Missing data in LPA and LCA usually is 
handled with FIML, multiple imputation, or Bayesian methods. Greater data sparseness 
due to missingness can make the estimation process challenging. For a discussion of 
relevant issues for missing data, see Asparouhov and Muthén (2021).  
 RETs that use LCA or LPA require the use of auxiliary variables. The inclusion of 
auxiliary variables usually means that a multiple step approach should be used, with one 
of the better ones being the BCH multi-step method. Sometimes the BCH method can be 
fit to the data as a single comprehensive model in the spirit of FISEM but other times you 
may need to use it in a LISEM context, as was the case for our numerical example. Mplus 
generally will guide you through the decision based on the warning and error messages it 
provides.  
 The BCH method uses weights to estimate the auxiliary model by applying the 
derived individual weights via a specialized multiple group algorithm. Your per class 
sample sizes must be large enough to sustain multiple group modeling. Be nervous about 
an analysis that has a class sample size for a given class of 50 or less. Measurement 
invariance assumptions also must be made across the classes (see Chapter 3). If class 
separation is low, the BCH weights can take on negative values which may (or may not) 
lead to inadmissible solutions with offending estimates (e.g., negative variances). If class 
separation is strong (e.g., entropy values greater than 0.80), one often can just use a single 
FISEM analysis without the multiple steps. This essentially ignores the uncertainty 
associated with class assignments but is justified because the levels of uncertainty are 
likely inconsequential.  
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If possible, it usually is helpful to demonstrate the validity of the isolated classes or 
subgroups by showing that the LPA or LCA results replicate in different subsamples, 
such as through the use of cross-validation methods. However, the practical constraints of 
RETs often prevent doing so, meaning we must be cautious of the conclusions we make. 

The example I focused on in this chapter used LCA but the basic ideas and steps are 
similar for conducting LPA analyses. For a worked example and introductory explication 
of LPA, see Ferguson, Moore and Hull (2019).  

MEDIATION ANALYSIS AND RECURSIVE PARTITIONING MODELS  

The final approach to non-linear relationships in mediation analysis that I consider is 
called classification and regression tree (CART) modeling. It bears similarities to 
traditional cluster analysis and to LPA/LCA frameworks in that it seeks to classify 
individuals into meaningful subgroups but the statistical criteria it uses to do so is distinct 
from the other approaches. As applied to RETs, CART can be used to identify 
moderators or to model complex mediation dynamics. My focus in this chapter is on non-
linear mediator modeling. I discuss applications of the approach to moderator analysis in 
Chapter XX. CART modeling uses scores on nominal and/or continuous/quantitative 
predictors/mediators to generate predicted values of an outcome. When the outcome is 
quantitative, the model is called a regression tree; when the outcome is nominal, the 
model is called a classification tree. Predicted Y scores are based on mean Y values for 
the different predictor/mediator subgroups. 
 I introduced the idea of regression trees earlier in this chapter in the context of 
BART models. The foundations of CART modeling overlap somewhat with BART but 
there are distinct features of the two frameworks to the point that, in my opinion, they 
merit sperate treatment. I provide an interface for the R package rpart on my website, 
which is a form of CART modeling called recursive partitioning.  

Key Facets of Recursive Partitioning (CART) Models     

I first develop the general logic of CART modeling using a single predictor and a single 
outcome. I use an unrealistic example of only 19 observations to convey basic ideas. I 
then expand the logic to multiple predictors.  

Consider the extent to which a mother is controlling of her adolescent child as a 
predictor of how satisfied adolescents are with their relationship with their mothers. 
Suppose each of these constructs is measured on a metric ranging from 0 to 100 with 
higher scores indicating greater control and greater satisfaction, respectively. A score of 
50 is the midpoint for each scale (moderately controlling and moderately satisfied). 
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Figure 15.30 shows a scatterplot for the 19 dyads. The relationship between the variables  
clearly is non-linear. 

 
 

 

FIGURE 15.30. Maternal control and relationship satisfaction example 

A regression tree takes a form analogous to a decision tree. A decision tree is a 
visual tool similar to a flowchart that branches out from a single starting point and then 
maps different consequences and alternative courses of action from that starting point. In 
a regression tree, the starting point is a single predictor depicted in a rectangle that shows 
the mean outcome for the total sample. The box also shows the percentage of individuals 
in the total sample that contribute to the mean per the top rectangle in Figure 15.31. The 
overall mean for adolescent relationship satisfaction is 35.0 based on a sample size of all 
(100%) 19 dyads. The top box is referred to as the root node because it is where the tree 
begins. Just below the root node is a branching or binary “split” rule that divides 
individuals in the box into two groups. In the present case, the rule is whether the control 
predictor, x, is less than 30. If the answer is “yes”, you branch to the left and if the 
answer is “no,” you branch to the right. The value of 30 is determined via a mathematical 
algorithm that minimizes the within cell variation on the outcome for each of the two 
groups that result from the split, making individuals within a group as homogenous as 
possible on the outcome while also maximizing the mean difference between the two 
split groups. The subgroups that are created are called child nodes of the original parent 
node, in this case the root node.  
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FIGURE 15.31. Tree plot for maternal control example 

Based on the tree plot, the group of adolescents for the first branch to the right has a 
mean satisfaction of 49.0 and constitutes 68% of the sample. The group of adolescents for 
the left branch has a mean satisfaction of 3.2 and constitutes 32% of the sample. The new 
node to the right also has a branching rule associated with it, namely if the control 
predictor is greater than or equal to 59, branch to the next node on the left, otherwise 
branch to the node on the right. Each time the tree growing process generates a new 
branch or split, the new nodes are evaluated by the underlying mathematical algorithm to 
determine if they can be meaningfully further homogenized by the application of yet an 
additional branching rule or, instead, if the branching has reached an a priori stopping 
point meaning the node becomes a terminal node or a terminal leaf. (the terms are used 
interchangeably).An example of a rule for stopping might be that no node can have fewer 
than 10 respondents in it.   

For the case of multiple predictors. the underlying mathematical algorithm decides 
which variable of the many predictors to use for splitting at any given step. For regression 
trees with continuous outcomes, this is based on the predictor that leads to the largest 
reduction in within group variances when the split is enacted. For classification trees 
where the outcome is nominal, the decision uses an index of node impurity. In this case, 
each split maximizes the improvement in the node impurity of the current node minus the 
node impurity of its two child nodes. Impurity measures include a Bayes index, a Gini 
index, and an information index. Splits usually yield the same results for all three of these 
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indices (Therneau & Atkinson, 2023). The program on my website uses the Gini index as 
its default for node impurity for nominal outcomes.  

At the conclusion of the tree growing process, the result is a set of terminal nodes 
that have no further branching associated with them. There are four such nodes in the 
present example that occur at the bottom of the tree plot in Figure 15.31. The percentage 
of the total sample in each terminal node is provided within its box as is the mean of the 
cases in the node. The mean serves as the predicted outcome score for each member in 
the terminal node. In the current case, the predicted satisfaction score for each of the six 
individuals in the left most terminal node is 3.2, in the terminal node to the right of it, the 
predicted satisfaction for each individual is 2.2; in the next node to the right, the 
predicted satisfaction is 56.0, and in the rightmost node, the predicted score is 100.0. 

The average error in these predictions is indexed by the root mean square error 
across all individuals. It is the square root of the average squared discrepancy between 
the predicted and observed Y, a statistic you have encountered in earlier sections of this 
chapter. In the current example, the root mean square error equals 3.83; the predictions of 
relationship satisfaction scores by the regression tree model were, on average, 3.83 units 
“off” from the observed satisfaction scores on the 0 to 100 satisfaction metric. 
Interestingly, the root mean square error for the linear model that regressed satisfaction 
onto maternal control equaled 42.16, which is considerably worse. The regression tree 
model does a much better job predicting the satisfaction scores from maternal control 
than the linear model. This is because the regression tree approach makes no assumptions 
about the functional form between the outcome (adolescent satisfaction) and the predictor 
(maternal control). By contrast, the linear model assumes a linear function.  

Inspection of the scatterplot between maternal control and adolescent relationship 
satisfaction suggests, roughly, an inverted U shaped curvilinear relationship between 
maternal control and relationship satisfaction, so one’s inclination might be to fit a 
quadratic regression model to the data that includes a squared polynomial term for 
maternal control. When I fit such a model, the root mean square error was 26.87. This 
result is better than the linear model but not as good as the regression tree. A quadratic 
curve cannot adequately capture the non-linearity either. The regression tree can. 

The program on my website that evaluates regression trees provides a summary of 
the rules from the regression tree for defining the terminal nodes. Here is the output for it: 
 

  Predicted Y      Rule              

     2.2           when control >= 59 
     3.2           when control <  30       
    56.5           when control is 48 to 59 
   100.0           when control is 30 to 48 
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When mothers are overly controlling (control ≥ 59) or overly lax (control < 30), 
adolescent relationship satisfaction tends to be low (2.2 out of 100 and 3.2 out of 100, 
respectively). When maternal control fluctuates around moderate levels of control (48 to 
59), adolescent relationship satisfaction tends to be moderate (56.5). When maternal 
control tends towards laxness but not too much (30 to 48), adolescent relationship 
satisfaction tends to be high (100.0). Inspection of Figure 15.31 reveals that these rules 
essentially define the four terminal nodes of the tree. Each terminal node represents a 
“cluster” or subgroup of individuals that have been defined so as to maximize the 
prediction of the outcome. In this sense, regression trees are a form of cluster analysis. 
Note, however, the clustering algorithm explicitly takes the outcome Y values into 
account to define the clusters. This is not true of traditional cluster analysis.  

Multiple Predictors in CART Models 

The above example used a single predictor. Regression trees also can accommodate 
multiple predictors. In such cases, the tree evaluates the ability of each predictor to 
further homogenize individuals in a node as it works its way towards defining terminal 
nodes. At a given step, the algorithm literally inspects every distinct value of every input 
variable to find the predictor and its value that produces the best split in terms of reducing 
within group outcome heterogeneity and between group variability. If a variable is not 
predictive of the outcome in any meaningful way for any branches, then it will be 
excluded from the tree by the algorithm. Hence, only a subset of the a priori specified 
predictors may appear in the final tree. The first branch in the tree is chosen to be the 
predictor among all predictors that when split into two groups at the identified value 
maximizes the within group outcome homogeneity of the split groups (and consequently, 
the between group heterogeneity). Further branching incorporates the other predictors to 
the extent that those predictors maximize within group homogeneity for each subsequent 
node (and, in turn, between group heterogeneity). For mathematical details, see Breiman 
et al., (1983) and Therneau and Atkinson (2023).  

As an example, I analyzed data for a multi-predictor tree where I predicted an 
outcome, Y, from three continuous variables, x1, x2 and x3. I constructed the example so 
that Y is linearly related to x1, quadratically related to x2, and it follows a sinusoidal 
effect for x3. Thus, the three relationships are complex. Figure 15.32 shows smoothed 
scatterplots of the bivariate relationships between each predictor and Y. The tree plot is in 
Figure 15.33. As one works through the plot from top to bottom, the model fit improves 
at each branch or level as further sources of outcome variability are taken into account.  
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FIGURE 15.32. Smoothed scatterplots for multivariate example 

 
 
FIGURE 15.33. Regression tree for multivariate example 
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 The bottom of the tree plot contains the terminal nodes. There are 10 of them. As 
examples, when x2 < 0.41, x1 < 0.44, and x3 >= 0.67, the mean of Y is predicted to equal 
0.029; when x2 >= 0.63 and x1 >= 0.71, the mean of Y is predicted to equal 3.84. And so 
on. The correlation between the predicted and observed Ys was 0.70 with a root mean 
square error of 1.03.  

Complexity Parameters and Pruning 

When deep and complex trees are formed via the tree growing process, they tend to 
produce good data fit but there also is a degree of overfitting that can occur. Such 
overfitting leads to poor performance when the tree is applied to future data and contexts. 
Usually tree models replicate well near the root node and during the early stages of tree 
growth, with overfitting creeping in as one gets closer to the terminal nodes. One seeks to 
find a balance between good fit for the analyzed data and solution stability to future 
unseen data.  

A common analytic strategy to address the matter is to initially grow a large tree 
and then to prune it after inspection to find an optimal subtree. Pruning decisions often 
make use of an index known as a complexity parameter. Recall that for continuous 
outcomes, a split is made to try to reduce within cell variation of the outcome for the 
groups defined by the prior splits to that point. The a priori specified complexity 
standard is the minimum proportion of error reduction over and above the prior splits 
that is required at a given node for the split on that node to be enacted/retained. If I set the 
complexity standard to 0.01, then this means that for a split to be enacted/retained at a 
given node, it must reduce error by at least 1% over and above the splits made prior to it. 
An analogous standard based on the Gini index is used for classification trees using the 
concept of node impurity. In the rpart program, the default value for the complexity 
standard is 0.01, which usually ensures a large tree.  

A complexity index at a given step in the growth of the tree is calculated, It 
represents the amount by which  the split improves on the error from the prior step(s).  If 
the complexity index at the root node is 0.28, this means the error is reduced by 28% if 
the split at the node is enacted/retained. If at the next step the complexity index is 0.055, 
this means that the error is further reduced by 5.5% if the split at that node is 
enacted/retained. And so on. With a default complexity standard of 0.01, the tree growing 
process continues until the reduction in error of a given split falls below 0.01.    

Another pruning strategy focuses not on the CP but instead limits the minimum 
number of data points required to attempt a split before the split can be enacted and/or to 
limit the minimum number of cases that must be in a terminal node. Or, one can limit the 
maximum number of internal nodes between the root and the terminal nodes. In the rpart 
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program, the default minimum number of cases in a terminal node is 20, the default 
minimum number of data points to enact a split is the latter value divided by 3, and the 
default number of permissible internal nodes is 30.   

Yet another pruning strategy uses a cross-validation approach that also is 
implemented in the rpart program. The approach uses what is known as k-fold cross-
validation. If k is set equal to 10 (the program default), then the data are randomly split 
into 10 groups. The tree is calculated for each group with the result then applied to the 
excluded data for the other groups to calculate error rates for the resulting trees. The 
average over all 10 error rates yields the cross-validation error rate which then can be 
taken into account in pruning decisions.   

In Figure 15.33, the regression tree for predicting Y from x1, x2, and x3 yielded 10 
terminal leaves/nodes when using program defaults. Here is the CP Table that the rpart 
program generates for purposes of more detailed, step-by-step analyses: 

 
         CP nsplit rel error  xerror     xstd 
1  0.283351      0   1.00000 1.00237 0.044271 
2  0.054579      1   0.71665 0.73556 0.032943 
3  0.043341      2   0.66207 0.69299 0.030712 
4  0.027677      3   0.61873 0.67238 0.029796 
5  0.020699      4   0.59105 0.65732 0.029649 
6  0.017202      5   0.57035 0.63104 0.027919 
7  0.013276      6   0.55315 0.62599 0.027717 
8  0.012355      7   0.53987 0.62778 0.027853 
9  0.010066      8   0.52752 0.62387 0.027389 
10 0.010000      9   0.51745 0.61413 0.026592 
 

Indices for each split are provided starting with the potential split at the root node 
(identified by a zero in the column labeled nsplit). The value of the CP for this potential 
split was 0.283. For the next split, the proportion of incremental reduction in error 
variance was 0.055. For the split after it, the proportion of incremental reduction in error 
variance was 0.043, and so on until the ninth split which had a reduction of 0.01, the 
complexity standard. 

The column labeled rel error (for relative error) is the resubstitution error  
relative to the root node. For example, if I standardize the total error to a value of 1, then 
when I enact split 1, the error is reduced to 0.72; after 2 splits the error is reduced further 
to 0.66, and so on until at nine splits I have achieved an overall error index of 0.52. The 
column labeled xerror is the same index but applied to the folds in the cross validation 
samples to avoid overfitting. It often is the preferred “fit” index because it has indirectly 
taken sampling error into account The final column, xstd, is the standard deviation of the 
cross-validation error across the folds.     
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 Different methods have been suggested for using information from this table to 
define the final tree model. One method chooses an optimal CP but incorporates the cross 
validation error. The idea is to select a CP value for pruning that minimizes the cross-
validated error while balancing the model's complexity. The one standard error rule 
selects the smallest tree within one standard error of the minimum cross-validated error.. 
Rpart offers a plot function that facilitates the choice of the pruning CP value. Here is the 
plot for the current example: 

 

The dashed horizontal line is 1 standard error above the minimum of the curve. A good 
heuristic for choosing a CP standard for pruning is to look for values that are below the 
dashed horizonal line and then prune them. In the above plot, a CP standard of about 
0.020 would functionally satisfy the one standard error rule. Here is the tree that results: 
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Now there are only six terminal nodes. Pruning decisions should be carefully considered 
and should take into account the broader substantive context of the analysis as well as the 
quantitative coherence of the different tree diagnostics.    

Variable Importance 

As noted, the program rpart on my website builds a tree by recursively finding the best 
split at each node from possible splits for all predictor variables. The predictor that yields 
the best split is known as the primary splitting variable for that node. The amount of 
improvement in fit is added to a total importance tally for the predictor serves as the 
primary splitter. If the value for the primary splitting variable is missing for a given case, 
the algorithm searches for the next best split using a different predictor that mimics the 
outcome of the primary split predictor. Such variables are called surrogate splitting 
variables and they also contribute to classification accuracy. The improvement score for 
the surrogate split also is added to the total importance tally for the predictor used as the 
surrogate but with some downweighting to reflect the fact it is a surrogate.  

An importance score is then calculated for each predictor as the sum of all its 
improvement scores across all nodes where that predictor was used either as a primary 
splitter or as a surrogate. The total importance scores are transformed to sum to 100. The 
result is a set of indices that reflect the relative importance of each predictor in shaping 
the tree growing process.   
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Profile Analysis 

A tool I sometimes find helpful when analyzing regression and classification trees is to 
conduct profile analyses where I compare two a priori specified predictor profiles to gain 
additional substantive insights. Suppose I am predicting a continuous Y from three 
continuous predictors, X1, X2, and X3, with all variables varying on a 0 to 10 metric. A 
predictor profile is defined when you specify specific values for the predictors and then 
calculate the predicted Y score for that profile based on the tree model. For example, I 
might define two profiles: 
 
Profile 1: X1 = 6.0, X2 = 5.2, X3 = 5.8 

Profile 2: X1 = 5.0, X2 = 5.2, X3 = 5.8 

Each profile is the same except that in Profile 2, I added one unit to the value of X1. The 
values I assigned to X2 and X3 were the values of their sample means, but I can assign 
any values I desire. The program for Regression trees on my website calculates the 
predicted Y for each profile as well as the difference in those Ys given the regression tree 
model that was empirically derived. In this case, The difference in the predicted Ys will 
reflect the estimated effect of increasing X1 by one unit holding X2 and X3 constant at 
their “typical” (i.e., mean) values.     
 Profile analysis is flexible and you can vary multiple predictor values across the two 
profiles, like this: 
 
Profile 1: X1 = 6.0, X2 = 5.2, X3 = 6.0 

Profile 2: X1 = 5.0, X2 = 5.2, X3 = 5.0 

Comparing the predicted Y for these two profiles tells me the effect of increasing both 
X1 and X2 by one unit. With the creative selection of different profiles, there are a range 
of interesting substantive questions you can address so as to get better insights into model 
predictions.  

Covariate Control 

Generally, one wants to control for sources of confounding when applying regression 
trees for purposes of causal inference. This can be challenging if your goal is to adjust the 
target variables that are subjected to tree analysis. One way to deal with confounds is to 
include the relevant covariates in the set of predictors submitted for tree construction. The 
difficulty with this approach is that the tree may end up using only the covariates so that 
you don't learn anything about the associations between your target predictors and the 
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outcome, which undermines your overall goal. A second strategy is to stratify the data on 
potential confounders and generate separate trees for each strata. For example, if 
biological sex is a potential confounder, you would conduct the regression or 
classification tree analysis on females and males separately. The disadvantage of this 
approach is that you then have reduced sample sizes in each strata which can weaken the 
confidence you have in solution stability. It also is difficult to adequately handle 
continuous confounds as they often must be artificially dichotomized or trichotomized to 
define the strata. Nevertheless, if you have a large sample size, stratification is a 
possibility for covariate control in some cases. A third strategy sometimes mentioned is 
to use regression analyses to isolate the relevant residuals after controlling for the 
confounds in a separate analysis and then conduct the tree analyses on the residualized 
scores. However, this approach can produce biased estimates and is of limited value 
unless the confounds are modest in magnitude (see Darlington & Smulders, 2001; 
Freckleton, 2002; see also the related approach to confound control based on conditional 
inference trees as described by Hothorn, Hornik and Zeileis (2006) and implemented in 
the R package partykit). A fourth strategy is to shift away from CART frameworks and to 
use BART analyses instead where confound control is more readily implemented.  

More on the Quality of Model Predictions   

For regression trees, the primary indices of prediction accuracy are (a) the correlation 
between Y and the predicted Y, and (b) the root mean square error. Neither of these 
indices are appropriate for classification trees in which the outcome variable is nominal. 
A key tool for evaluating prediction quality for classification trees is the confusion 
matrix, which I illustrate in Table 15.15 using a binary outcome for pedagogy: 

Table 15.15:  Confusion Matrix 
 
 Observed Y 
Predicted Y Category 1 Category 2 
   

Category 1 True Positive (A) False Positive (B) 

Category 2 False Negative (C) True Negative (D) 

 

There are a host of indices that are associated with these tables and that are reported in 
the Regression trees program on my website. They include: 
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Overall Accuracy = (A+D)/ )/(A+B+C+D) 
Sensitivity = A/(A+C) 
Specificity = D/(B+D) 
Precision = A/(A+B) 
Prevalence = (A+C)/(A+B+C+D) 
PPV = (sensitivity*prevalence)/((sensitivity*prevalence)+((1-specificity)*(1-prevalence))) 
NPV = (specificity*(1-prevalence))/(((1-sensitivity)*prevalence)+((specificity)*(1-prevalence))) 
Detection Rate = A/(A+B+C+D) 
Detection Prevalence = (A+B)/(A+B+C+D) 
Balanced Accuracy = (sensitivity+specificity)/2 
  
I can characterize these indices best if I use an example where a test yields a result where 
Category A = the person given the test has a target disease of interest and Category B = 
the person given the test does not have the target disease. The columns are whether the 
person does in fact have the disease. The rows are what the test states is the person’s 
disease status. The overall accuracy is the proportion of correctly classified people out 
of the total number of individuals. Sensitivity is the proportion of people who have the 
disease who are correctly diagnosed as having the disease. Specificity is the proportion of 
people who do not have the disease who are correctly diagnosed as not having it. 
Prevalence is the proportion of people who have the disease. The detection rate is the 
proportion of people who are correctly diagnosed as having the disease out of the total 
sample. The detection prevalence is the proportion of people who are diagnosed as 
having the disease (correctly or incorrectly) out of the total sample. Balanced accuracy 
is the average of the sensitivity and the specificity of the test.  

The positive predictive value (PPV) and the negative predictive value (NPV) are 
influenced by sensitivity, specificity and by prevalence, that is how common a condition 
or event is in a target population. As an example, low-dose CT scans have a sensitivity of 
0.94 and a specificity of 0.73 for the detection of lung cancer in long term smokers 
between the ages of 55 and 74. This means that low dose CT scans accurately detect lung 
cancer in 94% of smokers who have lung cancer, and correctly identifies 73% of smokers 
who don’t have lung cancer as not having it. However, only about 1% of older long term 
smokers have lung cancer (prevalence). The positive predictive value of low-dose CT 
scanning has a PPV of 0.038 or (3.8%) in the population as a whole. Despite its high 
sensitivity and specificity, the vast majority (100 – 3.8 = 96.2%) of positive results in the 
population (96.2%) are false if one takes into account the disease prevalence. The 
negative predictive value is 0.986 (or 98.6%), meaning that  few of the negative results in 
the population (100 – 98.6 = 1.4%) are false if one takes into account disease prevalence.  

When you analyze data with a binary outcome as a classification tree, then the 
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above statistics will be output by my Regression trees program on my website. If the 
nominal outcome has more than two levels, you will be provided the above information 
for each separate category of the outcome variable calculated by treating the category as a 
pseudo-binary outcome (the outcome category in question versus all other outcome 
categories). 

For classification trees, the program also offers additional statistics. The No  
Information Rate (NIR) is the overall proportion of correct classifications obtained by 
always predicting the majority class. The p value associated with this statistic is p-value 
for a statistical test comparing the accuracy of the model to the NIR. A p-value less than 
0.05 is often interpreted to mean that the model’s accuracy is better than the NIR. The 
kappa coefficient considers both the true positive rate and the false positive rate, 
providing a more balanced evaluation of the model’s performance. It ranges from -1 to 1 
with 0 indicating no chance fit in the population and 1 indicating perfect agreement 
between predicted and observed values. Mcnemar's test provides a p-value for a 
statistical test comparing the number of false positives and false negatives. A p-value 
greater than 0.05 indicates there is no statistically significant difference between the 
number of false positives and false negatives. 

Moderation Dynamics and CART   

Regression and classification trees can take into account both non-linearity in data as well 
as moderation, sometimes subtly so. My initial example with maternal control and 
adolescent relationship satisfaction illustrated how non-linearity can be accommodated. 
Consider the case of two binary mediators, x1 and x2, that combine interactively to 
impact the outcome Y in accord with the following 2X2 table of Y means:  
 
 x1 = 0 x1 = 1 
x2 = 1 0.50 5.50 
x2 = 0 0.50 0.50 

In this case, x1 moderates the effect of x2 on Y: When x1 = 0, variation in x2 has no 
effect on Y (because in the first column, 0.50 – 0.50 = 0). When x1 = 1, variation in x2 
impacts Y (because in the second column 5.50 – 0.50 = 5.0). Regression trees focus on 
reproducing the cell means themselves in such tables in ways that are agnostic to the 
parametrization of the sources of the means, be it either a cell means moderation 
parameterization or the classic analysis of variance parameterization (see Chapter 17). 
Here is the regression tree that results from the above table relating Y to x1 and x2:  
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Note that the three terminal nodes reproduce the four cell means and, as such, implicitly 
take into account the operative moderation/interactive dynamics. In this sense, regression 
trees account for interaction/moderation dynamics among the predictors without 
researchers formally building in (product) terms to reflect those dynamics. Some 
methodologists argue this property is a strength of CART approaches. Others argue it is a 
weakness because the underlying dynamics are somewhat hidden.  

Strengths and Weaknesses of Regression and Classification Trees    

Regression and classification trees have both strengths and weaknesses. The tree structure 
generally is easy to understand and easy to communicate to clients. By examination of  
the tree plot, you can readily map the paths from the root node to the terminal node. 
Doing so encourages you to articulate explanatory bases for the different variable splits. 
Regression and classification trees can take into account both non-linear relationships 
between predictors and outcomes as well as interaction dynamics between the predictors 
without the necessity of pre-specifying them.     
 One weakness of regression trees is their reliance on stepwise functions that assign 
a constant value to all cases in a given terminal node. This results in a prediction function 
that is step shaped and that may not accurately characterize a true smooth function if it 
exists. For example, in Figure 15.33 there were 10 terminal nodes linking the x1, x2 and 
x3 predictors to Y. If I order the mean values of the nodes from the lowest predicted Y to 
the highest predicted Y, I get 0.029, 0.892, 1.362, 1.471, 1.705, 1.925, 2.638, 2.703, 
3.572, 3.842. Here is the step function plot implied by these values: 
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One property of this step function is that two people can have somewhat different 
scores on the predictors but if they fall into the same terminal node, they will have the 
same predicted outcome score despite these differences. The function is thus a bit crude 
but perhaps workable. Another weakness, noted above, is the risk of overfitting data at a 
cost of lost generalizability to other data sets. Pruning, the setting of a minimum N per 
leaf, and limiting tree depth are strategies used to counteract this problem. Regression 
trees reduce continuous constructs to binary representations, which also can be 
problematic (see Chapter 3). For example, suppose x1 is on a 0 to 10 metric. If a node has 
a left branch “x1 < 6.63” and a right branch of “x1 ≥6.63”, then a person who scores 6.32 
will branch left and a person who scores 6.63 will branch right even though the difference 
in their respective x1 scores is quite small. The implications of that trivial difference on 
the individuals’ predicted Y might be dramatic depending on the tree structure. And, the 
exact same differential branching dynamic would occur if person 1 has a score of x1 = 2 
and person 2 has a score of x1 = 8, a difference of 6 units. Is it reasonable to have a 
between-person difference of 0.01 producing the same dynamic as a difference of 6? 
Perhaps. Perhaps not.     
 Like variable entry dynamics in stepwise regression, the indices of predictor 
importance in CART modeling can be influenced by the order of the predictors chosen in 
the various nodes as the algorithm works its way through the tree growing process. 
Sometimes the choice of a predictor as a primary splitter is based on dynamics that reflect 
sampling error and this, in turn, affects the variable importance indices accordingly. 
 CART models are by and large devoid of significance tests and rely on cross 
validation strategies to address sampling error. Such validation usually comes at a 
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substantial cost in sample size.     
I find regression and classification trees to be useful exploratory devices and/or an 

approach that helps me derive cutoff values for use in applied settings. However, I am 
somewhat hesitant to rely on them as my main form of causal analysis in an RET, 
although the Bayesian approach described earlier (BART) is better suited to such 
analyses.  

Numerical Example 

The numerical example I for the application of regression trees to RETs is a two group (0 
= control versus 1 = intervention), two mediator model where both mediators and the 
outcome are measured on 0 to 10 metrics that is diagrammed in a traditional RET 
analysis as follows: 
 

  

Treatment vs. 
Control

d2

d1

d3M1

M2

Y

p1

p2

p3

p4

p5

 
 

The regression tree analysis alters this model by combining the mediators into a 
single nominal mediator where each “level” of the mediator captures a subset of 
individuals. Across subsets, the groups differ on their Y mean posttest scores and, in this 
sense, the mediator is meaningful. The influence diagram becomes:     

  
Treatment vs. 

Control

d1

Nominal  
Mediator

Y
 

FIGURE 15.35. Modified model 
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By synthesizing the multiple mediators into a single construct and applying 
regression tree algorithms, the analysis is able to take into account non-linear 
relationships between mediators and the outcome as well as moderated relationships 
between the mediators in shaping the outcome, albeit in a somewhat atheoretical way. 
Figure 15.36 shows smoothers relating m1 to Y and m2 to Y. Both smoothers are non-
linear, one positive (m1) and the other negative (m2). The regression tree approach can 
accommodate such joint non-linearity but it is not always easy to visibly decipher from 
the tree per se the nature of the non-linearity, as you will see.   
 

 

FIGURE 15.36. Smoothers for the mediators 

 I begin by applying the regression tree to the data. I then use it to address the 
standard three RET questions (1) does the intervention affect the outcome, (2) does the 
intervention affect the mediators, and (3) do the mediators affect the outcome? 

Initial Model Evaluation  

My initial fit of the regression tree included an outcome covariate (ycov), the two 
mediators, and the treatment effect to capture the possible direct effect of the treatment 
on the outcome. Neither ycov nor the treatment dummy variable appeared in any of the 
tree branches, suggesting that m1 and m2 dominate the analysis. The first tree used a 
small complexity parameter (CP = 0.01) and yielded 7 terminal nodes. I conducted this 
analysis to help make pruning decisions. Based on the pruning process described above 
(see also the video on my website associated with the program called Regression trees), I 
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settled on a pruned solution with 5 terminal nodes and a complexity parameter of 0.03. 
Figure 15.37 shows the tree that resulted.  

 

FIGURE 15.37. Pruned regression tree 

The number of terminal leaves is five, a more parsimonious model than the initial 
analysis. The Y means increase as one moves from left to right, with a low of 2.20 and a 
high of 5.43. The root mean square error for the tree was 0.56 whereas for the linear 
model it was 0.64. This favors the tree to the linear model. The correlation between the 
predicted and observed scores for the tree was 0.83; for the linear model it was 0.78, 
again favoring the tree. Here are the classification rules as output by the program: 

 
Terminal Leaf Predicted Y Membership Rule 

   

1 2.20 m1 <  6.1 and m2  ≥  3.3 
2 2.95 m1 <  6.1 and m2 is 2.2 to 3.3 
3 3.60 m1 <  6.1 and m2 <  2.2        
4 4.15 m1 is 6.1 to 6.7                    
5 5.43 m1 ≥  6.7   
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 The relative importance indices for the variables as reported on the tree output were 
61.94 for m1, 35.46 for m2, 2.21 for ycov, and 0.39 for the treatment dummy variable.  It 
seems that m1 tends to dominate. 

Total Effect of the Program on the Outcome 

The most straightforward way to test the overall program effect on Y is to use LISEM by 
regressing Y onto the treatment condition dummy variable plus any relevant covariates, 
in this case ycov. Here is the Mplus syntax I used for the analysis: 
 
TITLE: Regression tree example: Total effect ; 
DATA: FILE IS cartM.txt ; 
DEFINE: 
  CENTER ycov (GRANDMEAN) ; 
VARIABLE: 
  NAMES ARE id treat m1 m2 y ycov biny tleaf ; 
  USEVARIABLES ARE treat y ycov ; 
  MISSING ARE ALL (-9999) ; 
ANALYSIS:  
  ESTIMATOR = MLR ;   
MODEL:  
  y ON treat ycov ;  
OUTPUT:  
  SAMP STAND(STDYX) MOD(ALL 4) RESIDUAL CINTERVAL TECH4 ; 
 

All of the syntax should be familiar. I mean centered the covariate ycov using the DEFINE 
command so that the intercept would reflect the control group mean Y. Here is the 
relevant Mplus output: 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 Y        ON 
    TREAT              0.528      0.087      6.069      0.000 
    YCOV               0.161      0.046      3.473      0.001 
 
 Intercepts 
    Y                  2.751      0.054     50.553      0.000 

 
  The covariate adjusted Y mean difference between the intervention and control 
groups was 0.53 ± 0.17, which was statistically significant (CR = 6.08, p < 0.05). The 
covariate adjusted mean for the control group was 2.75 ±0.11 and for the intervention 
group (obtained by reverse scoring the dummy variable and re-running the syntax) was 
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3.28 ±0.14. Suppose before conducting the study the research team and staff decided that 
a meaningful effect in the population would be an absolute mean difference equal to or 
larger than 0.33. The 95% CI for the mean difference was 0.36 to 0.70. Because the lower 
limit of the interval exceeds the meaningfulness standard, it is concluded that the 
intervention effect was meaningful.   

Program Effects on Mediators 

If I treat the mediator as a nominal variable with 5 levels (corresponding to the 5 terminal 
nodes) then I can apply the approach outlined in Chapter 13 and in Table 15.8 and Table 
15.13 to analyze a nominal “outcome,” in this case the mediator. Recall that the strategy 
involves conducting k contrasts one for each level of the nominal mediator. I compare the 
treatment versus control condition in terms of the estimated proportion of people that 
appear at each level in the treatment condition versus the proportion that do so in the 
control condition, consistent with the following table:  

Table 15.16:  Conditional Probabilities to  Estimate 

 Treatment Control Contrast 

Level 1 of Mediator (C1) P(C1|T=1) P(C1|T=0) P(C1|T=1) - P(C1|T=0) 

Level 2 of Mediator (C2) P(C2|T=1) P(C2|T=0) P(C2|T=1) - P(C2|T=0) 

Level 3 of Mediator (C3) P(C3|T=1) P(C3|T=0) P(C3|T=1) - P(C3|T=0) 

Level 4 of Mediator (C4) P(C4|T=1) P(C4|T=0) P(C4|T=1) - P(C4|T=0) 

Level 5 of Mediator (C5) P(C5|T=1) P(C5|T=0) P(C5|T=1) - P(C5|T=0) 

 
Table 15.17 provides the Mplus syntax that performs the contrasts: 
 
Table 15.17 Mplus Syntax for Multinomial Contrasts 
  
1.  TITLE: Regression tree example: Program effect on mediator ; 
2.  DATA: FILE IS cart2M.txt ; 
3.  VARIABLE: 
4.   NAMES ARE id treat m1 m2 y ycov biny tleaf ; 
5.   USEVARIABLES ARE treat tleaf ; 
6.   NOMINAL IS tleaf ; 
7.   MISSING ARE ALL (-9999) ; 
8.  ANALYSIS:  
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9.  ESTIMATOR = MLR ;   
10. MODEL:  
11.  tleaf#1 ON treat (p1a)  ; 
12.  tleaf#2 ON treat (p1b)  ; 
13.  tleaf#3 ON treat (p1c)  ; 
14.  tleaf#4 ON treat (p1d)  ; 
15.  [tleaf#1] (a1) ; [tleaf#2] (a2) ; [tleaf#3] (a3) ; [tleaf#4] (a4) ;  
16. MODEL CONSTRAINT: 
17. NEW (PRED1C PRED2C PRED3C PRED4C  
18. PROB1C PROB2C PROB3C PROB4C PROB5C SUMC 
19. PRED1T PRED2T PRED3T PRED4T  
20. PROB1T PROB2T PROB3T PROB4T PROB5T SUMT  
21. DIFF1 DIFF2 DIFF3 DIFF4 DIFF5); 
22. !Generate predicted odds for controls as intermediate terms    
23. PRED1C = exp(a1+p1a*0) ; 
24. PRED2C = exp(a2+p1b*0) ; 
25. PRED3C = exp(a3+p1c*0) ; 
26. PRED4C = exp(a4+p1d*0) ; 
27. SUMC = PRED1C+PRED2C+PRED3C+PRED4C+1; 
28. !Generate predicted control probabilities for the three categories  
29. PROB1C = PRED1C/SUMC ; 
30. PROB2C = PRED2C/SUMC ; 
31. PROB3C = PRED3C/SUMC ; 
32. PROB4C = PRED4C/SUMC ; 
33. PROB5C = 1/SUMC ; 
34. !Generate predicted odds for treatment as intermediate terms   
35. PRED1T = exp(a1+p1a*1) ; 
36. PRED2T = exp(a2+p1b*1) ; 
37. PRED3T = exp(a3+p1c*1) ; 
38. PRED4T = exp(a4+p1d*1) ; 
39. SUMT = PRED1T+PRED2T+PRED3T+PRED4T+1; 
40. !Generate predicted treatment probabilities for the three categories  
41. PROB1T = PRED1T/SUMT ; 
42. PROB2T = PRED2T/SUMT ; 
43. PROB3T = PRED3T/SUMT ; 
44. PROB4T = PRED4T/SUMT ; 
45. PROB5T = 1/SUMT ; 
46. !Calculate differences in probabilities 
47. DIFF1 = PROB1T-PROB1C ;  
48. DIFF2 = PROB2T-PROB2C ; 
49. DIFF3 = PROB3T-PROB3C ; 
50. DIFF4 = PROB4T-PROB4C ; 
51. DIFF5 = PROB5T-PROB5C ; 
52. OUTPUT:  
53. SAMP STAND(STDYX) RESIDUAL CINTERVAL TECH4 ; 

 
I explained the logic of the syntax in Chapters 13 and in Table 15.8 and Table 15.13. It 
all should be familiar. The key results appear in the New/Additional Parameters 
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section which I present below but where I have highlighted in red the parameter estimates 
of interest. 
 
New/Additional Parameters 
                                                     Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
    PRED1C            22.000     10.060      2.187      0.029 
    PRED2C            18.400      8.449      2.178      0.029 
    PRED3C             7.200      3.436      2.095      0.036 
    PRED4C             2.000      1.095      1.826      0.068 
    PROB1C             0.435      0.031     13.950      0.000 
    PROB2C             0.364      0.030     12.024      0.000 
    PROB3C             0.142      0.022      6.479      0.000 
    PROB4C             0.040      0.012      3.227      0.001 
    PROB5C             0.020      0.009      2.259      0.024 
    SUMC              50.600     22.404      2.259      0.024 
    PRED1T             2.462      0.572      4.300      0.000 
    PRED2T             4.038      0.885      4.565      0.000 
    PRED3T             1.308      0.341      3.838      0.000 
    PRED4T             0.923      0.261      3.533      0.000 
    PROB1T             0.253      0.027      9.256      0.000 
    PROB2T             0.415      0.031     13.398      0.000 
    PROB3T             0.134      0.021      6.267      0.000 
    PROB4T             0.095      0.018      5.149      0.000 
    PROB5T             0.103      0.019      5.383      0.000 
    SUMT               9.731      1.808      5.383      0.000 
    DIFF1             -0.182      0.041     -4.386      0.000 
    DIFF2              0.051      0.043      1.187      0.235 
    DIFF3             -0.008      0.031     -0.258      0.797 
    DIFF4              0.055      0.022      2.501      0.012 
    DIFF5              0.083      0.021      3.952      0.000 

 
Table 15.18 presents the core information in tabular form using percentages (the reported 
proportions multiplied by 100). It can be seen that three of the five contrasts were 
statistically significant, suggesting the treatment condition had an effect on the nominal 
mediator. For example, for Leaf 1 (which had the lowest Y mean), 43.5% ±6.2. of 
individuals in the control group were in this subclass whereas for the intervention 
condition the corresponding percent was 25.3% ±5.4. The difference between the two 
groups was statistically significant (CR = 4.39, p < 0.05), which makes conceptual sense. 
For Leaf  5 (which had the highest Y mean), 2.0% ±1.8 of individuals in the control 
group were in this subclass whereas for the intervention condition the corresponding 
percent was 10.3% ±3.8. The difference between the two groups was again statistically 
significant (CR = 3.95, p < 0.05). Suppose the meaningfulness standard was set to a 
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difference of 3% for any given level. In this case, only leaves 1 and 5 could be said to 
have produced a meaningful effect based on their confidence intervals from the output. 
   
Table 15.18 Results of Intervention Effect on the Mediator in Tabular Form 

 Treatment Control Difference 

Leaf 1 (YMEAN = 2.20) 25.3% 43.5% -18.2% * 
Leaf 2 (YMEAN = 2.95) 41.5% 36.4% 5.1% 
Leaf 3 (YMEAN = 3.60) 13.4% 14.2% <1.0 % 
Leaf 4 (YMEAN = 4.15) 9.5% 4.0% 5.5%* 
Leaf 5 (YMEAN = 5.43) 10.3% 2.0% 8.3%* 
 

Note that this analysis is not able to separate out the separate influence of the 
intervention on m1 and m2. I can pursue such analyses using Mplus by conducting 
separate analyses on m1 and m2 much like I did for Y with the total effect analysis 
reported earlier. However doing so steps outside the regression tree framework. When I 
conducted these analyses on m1, I found evidence for an intervention effect (intervention 
minus control difference = 0.39 ±0.18 (CR = 4.35, p < 0.05). The analyses on m2 also 
showed a statistically significant intervention effect, as hypothesized, in the direction of 
the intervention lowering m2. The intervention minus control difference was = -0.49 
±0.18 (CR = 5.51, p < 0.05). In both cases, these effects were deemed to be meaningful.   

Mediator Effects on the Outcome 

The final question seeks to estimate the effects of the mediator on the outcome. With a 
nominal predictor and a continuous outcome, the question often is approached by 
regressing Y onto dummy variables that reflect the nominal predictor and include 
additional covariates, as appropriate.23 Here is relevant Mplus syntax if I want to compare 
the mean Y for each of the first four leaves with that of the fifth leaf (using the latter as 
the reference group): 
 
1.  TITLE: Regression tree example: Mediator to outcome ; 
2.  DATA: FILE IS c:\ret2\cart2M.txt ; 
3.  DEFINE: 
4.   d1=0 ; d2=0 ; d3=0 ; d4=0 ;  

 
23 In the case of regression trees, it is best to use these analyses primarily to provide a sense of standard errors rather 
than to treat the analysis as providing strict significance tests.   
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5.   IF (tleaf EQ 1) THEN d1=1 ; 
6.   IF (tleaf EQ 2) THEN d2=1 ; 
7.   IF (tleaf EQ 3) THEN d3=1 ; 
8.   IF (tleaf EQ 4) THEN d4=1 ; 
9.  VARIABLE: 
10.  NAMES ARE id treat m1 m2 y ycov biny tleaf ; 
11.  USEVARIABLES ARE y ycov treat d1 d2 d3 d4 ; 
12.  MISSING ARE ALL (-9999) ; 
13. ANALYSIS: ESTIMATOR = MLR ;   
14. MODEL:  
15.  y ON d1 d2 d3 d4 treat ycov  ; 
16.   OUTPUT:  
17. SAMP MOD(ALL 4) STAND(STDYX) RESIDUAL CINTERVAL TECH4 ; 
 

 All of the syntax should be familiar. In Lines 3 to 8, I create the dummy variables 
from the variable tleaf that contains a numeric entry from 1 to 5 to reflect the number of 
the terminal leaf the individual is a member of. Here is the relevant output: 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 Y        ON 
    D1                -3.135      0.139    -22.625      0.000 
    D2                -2.403      0.137    -17.501      0.000 
    D3                -1.759      0.152    -11.602      0.000 
    D4                -1.240      0.165     -7.494      0.000 
    TREAT              0.130      0.053      2.429      0.015 
    YCOV               0.058      0.027      2.142      0.032   

 
The D1 coefficient is the estimated mean difference between terminal leaf 1 minus 
terminal leaf 6. Because a larger mean is being subtracted from a smaller mean, the 
difference between leaves 1 and 6 is negative in sign. The trend in the data is that 
terminal leaf 6 is larger than each of the remaining leaves. There clearly is a link between 
the nominal mediator and the outcome. This is further reinforced by the magnitude of the 
correlation between the predicted Y and the observed Y (r = 0.83, p < 0.05).    
 It might be interesting to explore profile analyses to gain further understanding of 
Mediator→Outcome dynamics. I initially compared two profiles using the program on 
my website: 

Profile 1:  "m1=6,m2=3,treat=0,ycov=3.29" 
Profile 2:  "m1=5,m2=3,treat=0,ycov=3.29" 

                           Value 
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Profile 1 predicted Y    2.95075 
Profile 2 predicted Y    2.95075 
Profile 1 - Profile 2    0.00000 

The first profile sets the treatment condition to 0 (the control group), the covariate to its 
“typical” (i.e., mean) value, and m2 equal to its mean value, 3.0. I then varied, across the 
two profiles the value of m1, from 5 to 6. The predicted Y score remained unchanged and 
equaled the mean of the second terminal leaf in the regression tree, 2.95. If you examine 
the scatterplot for m1 in Figure 15.36, you can see some of the curvilinear dynamics 
likely at play. If I change the value of m2 from 5 to 7 in the first profile to enact a 
somewhat different comparison, I find: 
 
Profile 1:  "m1=7,m2=3,treat=0,ycov=3.29" 
Profile 2:  "m1=5,m2=3,treat=0,ycov=3.29" 
  
                            Value 
Profile 1 predicted Y    5.430948 
Profile 2 predicted Y    2.950750 
Profile 1 - Profile 2    2.480198 

The predicted Y for Profile 1 now becomes the mean of the fifth terminal leaf, 5.43, 
which is considerably larger than the predicted Y for the second profile. In fact, if you 
examine the branches of the regression tree in Figure 15.37, you will see that anyone who 
has an m1 score greater than 6.66 will have the same predicted Y score of 5.43. Some 
researchers argue that this step-like dynamic is theoretically unrealistic whereas others 
argue that the flattening of the curve at some point is theoretically reasonable. Those who 
embrace machine learning methods that tend to emphasize prediction over explanation 
would point out that the regression tree predictions, overall, are more accurate than, say, 
the linear model per the root mean square errors reported above and this is what matters 
most. My own orientation is to take into account both predictive accuracy and theory, 
finding a reasonable balance between the two. It is evident from the scatterplots in Figure 
15.36 that a linear model is not viable from the standpoint of explanation. This does not 
necessarily mean a tree regression that uses a series of binary branch cut-points based on 
a statistical algorithm adequately represents the causal dynamics at work.         

Concluding Comments on Numerical Example 

In sum, the intervention seemed to have a meaningful overall effect on the outcome as 
well as on both m1 and m2 in the expected directions. Both m1 and m2 seem to be 
related to the outcome, but in complex ways according to the regression tree. For 
example, when m1 is lower than 6.09, variations in m2 around the m2 cutoff of 3.28 
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impact the predicted Y (and shape it yet further if one applies the m2 cutoff of 2.22). By 
contrast, when m1 is greater than 6.09, variations in m2 do not seem to matter much (see 
Figure 15.37). This implies an interaction effect between m1 and m2. The fact that when 
m1 exceeds 6.09 that further branching on m1 takes place implies curvilinearity for the 
relationship between m1 and Y. In the final analysis, m1 and m2 combine synergistically 
to produce 5 subclasses of individuals (i.e., terminal nodes) that as a collective are linked 
to Y. Profile analyses then helps to clarify the effects of changes in m1 and m2 on Y and 
their interactive nature.   

Concluding Comments on Recursive Partitioning Models 

CART models are yet another statistical tool that you may be able to use when dealing 
with complex, non-linear dynamics in RET designs. They have both strengths and 
limitations which I discussed earlier. There are many variants of CARTs which I have not 
considered here; my treatment has been more introductory. For example, conditional 
inference trees (CITs) seek to use significance tests to determine which variables to split 
on at each node thereby evaluating the statistical significance of each potential split 
(Levshina, 2020). The Chi Square Automatic Interaction Detection (CHAID) 
algorithm seeks to identify predictor interactions when using classification trees (see 
Kushiro et al., 2023). Random forest modeling builds trees through bootstrapping with 
the idea of generating a set of trees using different subsets of the input samples and then 
combine their results to obtain a final tree (Mienye & Sun, 2022). Gradient boosted 
decision trees (GBDT) combines multiple decision trees using a sequential approach that 
corrects errors of the previous trees (Jun, 2021). It uses gradient descent to minimize 
errors. 

CONCLUDING COMMENTS 

This has been a long chapter that was designed not so much for continuity as it 
was to introduce you to a variety of methods for evaluating non-linear 
relationships in RETs. All of the methods - polynomial regression, spline 
regression, traditional non-linear regression, Bayes additive regression trees, 
generalized additive models, cluster analysis, latent profile/class analysis, and 
recursive partitioning models - offer a strong set of tools for addressing non-
linearity. Check out the Resources tab on my website for useful materials related 
to these topics.   
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APPENDIX A: CALCULATION OF AME FOR A QUADRATIC MODEL 

This Appendix shows how to calculate average marginal effects (AMEs) for a 
quadratic model with all single indicators using Mplus. The method does not yield 
significance tests nor confidence intervals for the AMEs, which is a disadvantage. 
Standard errors and confidence intervals can be computed in Mplus using 
bootstrapping but the process is tedious and time consuming. The Mplus method 
for calculating AMEs more generally is described in detail in the Appendix of 
Chapter 12, so read it as background for the current Appendix.       

Cameron and Trivedi (2010) show the AME for a continuous M can be estimated 
manually as follows: 

1. Calculate the predicted Y score for each individual , Ŷ1i, as described in the main text 
using Equation 15.2: 

Ŷ1i = 2.806 + 3.043 M1 + 0.171 M2 + 0.245 M3 + -0.126 M1M1    

2. Increment the value of M1 for each individual by a very small amount. Cameron and 
Trivedi recommend increasing it by the standard deviation of M1 divided by 1,000. I call 
this increment delta. So, to M1, add delta. 

3. Recalculate a new value of M1M1 by multiplying this new value of M1 by itself. 

3. Calculate Ŷ2i using this incremented value of M1 and the new value of M1M1 by 
applying the same Equation used to calculate Ŷ1i. 

4. Define each individual’s marginal effect, IME, as (Ŷ2i  – Ŷ1i) / delta.     

5. Calculate the average of the IMEs. This value is the AME. 

 Using the numerical example from this chapter, I first run the syntax in Table 15.1 
to get the coefficients for Equation 15.2. From the descriptive statistics section of the 
output (titled UNIVARIATE HIGHER-ORDER MOMENT DESCRIPTIVE STATISTICS) I note 
that the variance of M1 is 5.652. Here is the syntax I use to calculate the AME for M1: 

Table A.1: Mplus Syntax for AME in a Quadratic Model 

1.  TITLE: AME analysis for M1  ; 
2.  DATA: FILE IS c:\mplus\ret\newchap15\\quadratic\quadraticM.txt ; 
3.  DEFINE: 
4.  DELTA=SQRT(5.652)/1000 ; !divide SD of M1 by 1000 
5.  PRED1=2.806+3.043*M1+0.171*M2+0.245*M3-0.126*M1M1;   
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6.  M1=M1+DELTA ; !increase M1 by a small amount 
7.  M1M1 = M1*M1 ; !revise M1M1 to be M1*M1 
8.  PRED2=2.806+3.043*M1+0.171*M2+0.245*M3-0.126*M1M1;   
9.  IME=(PRED2-PRED1)/DELTA ; 
10. VARIABLE: 
11.  NAMES ARE treat m1 m2 m3 m1m1 y m1a m1b m1am1a m1bm1b ; 
12.  USEVARIABLES ARE IME ; 
13.  MISSING ARE ALL (-9999) ; 
14. ANALYSIS:  
15.  ESTIMATOR = ML ; TYPE=BASIC ;  
16. OUTPUT: !use defaults on output 

 
Most of the Cameron and Trivedi method is implemented in the DEFINE command. 
DEFINE commands are executed sequentially by Mplus and I take advantage of this 
property for my calculations. In Line 4, I define delta as the standard deviation of M1 
divided by 1000. In Line 5, I calculate a Ŷ value for each individual by applying the 
regression equation to their raw scores. In Lines 6 and 7, I increment everyone’s M1 score 
by delta and recalculate the M1M1 score based on this. Line 8 calculates the Ŷ value for 
the revised scores. Line 9 calculates the individual marginal effect as the difference 
between the two Ŷ divided by delta. All that is left is to average these scores, which is 
what Lines 10-15 do. Line 15 adds TYPE=BASIC, which informs Mplus I want it to 
calculate the means of all the variables on the USEVARIABLES line (Line 12). The mean of 
IME reported on the output was 1.145, which is the AME. It is possible to generate 
standard errors through bootstrapping but for AMEs in Mplus, it is complicated and time 
consuming.  
 The same process is used for calculating the AME for M2 and for M3 with the 
exception that Line 7 is omitted and the appropriate M2 or M3 substitutions are made.   
 
Average Marginal Effects and Latent Variables   

Estimating marginal effects in models with mediators or covariates that are latent 
variables is problematic in Mplus. I discuss several workarounds in the Appendix of 
Chapter 12. Consult the material in that Chapter if you are working with latent variables.  
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APPENDIX B: ELABORATION OF EXPONENTIAL FUNCTION 

In this Appendix, I elaborate properties of the exponential function I provided in the main 
text for traditional non-linear regression. The function is: 

Y = (a)(ebX)                [B.1] 

There are two mathematical properties to keep in mind relative to Equation B.1 for our 
purposes. First, any number raised to the power of zero equals 1.  So, e0 is 1.0.  Second, if 
I raise a number to the power (c+d), it equals that number raised to the power of c 
multiplied by the number raised to the power of d.  So, e (c+d) equals (ec)(ed).  One other 
aside:  For Equation B.1, in theory, X can take on positive, zero, or negative values.  
However, Y cannot be 0 or negative because the function on the right hand side of 
Equation A.1 does not produce negative values no matter what values of X you use.  If 
the Y metric you work with takes on non-positive values, you can linearly transform Y by 
adding a constant to it so it is not negative. 

Here is an informal proof of the multiplicative nature of the function. Let Y1 be the 
value of Y at a given value of X and Y2 be the value of Y when X increases by one unit.   
For the case of X, Equation B.1 is   

Y1 = (a)ebX  

and if I increase X by 1, I get  

Y2 = (a)eb(X+1)   

Expanding b(X+1) in the above equation yields bX + b, so  

Y2 = (a)e(bX + b) 

Using the second mathematical property I mentioned above gives 

Y2 = (a)(ebX)(eb) 

If I bracket the first two terms on the right hand side of the equation, I get [(a)(ebX)](eb).  
The bracketed term is equal to Y1, so 

 Y2 = (Y1)(eb) 

This shows that Y2 is Y1 times eb. 
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APPENDIX C: GEWEKE TEST OF CONVERGENCE 

The logic of the adapted Geweke test for BART convergence with binary outcomes is 
presented in Sparapani, Spanbauer and McCulloch (2021). The test evaluates the stability 
of a Markov chain by comparing the means of two different segments of the chain using a 
z test (against an a priori specified critical value) that takes into account autocorrelation 
within the chain via the use of spectral density estimates. The choice of segments of the 
chain to compare can impact the results of the test.  One can check convergence for any 
estimator. In the R package BART, the software plots the Geweke Z statistics for each 
separate study participant. If a study has 100 participants, there will be 100 z statistics, some of 
which will be extreme just by chance (the problem of multiplicity). One can adjust for this using 
a more liberal alpha level to define the critical value or a more formal method such as the False 
Discovery Rate (FDR; see Chapter 6).   


