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INTRODUCTION  

It was in 1994 when the psychologist Jacob Cohen published his now classic article “The 
earth is round (p < .05).” This article raised numerous questions about the merits of 
statistical significance testing and emphasized the need to incorporate magnitude 
estimation and confidence intervals into result interpretation. Just what is a reasonably 
sized and meaningful program effect? When can we conclude that a program affects a 
mediator in a way that is meaningful; or that a mediator affects an outcome in a way that 
is meaningful? These are difficult questions to answer. In this chapter, I describe selected 
statistical indices of effect size that one often encounters in the statistical literature for 
documenting effect sizes. None of them is perfect. All have strengths and weaknesses. 
The idea is that when you want to evaluate the meaningfulness of an effect, you can think 
about it from different perspectives and using different effect size indices. After 
presenting the indices, I provide additional background to help you make meaningfulness 
judgments in the context of RETs. 
 My focus is on evaluating effect size for a given link in a mediational chain rather 
than the effect size for the full mediational chain considered in an omnibus sense. This is 
consistent with my view expressed in prior chapters that the analysis of individual links 
of a mediational chain is more informative for purposes of program evaluation than 
omnibus mediational chain effects. If we know that a given link in a mediational chain is 
“broken” and needs repairing or that it is unacceptably weak, then our task is to figure out 
how to go about addressing that link to make the program effect on the distal outcome 
stronger. If the program fails to meaningfully change a mediator, then we need to alter 
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the program activities so that it does, in fact, change the mediator. If the mediator, 
contrary to assumptions, is not relevant to the outcome, then we might streamline the 
program to remove its focus on the irrelevant mediator and replace the program 
component aimed at the mediator with one focused on a more relevant mediator; or we 
might figure out a way of strengthening the effect of the mediator on the outcome. 
Prioritizing individual link analysis is not the rule for all forms of mediation analysis, but 
it usually is key to program evaluation. After reviewing the ins and outs of different 
effect size indices commonly used for the analysis of individual links, I briefly 
characterize effect size indices for omnibus mediation effects through a given 
mediational chain. I defer discussion of effect size indices for moderators to Chapter XX. 
I show you how to implement the effect size analyses described here in future chapters.   

INDICES OF EFFECT SIZE IN RETs 

Many people associate effect size with standardized indices, such as squared correlations 
or Cohen’s d. However, effect sizes also can be characterized in unstandardized form, 
that is, in units of the variables’ raw metrics. If I tell you that a weight loss program leads 
to an average weight loss of 25 pounds (11.3 kilos), then this conveys, without 
standardization, a sense of the magnitude of the program effect. If I tell you male 
assistant professors earn, on average, $10,000 more per year than female assistant 
professors, this conveys a sense of the magnitude of sex differences in units of dollars. 
Raw mean differences and unstandardized regression coefficients are effect size indices 
and they can be useful and sometimes more intuitive than standardized indices. If the 
goal is to describe how much an outcome changes given a certain amount of change in a 
mediator, the unstandardized regression coefficient for that mediator provides 
information directly to the point: For every one unit the mediator increases, the mean of 
the outcome is predicted to change by the value of the coefficient. A regression/path 
coefficient characterizing how much, on average, viral load decreases as a function of the 
dose of a medication is causally informative and reflective of dose effects, yet it is 
expressed in unstandardized rather than standardized units.  

There are many standardized effect size indices that social scientists rely on. In this 
section of the chapter, I first discuss the use of p values as an index of effect size and then 
consider indices that rely on the variances of disturbance terms in a model. I next 
consider Cohen’s d, indices based on the concept of exceptions to the rule, standardized 
regression coefficients, and an index known as the number needed to treat. Finally, I 
describe risk differences, relative risks, and odds ratios. Each index evaluates effect size 
from a different vantage point. When describing indices of effect size in RETs, I often 
will reference standards that researchers use to judge the magnitude of effect size for a 
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given index, but I do not necessarily recommend the use of those standards. Indeed, some 
of the recommendations for the same index are quite divergent from one another. 

I have my own favorites for indices of effect size and I will identify them later in 
the chapter. However, I will characterize numerous effect size indices because they are 
popular in the social and health science literatures so you should be aware of them as well 
as their limitations.   

Effect Size 1: p Values 

In RETs, the most common use of p values is to gain perspectives on the null hypothesis 
of a zero mean difference between groups, a zero proportion difference between groups, 
and/or a zero path or regression coefficient. There are, of course, other uses of p values 
but a core question we want to know is if the difference between groups on some 
parameter is “statistically significant.”  

Some researchers when conducting such tests report p values to multiple decimal 
places. Other researchers simply note that the p value is less than the alpha level, 
typically set to 0.05 (e.g., p < 0.05). The former practice assumes that p values contain 
useful information about effect size and should be reported in ways that reveal that 
information. The latter approach instead sees the role of p values as helping one to make 
a binary decision; either reject or fail to reject the null hypothesis. These opposing 
orientations have their roots in different conceptualizations of null hypothesis testing 
during the early days of modern statistical theory, one by Ronald Fisher and the other by 
Jerzy Neyman and Egon Pearson. 

Articulation of the concept of a p value in null hypothesis testing is generally 
attributed to Fisher. A p value represents the probability of obtaining an effect equal to or 
more extreme than that observed in one’s study if one assumes the null hypothesis is true. 
The lower the p value, the more unlikely it is the null hypothesis is tenable because the 
data are too unlikely to have patterned themselves in the way they did if one assumes the 
null hypothesis is true. At some point of low probability, the null hypothesis is rejected. 
The p value is thus seen as a quantitative index of the strength of evidence against the 
null hypothesis.  

Neyman and Pearson, by contrast, argued that researchers should specify a priori 
what the cutpoint for defining a “low probability” is in order to provide a clear basis for 
rejecting the null hypothesis. In current day research, this standard is taken to be 0.05, but 
it can be adjusted upward or downward depending on context. Once a researcher rejects 
or fails to reject the null hypothesis using the p value using the defined cutoff for a “low 
probability,” Neyman and Pearson contend that the p value story ends. All that matters 
for purposes of null hypothesis testing is if p < 0.05 or not so that one can decide whether 
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to reject or fail to rejected the null hypothesis. By contrast, scientists using Fisher’s 
framework believe that knowing the observed p value to several decimals conveys 
quantitative information about the strength of evidence against the null hypothesis. As 
such, it should be reported with some degree of precision to give a sense of that strength.   

The approaches of Fisher and Neyman-Pearson have been misunderstood, 
mischaracterized, and debated for decades. Indeed, many would object to the simplistic  
characterization I offer above but my intent is to give you a general sense of the 
contrasting viewpoints. Arguments against using p values as an index of effect size are 
provided as part of a formal position statement of the American Statistical Association 
(Wasserstein & Lazar, 2016). In one portion of the report, the ASA states one of six 
formal principles about p values: “A p-value, or statistical significance, does not measure 
the size of an effect or the importance of a result.” The principle is accompanied by the 
following text: 
 

Statistical significance is not equivalent to scientific, human, or economic 
significance. Smaller p-values do not necessarily imply the presence of 
larger or more important effects, and larger p-values do not imply a lack of 
importance or even lack of effect. Any effect, no matter how tiny, can 
produce a small p-value if the sample size or measurement precision is high 
enough, and large effects may produce unimpressive p-values if the sample 
size is small or measurements are imprecise. Similarly, identical estimated 
effects will have different p-values if the precision of the estimates differs. 

 
The basic idea is that because traditional uses of p values to evaluate differences are 

influenced by sample size, they can be poor indicators of effect size. Two studies can 
observe the same p value yet report very different mean differences, proportion 
differences, or correlations simply because of study differences in sample size. Similarly, 
two studies can observe different p values yet report the same mean differences, 
proportion differences, or correlations because of study differences in sample size. A 
minor effect in a study can produce a small p value if the sample size in that study is 
large, just as a major effect can yield a large p value if the sample size is small.  

According to some, reporting exact p values represents a lack of understanding of 
the logic of significance testing. In null hypothesis testing frameworks, one a priori 
specifies the probability of the computed test statistic that s/he would consider rare or 
unlikely if the null hypothesis is true, usually 0.05. If the probability of the statistic is less 
than that value, then you reject the null hypothesis. If not, you fail to reject the null 
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hypothesis. The decision is either to reject or fail to reject the null hypothesis. End of 
story (Lang, Rothman & Cann, 1998). 

Although most agree that p values have properties that make them unsatisfactory as 
indices of effect size, some scientists argue they should still be reported to three or four 
decimals to accommodate readers who may not agree with the cutoff value you selected. 
By reporting a more exact p value, researchers are free to make a case for rejecting or 
failing to reject the null hypothesis based on a different cutoff value that they might feel 
is more justified than the one you selected. Others argue that the conventions for defining 
a “rare probability” are so widely accepted these days that such a position is specious. 

Some scientists argue that knowing if a p value is between 0.05 and 0.10 is 
important because it signals a “trend” towards an association between variables that is 
then worth keeping an eye on in future research. This takes p values outside the null 
hypothesis testing framework in which they were derived, which critics find 
objectionable. It also is seen as opening the door to arbitrarily shifting decision rules by 
viewing an effect as viable even when the p value is larger thn 0.05, which is considered 
by many to be counter to good science. 

The controversy about p values as indices of effect size obviously is complicated 
and I can’t develop it fully or resolve it here. I personally gravitate towards the Neyman-
Pearson position that uses p values not as indices of effect size but as a part of the null 
hypothesis testing framework where one seeks to make a binary decision about the null 
hypothesis. Stated another way, the p value as traditionally applied to null hypothesis 
testing can inform us whether an effect exists (i.e., is non-zero), but the p value will not 
provide good perspectives on the size of the effect. I almost always report p values given 
their prevalence in the field and to address the question of whether a non-zero difference 
exists, but I rely on other indices of effect size to address matters of effect size magnitude 
and meaningfulness in an RET. Granted, there will be exceptions to this, but in general, 
evaluations of the meaningfulness of effect sizes in RETs should be based on more than 
p< 0.05.     

Effect Size 2: Variances of Disturbance Terms 

When attempting to characterize how well one or more predictors “explains” an outcome, 
many researchers rely on the variance of the disturbance term associated with the 
outcome when predicting it from a set of target variables. The most common practice is 
to interpret the variance of the standardized disturbance term, which is the disturbance 
variance when the outcome has been standardized. This variance, routinely reported by 
SEM software, mathematically equals 1 minus the squared multiple correlation for the 



                                                                                                                     Mediation Effect Size    6 

 
 

equation in question.1 In RETs, this index is often used to characterize the strength of the 
presumed effect of one or more mediators on an outcome or the effect of a treatment 
condition of a mediator or an outcome. For example, if the outcome is the intention to 
obtain a vaccine and the mediators are (a) the perceived likelihood you will contract the 
virus the vaccine protects against (perceived susceptibility), (b) the perceived 
effectiveness of the vaccine, (c) the perceived health risks of the vaccine, and (d) the 
perceived hassles/costs of getting the vaccine, then the proportion of unexplained 
variance in the intention from these four mediators, collectively, equals the standardized 
disturbance variance and one minus the standardized disturbance variance reflects the the 
proportion of explaine variance in the intention from these four mediators.  
 When we evaluate effect size for each predictor in an equation individually, we 
typically want to adjust for the other predictors as well as covariates in order to remove 
their biasing effects on effect size estimates of the target predictor. In this case, we 
estimate the proportion of explained variance by the target predictor after controlling for 
the covariates and the other mediators. This statistic is called the squared semi-part 
correlation for the predictor. A squared semi-part correlation for a predictor of 0.10, for 
example, means that the predictor accounts for 10% of the variance in the outcome after 
controlling for the other predictors (covariates and mediators) in the prediction equation.  
 Squared semu-part correlations are not routinely reported by SEM software. It turns 
out you can approximate/estimate the squared semi-part correlation for a given predictor 
in a linear equation with multiple predictors in SEM knowing just the critical ratio 
associated with its regression coefficient for the predictor (from the t or z test for the 
coefficient), the sample size, the overall squared multiple correlation, and the number of 
predictors. All of these statistics are routinely reported by SEM software. I provide the 
relevant equation for calculating the squared semi-part correlation from these statistics in 
the Appendix and a computer program on my website to execute it. In the vaccination 
example, I might find the squared semi-part correlation for predicting variation in 
vaccination intentions from perceived susceptibility is 0.05, for perceived effectiveness it 
is 0.15, for perceived health risks of the vaccine it is 0.14, and for the perceived 
hassles/costs of getting the vaccine it is 0.04.  

The squared semi-part correlation formula in the Appendix also can be used to 
calculate the explained variance in a mediator as a function of the treatment condition 
holding constant relevant baseline covariates. For example, I might find the treatment 
condition (treatment versus control) yields a squared semi-part correlation of 0.08 for 
perceived susceptibility, 0.06 for perceived effectiveness, 0.11 for perceived health risks, 
and 0.09 for perceived hassles/costs. All of these values reflect the “effect size” for the 

 
1 I discuss exceptions to this in future chapters, such as the case when there are correlated disturbances. 
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effect of the treatment on the respective mediator and when multiplied by 100, they index 
the percent of (unique) explained variance by the predictor/determinant.2   

Many researchers want to know what value of unique explained variance represents 
a “small,” a “medium,” or a “large” effect with the idea that medium or large effects 
usually are deemed meaningful. If we generalize from Cohen’s (1988) standards, 
proportions of explained variance of 0.01, 0.06, and 0.14 constitute small, medium, and 
large effect sizes, respectively. These standards are different from what Cohen suggests 
as standards for squared zero order correlations also reflect the proportion of explained 
variance but without the introduction of covariates. For squared correlations, the 
standards suggested by Cohen for small, medium, and large effects are 0.01, 0.09 and 
0.25. Why the standards differ is not completely clear. Fender and Ozer (2019) suggest 
squared correlations of 0.01, 0.04 and 0.09 to define small, medium, and large effects.  

Other researchers have conducted meta-analyses of effect sizes in different fields 
and suggest standards based on the distribution of effect sizes in those fields. For 
example, Schäfer and Schwarz (2019) analyzed proportion-of-variance-accounted-for 
effect sizes in clinical trials with psychological outcomes that were pre-registered with 
the federal government and found that the bottom third of the effect sizes had an average 
squared correlation of about 0.002, the overall average squared correlation was 0.03, and 
the top third had an average squared correlation of 0.17. For non-registered clinical trials, 
the corresponding values were 0.04, 0.13, and 0.48, which are notably different. The 
typical effect sizes also differed across sub-disciplines; the median effect size based on 
squared correlation logic in social psychology was 0.09 and in biological psychology it 
was 0.25. Gignac and Szodorai (2016) meta-analyzed correlations from social and 
personality psychology and found the average squared r was 0.04, with squared rs of .01 
and .09 at the 25th and 75th percentiles, respectively. Gignac and Szodorai suggested 
researchers use these values as guidelines for declaring effects as small (0.01), medium 
(0.04), or large (0.09). In short, the “conventions” that have been suggested for labeling 
effect sizes as small, medium, or large have been varied and somewhat inconsistent.  

Although standardized effect sizes in the form of squared correlations or squared 
semi-part correlations are popular in several disciplines, they have been criticized in other 
disciplines (see Greenland et al, 1991; Greenland, Schlesselman, & Criqui, 1986; Pek & 
Flora, 2018). One complaint is that they define effect size meaningfulness strictly in 
terms of unique explained variance ignoring the common explained variance among the 
predictors in the equation. Such common variance, the argument goes, should also be 
taken into account. Another criticism is that standards for declaring them as meaningful 

 
2 The formula in the Appendix and used in my program applies to OLS regression. However, in many cases, it can 
be used effectively with maximum likelihood estimation in SEM. See my discussion in Chapter 11. 
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are arbitrary and not well justified substantively. Examples abound where “small” effects 
sizes based on the above guidelines have consequential effects and where “large” effect 
sizes have minor effects (Kelley & Preacher, 2012). A classic example of a small effect 
size having a meaningful effect was reported by Rosnow and Rosenthal (2003). In the 
late 1980s, a study on the effects of taking low-dose aspirin once a day on heart attacks 
was conducted with 22,000 physicians who were randomly assigned to aspirin versus 
placebo conditions. The study was prematurely terminated because the initial results 
suggested too many deaths would occur in the control group and that it was unethical to 
deprive control physicians of taking daily aspirin. The effect size in r squared units was 
less than 0.01 and would be dismissed using traditional standards. As another example, 
an organization might implement a policy that leads people to arrive to work 1 minute 
earlier and this effect may account for 50% of the variance in arrival times because there 
is little variation in those times. The annual amount of savings to the company by having 
workers arrive 1 minute earlier might be trivial despite the large standardized effect size. 

Sometimes the standards offered in the field for these effect size indices can be used 
as rough rules of thumb for small, medium, and large effect sizes, but I personally believe 
one usually must dig deeper into the substantive context of an effect to make informed 
judgments of effect meaningfulness. Relying on generalized standards for proportion of 
explained variance that ignore context is, in my opinion, a risky enterprise.3  

Effect Size 3: Cohen’s d 

When comparing two means, a popular index of effect size is that of Cohen’s d. Cohen’s 
d is a raw mean difference but expressed in standard deviation (SD) units. Suppose the 
starting salary of assistant professors at major universities is $80,000 for males, $78,000 
for females, and the standard deviation, calculated separately and then pooled for males 
and females, is $10,000. The mean salary difference is $2,000. To express this difference 
in SD units, I divide it by the pooled standard deviation of the two groups, which yields a 
value of 2,000/10,000 = 0.20. The raw mean difference translates into 0.20 standard 
deviation units. Cohen (1988) has offered guidelines for judging these effect sizes: A d of 
0.20 is a small effect, 0.50  a medium effect, and 0.80 a large effect. 
 The formula for d using population notation is  

Reference

µ µδ
σ

1 2−
=  

 
3 For an interesting discussion of cases where one might prefer a non-squared correlation to a squared correlation as 
an indicator of effect size, see Darlington and Hayes (2017). 
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where σReference is the reference standard deviation used to standardize the raw mean 
difference. In most cases, σReference is either the standard deviation of one of the groups or 
the weighted average of the standard deviations of the different groups if one assumes the 
group σ are equal or close to one another. The sample version of the parameter is 

Reference

m md
SD

1 2−
=  

where m1 and m2 are the sample means and SDReference is the sample estimate of the 
population reference standard deviation.  

In RCTs, some researchers define Cohen’s d using only the control group outcome 
SD rather than the pooled SD (Glass, McGaw & Smith, 1981). The logic is that the 
control group SD better reflects the population SD independent of the intervention 
because the SD in the treatment group can be affected by participation in the intervention. 
However, if one believes the posttest population σs in the treatment and control groups 
are equal (or roughly so), then it is better to use the pooled SD because the population 
estimate of the σ is then based on a larger sample size. I provide a program on my 
website for calculating pooled SDs.  

In some RCTs, researchers use the baseline standard deviation of the outcome for 
the total sample as the estimate of the reference standard deviation for Cohen’s d because 
it is unaffected by the treatment and it is based on the full sample size. This practice can 
be problematic because outcome variability can change in both the treatment and control 
groups over time due to history effects, maturation, and other time-confounded dynamics 
during the RCT, per my discussion in Chapter 4. For example, in a therapy involving 16 
weekly sessions, the variance of outcome scores might change in the control group 
between the baseline and the posttest because of broader environmental forces at work or 
because of maturation dynamics due to aging. This is particularly true in research with 
children or the elderly and in research with long time intervals between assessments. To 
counter such effects, the safest approach is to use the posttest data to estimate within-
group variability for the treatment and/or control groups when calculating d, not the 
pretest SD. In the final analysis, you must decide what is most appropriate reference SD 
to use.  

Cohen’s d assumes that a standard deviation is a meaningful comparator against 
which to judge a raw mean difference. Unfortunately, this is not always the case because 
standard deviations can be arbitrary. An item on a depression scale might ask individuals 
to rate the number of days in the past week that “I was sad.” Alternatively, the stem 
might be “I was very sad.” The former phrasing can yield more variability than the latter 
because the more extreme phrasing of the second item biases ratings towards fewer days; 
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respondents use a more restricted part of the response scale based on the more extreme 
phrasing. In this case, variability is determined by the arbitrary word choice of the scale 
constructor. For variables whose metric is less arbitrary, like income, weight, or height, 
perhaps the SD is a meaningful comparator; or perhaps not, depending on context.  

  Cohen’s d can be misleading depending on how light or heavy tailed a distribution 
is. An example is given by Wilcox and Tian (2011), which I show in Figure 10.1. The left 
panel shows two normal distributions with Cohen’s d equal to 1.0 for the mean difference 
between the two distributions. The right panel shows two distributions with slightly 
heavy tails but with the exact same raw mean difference as the left panel. Cohen’s d for it 
is 0.30. The difference between a Cohen’s d of 1.0 and a Cohen’s d of 0.30 is typically 
judged to be substantial, but the figures suggest the mean differences are comparable. 
Indeed, the raw mean differences are identical. Susceptibility to light and heavy tailed 
distributions is a dubious property of Cohen’s d and it also applies to squared correlations 
and squared semi-part correlations as well. 

 

FIGURE 10.1. Illustration of variations in Cohen’s d 

A point of controversy when using Cohen’s d in the presence of covariates is 
whether to use the unadjusted SD as the reference standard deviation or to use a covariate 
adjusted SD as the reference SD. In an RET, I might compare treatment and control 
group means on a mediator or on an outcome using biological sex, ethnicity, and social 
class as covariates to improve statistical power or to adjust for sample imbalance. The 
within-group standard deviations will be smaller if I remove the effects of these 
covariates on the mediator than if I do not. This, in turn, will affect the value of d, making 
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it larger because I now use a smaller SD as the reference standard. Which SD is more 
appropriate, the covariate adjusted or covariate unadjusted one?  

Olejnik and Algina (2000) argue it is important to reflect the full range of 
population variability when standardizing Cohen’s d so they advocate using unadjusted 
SDs. Glass, McGraw and Smith (1981) also favor this practice but note possibly 
reporting both indices of d, one with and the other without covariate corrections. To me, 
the choice depends on one’s goals but I generally lean towards trying to equate the 
groups as much as possible on nuisance variables (covariates) to gain a better sense of 
program effects. This then favors using the covariate adjusted SD. I discuss the choice in 
more depth below when I consider another effect size index called the probability of 
exceptions, where I can make the underlying logic for covariate control more explicit.  

Technically, sample-based Cohen’s d (and squared correlations and squared semi-
part correlations) are positively biased estimators of their population counterparts; they 
tend to overestimate the true population effect size, on average. Some methodologists 
suggest bias corrections to adjust for this fact, such as Hedge’s g in place of Cohen’s d or 
omega squared in place of the squared correlation. Sometimes introducing the corrections 
creates greater sample-to-sample fluctuations in estimates, leading to less efficiency in 
exchange for less bias of the estimates; in other words, there can be tradeoffs to using the 
bias corrections. The positive bias tends to be small as the absolute value of the effect 
sizes become larger and as N > 80. Given this, I usually do not invoke the corrections 
when my N is larger than 80 and even if it is smaller, I am somewhat hesitant to do so 
because of other properties of the estimators.  

In sum, Cohen’s d is widely used. Although it seems straightforward, it raises 
numerous challenges in RETs. First, standard deviations often are arbitrary, making 
σReference arbitrary which, in turn, makes d arbitrary. Second, the choice of σReference is not 
straightforward; it can be defined adjusting for covariates or not adjusting for covariates 
and it can be estimated using only the control group SD or both the control group and 
treatment group SD. Third, Cohen’s d can be impacted by heavy tailed distributions and 
can be misleading as a result. Fourth, as discussed earlier for squared correlations, small 
d can reflect either trivial or meaningful effects and large d also can reflect either trivial 
or meaningful effects (see Rosnow & Rosenthal, 2003; Kelley & Preacher, 2012 for 
examples). Cohen’s d of 0.20 (small effect), 0.50 (medium effect), and 0.80 (large effect) 
can be thought of as very rough rules of thumb, but the bottom line is that they need 
context to be interpreted properly. I elaborate this in Chapter 11.  

In the literatures I work with, researchers often report Cohen’s d but then never say 
another word about effect size nor make any attempt to provide context or meaning to the 
reported d value. It is as if reporting d releases one from the responsibility of having to 
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provide substantive context and meaning to it. In program evaluation settings, it is my 
experience that clients do not understand d and simply telling them the conventional 
standard in the scientific literature that a d of 0.50 is a “medium” effect size or a d of 0.80 
is “large” is dubious and some would say even irresponsible. I revisit this matter below.  

In sum, I tend not to rely on Cohen’s d in RETs because of the many shortcomings 
of it described in this section. No index of effect size is weakness free, but I personally 
am more comfortable using other approaches. Some methodologists disagree with me and 
this seems to be a case where reasonable people can disagree.   

Effect Size 4: Exceptions to the Rule 

Another effect size index is a variant of what is known as the probability of superiority 
or the common language effect size (Vargha & Delaney, 2000; McGraw & Wong, 1992; 
Wilcox, 2017). When we observe a statistically significant mean difference on a variable 
between two groups, we often form a “rule” or principle with respect to that difference. 
For example, empirically we typically find that on average, males are taller than females. 
From this finding, we might form the general rule that “males are taller than females” or 
“males tend to be taller than females.” However, there are exceptions to the rule. Just 
how often will I encounter a case where a female is taller than a male? If I randomly 
select a male and a female from the general population, what percent or proportion of the 
time will the female be taller than the male? How many “exceptions to the rule” are 
there? The index I propose here to quantify this is what I call the probability of 
exceptions to the rule. It documents the pervasiveness of exceptions to the formed 
generalization.  

I develop the logic of this index first for the case of predicting a continuous 
outcome from a binary predictor. Suppose I find in an RET that the children of parents 
who use guilt as a discipline strategy have, on average, more depressive symptoms than 
children of parents who do not use guilt as a discipline strategy. How many exceptions 
are there to this “rule”? Or, suppose I find that individuals who participated in a 
medication adherence program tend to adhere to their medication protocol more so than 
individuals in the control group. How many exceptions are there to this “rule?”  I can 
quantify such exceptions by calculating the probability that a randomly selected 
individual from the “disadvantaged” group (e.g., the control group; the group with 
children whose parents use guilt as a discipline strategy) has a “better” outcome score 
than a randomly selected individual from the “advantaged” group (e.g., the treatment 
group; the group with children whose parents do not use guilt as a discipline strategy). 
This probability reflects the proportion of “exceptions to the rule” in the target 
population. I signify it as PE. For example, I might find that 10% of the time (a 
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probability of 0.10), a randomly selected child whose parents use guilt as a discipline 
strategy will have lower depression than a randomly selected child whose parents do not 
use guilt.  
 Statisticians have developed methods for estimating PE (Vargha & Delaney, 2000; 
McGraw & Wong, 1992; Wilcox, 2017; Ruscio, 2008), although they frame it differently 
than I have here. There are numerous technical details (such as how to deal with ties), but 
I do not delve into them here. Estimation of the probability of exceptions can use non-
parametric strategies (Wilcox, 2017) or strategies that assume normally distributed 
outcomes. The two forms of estimation often are close in value even when non-normality 
is present (see Ruscio, 2008; McGraw & Wong, 1992) but exceptions can occur. In the 
Appendix, I present a computational formulae for estimating PE as applied to OLS 
regression. I also can use the formula from the Appendix that makes use of Cohen’s d to 
gain a sense of PE for published research. This is useful because because Cohen’s d is 
widely reported and if I want to put the results in perspective of the probability of 
exceptions, I can convert the reported d to PE.  

As examples, Johnston et al. (2011) evaluated a randomized trial to reduce anxiety 
and compared an on-line CBT intervention with a waitlist control. They found CBT 
reduced anxiety relative to the control group with a Cohen’s d of 1.44. This translates 
into a PE of 0.15, indicating that if one repeatedly randomly selects pairs of individuals 
from the treatment and control conditions, about 15% of the time, the control individual 
will be less anxious than the treated individual. These are the exceptions to the rule. 
Georgia-Salivar et al. (2020), report a Cohen’s d of 0.37 for the effects of an intervention 
designed to increase relationship satisfaction for couples. This translates into a PE of 0.40, 
i.e., there are 40% exceptions to the rule that people in the treatment condition are more 
satisfied with their relationship than those in the control condition. I provide programs on 
my website for calculating PE using OLS regression. The program often can be used with 
maximum likelihood based SEM to yield reasonable approximations of PE in SEM 
contexts. I also provide non-parametric methods based in bootstrapping. See the 
Appendix for details. 
 For two continuous variables, if a mediator, M, and an outcome, Y, are reasonably 
positively related, then we form rules like “people who score higher than others on M 
also tend to score higher on Y.” There are several ways of operationalizing an exception 
to the rule for such cases. If an individual is above average (i.e., above the mean) on M, 
then we would expect that individual to also be above average on Y. For what proportion 
of individuals is this not the case? From a different perspective, if two variables are 
reasonably positively related, then if I randomly select an individual with a higher score 
on M than some other individual, I would expect the first individual to also have a higher 
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score on Y than the second individual. For what proportion of individuals is this not the 
case? It turns out that the answer to these two questions is identical when documenting 
probabilities of exceptions for two continuous variables. I present the formulae for 
calculating PE for this scenario in the Appendix and I provide programs on my website 
for applying the formula. As examples, in a mediation analysis, Budge, Adelson and 
Howard (2013) report that avoidance coping styles (a mediator) are positively associated 
with the outcome of depression. When I applied the formulae from the Appendix, the PE 
for the association they reported was 0.28; 28% of the individuals who were above 
average on avoidance coping strategies, contrary to the “rule,” were below average on 
depression. Kendall et al. (2015) in an RET report that coping efficacy (the mediator) was 
associated with reductions in anxiety; the path coefficient they reported was -0.49, t = 
3.06, p < 0.05. The “rule” one derives from this result is that people with higher levels of 
coping efficacy have lower levels of anxiety. The PE was 0.46; 46% of people who were 
above average on coping efficacy were, contrary to the rule, also above average on 
anxiety.  

For PE, keep in mind that if there is no program effect or no association between 
variables then PE will equal 0.50; it will be as likely to encounter individuals who are 
exceptions to the rule as individuals who conform to the rule. As PE approaches 0.50, the 
effect in question is weaker. Also, if the correlation between M and Y is negative, then PE 
reflects exceptions to the rule that high scores on M are associated with low scores on Y.  

Covariate Adjustments for PE  

Like Cohen’s d, when calculating PE a decision must be made about whether to adjust for 
covariates in its calculation. Statistical control usually is desirable; otherwise the estimate 
of PE as an index of effect can be biased upward or downward because of confounds. 
Suppose the baseline covariates in my analysis comparing a treatment to a control group 
on a mediator or outcome are biological sex (male or female), ethnicity (White versus 
non-White) and SES. If I calculate PE with no covariate adjustments, I essentially 
compare a randomly selected individual from the treatment group with a randomly 
selected individual from the control group ignoring their sex, ethnicity, and SES. The 
person randomly selected from the treatment group might be a Black, low SES male and 
the person randomly selected from the control group might be a White, upper SES 
female. All that is reflected in PE is if the former person has a higher outcome score than 
the person from the control group and this tabulation is used when calculating PE.  

By contrast, when I use covariates that control for income, sex, and ethnicity, the 
comparison changes. If the randomly selected person from the treatment group is a Black, 
low SES male, then his score is compared with a randomly selected person from the 
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control group who also is a Black, low SES male when calculating exceptions to the rule. 
The scenario that ignores covariates contains “noise” due to sex, ethnicity and SES when 
calculating PE whereas the second scenario of covariate adjustment does not. Which 
scenario are you more interested in? Which gives you a better sense of the magnitude of 
the program effect? I personally lean towards the use of the covariate control approach 
but scenarios might occur where you are only interested in the general probability of 
exceptions. A weakness of the fully non-parametric approaches to PE estimation is that 
they cannot adjust for covariates. The approaches I provide on my website allow for such 
control.  
  In sum, another approach to evaluating effect size is to determine how many 
exceptions there are to the “rule” implied by a causal coefficient. The fewer the 
exceptions, the stronger the effect. The question becomes, how many exceptions to the 
rule is one willing to tolerate before the “rule” becomes a “non-rule.”  If there are only 
1% exceptions to the rule, is the rule useful?  How about 10%? How about 25%? How 
about 45%?4  If the rule is “wearing a mask reduces the risk of becoming infected with a 
deadly virus,” and the exception rate is 5% (PE = 0.05), does that give you pause about 
the rule? What if the PE is 0.30? Does your tolerance for more exceptions shift depending 
on the severity of the consequences of an exception? Is it qualified by the vulnerability or 
entitlement status of the individuals who experience exceptions, such as disadvantaging 
children or the elderly? Affirmative answers to these queries imply definitions of a 
reasonable PE are context driven.  
 I personally like to report PE because I find it to be both informative and relatively 
easy to understand. I find it keeps me honest by discouraging me from over-generalizing 
the trends that I see in the data. To be sure, the index has weaknesses. For example, when 
a pair of individuals are randomly selected for comparison, one from each group, we do 
not how much higher or lower one person’s score on Y is than the other person; we only 
know if it is higher or not. Information about the magnitude of the group differences must 
be obtained from other effect size indices.  

Effect Size 5: Standardized Regression Coefficients 

Another popular practice for effect size analysis is referencing standardized 
path/regression coefficients. It turns out, there are different types of standardized 
regression/path coefficients that can be used. Suppose my focus is on estimating the 
causal effect of X on Y. One type of standardized regression coefficient is when I 
standardize both the X and Y variables so that each has a mean of zero and a standard 

 
4 If the exceptions are greater than 50%, then the “rule” is not a rule. Rather, the exceptions are the rule. 
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deviation of 1.0 in the regression analysis. This is the form of standardization that most 
statistical software reports. I use the generic term standardized path coefficient to refer 
to it. A second type of standardized coefficient is when one standardizes only the Y 
variable but not the X variable. I refer to it as a partially standardized coefficient or a Y 
standardized coefficient. The first type of standardization is typically used when both X 
and Y are continuous or quantitative with many values. The second type is used when X 
is binary and Y is continuous or quantitative with many values. I discuss each in turn. 

Standardized Regression Coefficients  

For the case of continuous X and continuous Y, some researchers use the magnitude of 
the absolute value of the standardized regression coefficient as an index of effect size. 
These coefficients usually (but do not have to) range from -1 to 1. For the bivariate case, 
the standardized regression coefficient when Y is regressed onto X equals the correlation 
between X and Y. With more than one predictor, this property breaks down and the 
standardized path coefficient represents a partial coefficient. Specifically, a standardized 
path coefficient indicates for every one standard deviation that the predictor increases, 
how many standard deviations the outcome is predicted to change, holding constant the 
other predictors in the equation.  
 The effect size concept is that the larger the absolute standardized coefficient, the 
larger the effect size, everything else being equal. Acock (2014) suggests that an absolute 
standardized regression/path coefficient less than 0.20 is weak, one between 0.20 and 
0.50 is moderate, and one greater than 0.50 is strong.5 Note that a focus on standardized 
regression coefficients shifts the underlying causal theory from the idea that people’s 
scores on the predictors per se are what matter to the idea that people’s outcome is 
impacted by their z-score position relative to other people in the population. Some argue 
that such a shift in focus is questionable (see Achen, 1987, for elaboration). I revisit this 
matter in Chapter 17.   

Partially Standardized Regression Coefficients  

A partially standardized regression coefficient is used for a binary predictor X and a 
continuous outcome Y. Only the Y variable is standardized to have a mean of 0 and a 
standard deviation of 1.0. The binary predictor usually is dummy coded so that the 
coefficient for it in a regression analysis equals the mean of the standardized Y for the 
group scored 1 minus the mean of the standardized Y for the group scored 0, i.e., the 
reference group. In such cases, the partially standardized regression coefficient is the 

 
5 These guidelines and the reliance on standardized regression coefficients are not applicable if suppression 
dynamics are evident for a given coefficient.  
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number of Y standard deviations by which the group means differ. For example, if the 
partially standardized coefficient equals 1.5, then the raw mean difference between the 
two groups maps onto a difference of 1.5 standard deviations of Y.  
 For the case of two groups, it turns out that the partially standardized coefficient is 
an analog to Cohen’s d but instead of converting the raw mean difference to a 
standardized difference based on the within group SDs, the standardization is 
implemented relative to the full SD of Y across the two groups, i.e., σReference is different. 
Some argue that the use of the full standard deviation of Y to standardize the effect rather 
than the traditional pooled within group SD per Cohen’s δ is not appropriate for RCTs 
because the full SD of Y is artificial; it reflects variability in Y where half the population 
has experienced an intervention and the other half of the population (the control group) 
has not (assuming a 1:1 random assignment allocation).  

The bottom line is that all standardized regression coefficients in an RET are 
somewhat dubious because the standard deviation of the outcome, Y, (and for that matter, 
the SDs of all the mediators) reflect an artificial population in which half of the 
population has received an intervention and the other half has not. Does it make sense to 
talk about how a one unit change in X or how a one standard deviation change in X 
impacts the number of standard deviations that Y changes if those standard deviations are 
not reflective of anything in the real world? My own preference is to stay focused on 
unstandardized path coefficients for the core parameters of an RET where this issue is 
then less relevant.        

Effect Size 6: Number Needed to Treat 

Another index of effect size used for the case of binary outcomes coupled with a binary 
predictor reflecting the treatment versus control condition is known as the number 
needed to treat (NNT). Suppose the proportion of alcoholics in a recovery program who 
begin drinking heavily again within a year of program completion is 0.12 and the 
corresponding proportion for those in the control condition is 0.25. The NNT is the 
number of people we need to treat by having them participate in the program in order to 
have one more “success” (full abstinence from drinking) than if we just left people alone 
per the control condition. If the NNT is 5, this means we would need to treat 5 alcoholics 
with the program in order to have one “success” relative to doing nothing at all. I present 
the formulae for computing the number needed to treat in the Appendix and present a 
program on my website to apply the formula. In the alcohol example, the NNT is 7.69; 
for every 8 or so patients we treat with the recovery program, we will have one additional 
“success” of full abstinence from drinking than had we not implemented the program. 
Thinking on a grander scale, for every 1,000 patients we treat, about 1,000/7.69 = 130 
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more of them will be fully abstinent if they complete the program versus doing nothing.  
 NNT is an index of effect size in the sense that the smaller the NNT, the larger the 
effect. The question becomes, at what point does the NNT become so large that it is no 
longer worth pursuing the treatment/intervention? If I need to treat 2 people to have one 
“success,” is the treatment worthwhile? If I need to treat 5 people to have one “success,” 
is the treatment worthwhile? If I need to treat 10,000 people to have one “success,” is the 
treatment worthwhile? If an informational campaign is low cost, easy to distribute or 
administer, and prevents one death per year for every 5,000 people exposed to it, is it 
worthwhile given its NNT is 5,000? Consider the following argument: There are 210 
million adults in the United Sates, so an NNT of 5,00 would translate into saving 42,000 
lives per year if all of them are exposed to the campaign. Perhaps the intervention is 
indeed worth it despite an NNT of 5,000 when one considers this fact. If an educational 
intervention is costly, resource intensive, and time-demanding but reduces high school 
dropouts by 1 for every 500 students exposed to it, is it worthwhile given its NNT is 500? 
What if its NNT is 50? What if the program is inexpensive and not resource demanding? 
I find that discussions with program administrators and staff about what constitutes a 
reasonable effect size in NNT terms often raises issues of program cost, practicality, and 
the impact of the program on people’s quality of life (either positively or negatively). 
Such discussions can be quite revealing.  
 Some disciplines routinely dichotomize outcomes so that NNT can be applied 
because the NNT only applies to binary predictors and binary outcomes. For example, in 
clinical psychology, it is common to classify each person in a randomized trial as having 
shown “clinically meaningful change” or not and then to compare the treatment and 
control groups on the percent of people who showed meaningful change. As examples of 
NNT, Borkovec and Costello (1993) compared cognitive behavior therapy (CBT) for 
anxiety with a non-directive (control group) therapy. They found the percent of people 
exhibiting meaningful change in the CBT and control conditions was 58% and 27%, 
respectively. This yields an NNT of 3.22; for every three additional patients each therapy 
treats, CBT will have one more success than the control therapy. Clarke et al. (2005) 
evaluated a web-based treatment for depression and found that 56% of treated 
participants still had clinical depression whereas 76% in the control condition still had 
clinical depression. This translates into an NNT of 5; one needs to treat 5 patients more in 
the therapy to have one more “success” than doing nothing. 
 I find the NNT to be an interesting index of effect size in that it relates to a 
practical, real world concept in applied settings. 
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Effect Size 7: Risk Differences, Relatives Risks and Odds Ratios 

When the predictor and outcome are both binary, there are other ways of characterizing 
effect size than the NNT. These include risk differences, relative risks, and odds ratios. 
Consider the case where the outcome is whether people vote in favor of policy A. The 
probability of doing so is 0.60 in the treatment condition and 0.40 in the control 
condition. These probabilities reflect the proportion of individuals in each condition who 
exhibit the outcome. A risk difference is simply the difference between the two 
probabilities, which in this case equals 0.20. A second index is to form the ratio of the 
two probabilities. If the two probabilities are identical, the ratio will equal 1.0; as the 
value of the ratio deviates from 1.0 in either direction, the effect size is larger. This index 
is called the relative risk and ranges from 0 to infinity. In the above example, the relative 
risk is 0.60/0.40 = 1.50; the probability of voting for policy A in the treatment condition 
is 50% larger than in the control condition using the control probability as the base for 
making the ratio statement. If the probability in the treatment condition was 0.80 and in 
the control group it was 0.40, the relative risk would be 0.80/0.40 = 2.0; the probability of 
the outcome is twice as large in the treatment than in the control condition. If the 
probability of the outcome in the treatment condition is 0.20 and 0.40 in the control 
condition, the relative risk is 0.20/0.40 = 0.50; the probability of the outcome in the 
treatment condition is half that for controls. 

An odds ratio is like a relative risk but it first converts the two probabilities to odds 
and then forms their ratio. The probability of 0.60 converts to an odds of 1.50 and the 
probability of 0.40 converts to an odds of 0.67.6 The ratio of these two odds is 1.50/0.67 
= 2.24; the odds of the outcome occurring in the treatment condition is over twice as 
large as the odds of it occurring in the control condition. Note that for the relative risk, 
the ratio was more modest, 0.60/0.40 = 1.50. The odds ratio “sounds larger.”   

All three methods of characterizing group differences are valid; they are just 
different ways of expressing likelihood or proportion disparities. I personally find the risk 
difference to be the most intuitive and odds ratios to be the least intuitive, but others 
might disagree. Some methodologists prefer relative risks to odds ratios and have been 
critical of what they claim is the misleading nature of odds ratios (e.g., Davies, Crombie, 
& Tavakoli, 1998; Holcomb, Chaiworapongsa, Luke & Burgdorf, 2001). For all three 
indices, I think it is important to report the component probabilities to assist 
interpretation. For example, a relative risk of 2.0 occurs if the probabilities in the 
treatment and control groups are 0.01 and 0.005, if they are 0.50 and 0.25, or if they are 
0.80 and 0.40. An odds ratio of 2.0 results if the probability in the treatment and control 

 
6 As discussed in Chapter 5, an odds is defined as a probability divided by one minus that probability; 0.60/(1.0-
0.40) = 1.50.  
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groups are 0.01 and 0.005, respectively, or if the probabilities are 0.50 and 0.33, or if the 
probabilities are 0.80 and 0.67. The probability dynamics for these scenarios seem 
different to me, so knowing the component probabilities helps. It turns out that if the 
probabilities tend towards 0, then odds ratios tend to equal relative risks, leading some to 
conclude that odds ratios are not misleading for rare events.  

Suppose I am told that the proportion of Black, 7th grade adolescents in New York 
City who got drunk in the past 6 months is 0.050 and that the corresponding proportion 
for Latino 7th grade adolescents is 0.045. This proportion difference, which is only 0.005, 
seems trivial. If I am told that the likelihood of a certain type of cancer is 6 times larger 
for older men than for older women, then this seems impressive. However, if the 
probability for men is 0.006 and for women it is 0.001, the difference in probabilities is 
only 0.005, which is the same as the ethnic difference in adolescent youth getting drunk. 
How we frame probability disparities to others matters. And, of course, a 0.005 
difference in terms of cancer can be more consequential than an ethnic difference of 
0.005 in drinking in youth. For example, for an adult population of 100 million males and 
100 million females, a 0.005 sex difference represents 500,000 cancer cases.  

There is a practice some researchers use for relative risks and odds ratios that you 
should be cautious of. If the probability of a successful or positive outcome in the 
treatment group is 0.60 and in the control group it is 0.40, the relative risk is 0.60/0.40 = 
1.50. Some researchers subtract 1.00 from this value and multiply the result by 100 to 
conclude that people are 50% more likely to have a “success” in the treatment group than 
the control group. Now suppose I frame the result in terms of failure rates instead of 
success rates. The failure rate in the treatment condition is 0.40 and in the control 
condition it is 0.60. The ratio of the two failure rates is 0.40/0.60 = 0.67, so it 1 – 0.67 or 
33% less likely that people in the treatment group experience a failure than people in the 
control group. Note that when the focus is on success rates, I make a different 
characterization (50% more effective) than when I focus on failure rates (33% fewer 
failures). Some researchers find this property of relative risks and odds ratios 
unsatisfactory. Again, knowledge of the component probabilities dilute such framing 
effects because for either success rates or failure rates, the difference is clear; it is 0.20.  

I personally prefer to evaluate group disparities in probabilities or proportions from 
multiple vantage points while also taking into account the broader substantive context, 
such as the number of people affected by the occurrence of the event, the degree of 
severity/positivity of the event, the vulnerability of the target population, and the 
potential impact of the event on people’s quality of life. I personally do not find odds and 
odds ratios to be as helpful as risk differences and, in fact, in Chapter 12 I describe 
additional limitations of them. I typically find that when explaining program effects to 
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administrators/staff, they prefer percentages and percent differences (i.e., risk 
differences) and a variant of them, average marginal effects described in Chapter 5 and 
elaborated further in Chapter 12. These statistics are more intuitive.  

Effect Size Indices for Omnibus Mediation Effects 

In addition to the above effect size indices for a given link in a mediational chain, 
standardized effect size indices of omnibus mediation effects have been developed that 
reflect in a single number the joint effect of (a) a program on a mediator and (b) the 
mediator on the outcome (see Preacher & Kelley, 2011; Lachowicz, Preacher & Kelley, 
2018). MacKinnon et al. (1995) use the product coefficient method described in previous 
chapters for a mediator and divide its result by the estimated total effect of the program 
on the outcome. This yields a proportion of the total effect that the omnibus mediational 
chain accounts for. If a weight loss program reduces weight, on average by 10 pounds 
and the mediator of increased exercise accounts for 4 of those pounds, then the effect size 
for the mediator is 4/10 or 0.40 of the total effect. The closer the value is to 1.00, the 
stronger the effect of the mediator. Other researchers divide the mediated effect not by 
the total effect but by the sum of the indirect effects across mediators. If in a study there 
are three mediators and they account for a total of 8 pounds of the 10 pound program 
effect, then exercise represents 4/8 or 0.50 of the summed indirect effects.  
 A problem with both of these indices is that for multiple mediators, if some of the 
mediated effects are positive and others are negative, the proportions can be larger than 
1.0 or negative in value, which is nonsensical. MacKinnon et al. (1995) found these 
indices of omnibus effect size to be unstable, showing considerable sample-to-sample 
variability across random samples from the same population. Although popular, the 
approaches generally are not recommended (see Preacher & Kelly, 2011; Gellman, Hill 
& Vitari, 2021).  
 Preacher and Hayes (2008) recommend an index based on the product of coefficient 
method but using fully standardized coefficients throughout the mediational chain rather 
than unstandardized coefficients (see also Cheung, 2009). Fairchild et al. (2009), 
MacKinnon (2008), and Preacher and Kelly (2011) offer interesting omnibus indices but 
they also suffer from shortcomings and are not recommended for general use (Wen & 
Fan, 2015; Lachowicz et al., 2018). Lachowicz et al. (2018) recently developed indices 
that approximate the proportion of explained variance in the outcome due to a given 
omnibus mediational chain that are promising, but the indices have only been explored in 
models that are too simple for most RETs. Also, as I discussed for indices of squared 
correlations, there are no uniform standards to characterize effects based on proportions 
of explained variance as “small,” “medium,” or “large.” Kraemer (2014) proposed a 
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standardized omnibus index based on Cliff’s (1996) δ (not to be confused with Cohen’s 
δ) that also is tied to the probability of exceptions. However, its properties and utility 
have not been explored in Monte Carlo work (see Lachowicz et al., 2018, for a discussion 
of this point).  
 The construction of meaningful standardized omnibus effect size indices for a given 
mediational chain is challenging when one recognizes how complex these chains can be; 
they can have correlated disturbances, there can be causal relationships among mediators, 
there can be reciprocal causation, there can be more than three links in the chain and 
these links can be measured contemporaneously and/or longitudinally, there can be 
covariates to control, some of the variables in the chain might be latent variables with 
multiple indicators, and the variables in the link or that need to be controlled can be 
nominal, ordinal, interval or ratio scaled or some combination of these psychometric 
properties. My own preference for RETs is to conduct careful analyses of individual links 
on a link-by-link basis and to do so from multiple vantage points. Again, I do not want to 
downplay the possible utility of omnibus chain analysis for some mediational contexts; 
but the fact is they can be challenging to work with in typical RET contexts and often are 
not all that informative. I elaborate further on these points in Chapter XX.   

Concluding Comments on Effect Size Indices in RETs 

In sum, in addition to raw mean differences and unstandardized regression coefficients, 
there are many standardized effect size indices that represent different ways to gain 
perspectives on the meaningfulness of an effect for a given link in an RET model. Each 
index I have described has strengths and weaknesses. I often describe effect sizes with 
clients from multiple perspectives with the idea that some indices resonate better with 
some clients than others. Which index seems best to you?    
 As will become apparent, I generally discourage applying uniform effect size 
standards that attach specific numerical values to “small,” “medium,” and “large” effect 
sizes independent of substantive context because context matters. Examples abound 
where small effect sizes based on such guidelines have consequential effects and where 
large effect sizes have minor effects (Kelley & Preacher, 2012). My general 
recommendation is that unless one index seems particularly appropriate for you in your 
setting, it probably is best to consider multiple indices of effect size from different 
vantage points. The idea is to get the best intuitive sense of how strong a link is; coming 
at it from different vantage points will often be helpful. As I discuss below, in addition to 
the quantitative indices of effect size, it also is important to take into account the broader 
context of the research by consulting with experts, practitioners, and clients surrounding 
their viewpoints on what constitutes meaningful effects. When approached in this 
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fashion, I have found in my own work that the effect size meaningfulness for any given 
link in an RET usually is evident. You might be frustrated that I do not provide you with 
a hard and fast rule that you can apply in all contexts, like “A Cohen’s d of 0.50 is a 
medium effect size.” I am sorry but the world is not so simple. I will show you in future 
chapters how I make use of the effect size measures discussed above.        

SETTING EFFECT SIZE STANDARDS IN RETs 

In this book, I consider program evaluation from two vantage points. One case is when 
you evaluate a program in a specific setting to provide feedback to staff and 
administrators about the effectiveness of their program. The second case is that of a 
scientist seeking to evaluate a program that is to serve as an intervention in applied 
settings in general. The latter scenario is not as strongly tied to a specific setting because 
the program is intended to be used in multiple settings and contexts. Research with the 
program often appeals more to discovering scientific principles. The challenges of setting 
effect size standards are somewhat different for the two cases. 
 In an ideal world, the setting of standards for effect meaningfulness should be well-
informed by empirics and guided, at least in part, by science. However, too often the 
scientific community refrains from addressing effect size meaningfulness, relying instead 
on simple statistical significance (is the p value less than 0.05?) or using arbitrary 
standards, such as the standards of small, medium, and large effect sizes developed by 
Cohen (1988). Evaluation research and program development have suffered from this 
neglect. Although we may be able to get away with such behavior in our scientific 
journals, when we are in real-world contexts in which clients have hired us to evaluate 
and improve their programs, clients typically want concrete answers about the 
meaningfulness of program effects, not double speak about some concept they have never 
heard of (e.g., Cohen’s d) coupled with guidelines (e.g., “a d of 0.50 means your program 
is having a ‘medium” or “moderate” effect) that not only are meaningless to the client but 
that well-trained scientists know (or should know) are often arbitrary. In this section of 
the chapter, I describe approaches I have found helpful for exploring effect size 
meaningfulness.  
 Clinical psychology has sought to describe strategies for defining what they call 
clinically meaningful change when using outcome measures that have arbitrary metrics or 
metrics that are difficult to interpret. Three approaches are common, (1) expert-based 
approaches, (2) distribution-based approaches, and (3) anchor-based approaches. Usually, 
the focus is on defining the minimum effect size that would be judged as being 
meaningful. An example of an expert-based approach is the Delphi method (Black et 
a., 1999). One presents the scale or questionnaire that measures the outcome of interest to 
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a panel of experts in the substantive area being studied. The panel is provided the context 
and results of the randomized trial and they are asked to provide their best estimate of 
what a minimal meaningful difference is between the treatment and control groups. Their 
responses are averaged and the averaged result and other feedback from the expert survey 
is sent back to the experts, inviting them to revise their estimates if they want. The 
process is repeated until reasonable consensus results.  
 Distribution based methods define minimal meaningful change based on features 
of the response distribution, usually the standard deviation (SD) of the outcome. Mouelhi 
et al. (2020) found in their review of randomized trials that distributional standards varied 
considerably for defining meaningful change and included minimal meaningful cutoff 
scores of 0.50 SDs, 0.33 SDs, 0.30 SDs, and 0.20 SDs. For example, if the SD of weight 
loss in response to a weight reduction program is 10 pounds, the definition of meaningful 
change might be 5 pounds or more (0.50 of the SD), 3.3 pounds or more (0.33 of the SD), 
3 pounds or more (0.30 of the SD), or 2 pounds or more (0.20 of the SD) depending on 
the value of the SD and the cutoff standard applied. Sometimes the SD is calculated using 
the pretreatment variability in the outcome, sometimes it is calculated using the 
posttreatment variability in the outcome, sometimes it is calculated using the change 
scores from the pretreatment to posttreatment, and sometimes it is based on regional or 
national norms. The choice of which SD to use matters and can produce vastly disparate 
standards for defining minimally meaningful change. Some researchers introduce 
corrections for measurement error when defining the SD; others work with SD 
confidence intervals. Also problematic is the fact that SDs often are arbitrary, as 
discussed earlier, perhaps making them a poor choice for deriving a distributional 
standard. I am not saying that distributional methods always are flawed. They have their 
place. However, if you are going to rely on a SD to define a cutoff, you must ensure that 
the SD you use is a meaningful standard to apply.   
 Anchor-based methods map scale scores onto anchors and then use these anchors 
to define meaningful change. One popular approach in clinical trials uses as anchors the 
verbal descriptors of the clinical global impression-improvement (CGI-I) rating scale. 
This scale asks patients and/or clinicians to rate patient improvement post-treatment on a 
7-point improvement metric, 1 = very much worse, 2 = much worse, 3 = minimally 
worse, 4 = no change, 5 = minimally improved, 6 = much improved, 7 = very much 
improved. Mean change scores for the target continuous measure from baseline to 
posttest are calculated for patients, with the mean value for category 6 then used to define 
the minimal meaningful change standard. For example, a randomized trial of a program 
to reduce irritable bowel syndrome (IBS) symptom severity used the IBS-SSS symptom 
severity scale. This scale yields a composite score of abdominal pain, number of days 
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with abdominal pain, bloating/distension, satisfaction with bowel habits, and IBS-related 
quality of life. Scores range from 0 to 500. Mean baseline to posttest change scores are 
calculated for the IBS-SSS and the mean change score in each CGI-I category are 
estimated. In one study, for category 6 of the CGI-I (“much improved), the mean 
reduction on the IBS-SSS was 85. The value of 85 is therefore used as the minimal 
meaningful change standard, defined by the patient-reported verbal anchor of “much 
improved.”  

A variant of the verbal-based anchor method is to use external anchors to help 
define meaningful effects on a target outcome. For example, if a one unit decrease in a 
depression scale you are using for your primary outcome is associated with only a small 
decrease in suicide ideation, you may decide a one unit change on the depression scale is 
not meaningful. However, if a five unit change on the depression scale is associated with 
decreases in the likelihood of suicide ideation by a non-trivial amount (say by 10%), then 
such a change in the depression metric might be deemed meaningful (see Jaccard, 2022, 
for elaboration of this benchmark based approach).  

Setting Effect Size Standards for Existing Programs 

An important step for evaluating an existing program is to meet with relevant 
constituencies to discuss with them what constitutes meaningful effects for outcomes and 
mediators. The constituencies might be program administrators, staff, counselors, 
clinicians, and/or program participants. I approach such discussions with the goal of 
generating values for the latitude of meaningfulness, the latitude of no effect, and the 
latitude of effect ambiguity that I introduced in Chapter 2. Recall that the latitude of 
meaningfulness is the consensual smallest amount of change needed on the outcome to 
produce a meaningful effect. Any change greater than it in the desired direction is 
deemed meaningful. The latitude of no effect is defined by the maximum change value 
that still represents a trivial effect. Any change less than it in the desired direction is said 
to be non-consequential. The latitude of effect ambiguity is a “gray area” in which there 
is disagreement about whether change values within the latitude are meaningful; some 
members of the team might say “yes” and others might say “no.” As an example, after 
consultation with different constituencies for an intervention to reduce heightened anxiety 
to normative levels for the general population, it might be agreed that if the program 
achieves such a result within 6 months for 20% or more patients, then this is meaningful 
(the cutpoint for the latitude of meaningfulness); if the program achieves the result for 
less than 5% of patients, then this might be considered as functionally having no effect 
(the cutpoint for the latitude of no effect); if the program achieves the result for between 
5% and 20% of patients, then there might be disagreement about whether this is 
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meaningful (the latitude of effect ambiguity).  
 To illustrate how I structure discussion, I use a case study of an RET with a 
continuous outcome and continuous mediators. I discuss setting standards for each facet 
of the RET, namely (1) the effect of the treatment on the outcome, (2) the effect of the 
treatment on the mediator, and (3) the effect of the mediator on the outcome. Suppose the 
program in question seeks to reduce depression and that clinic administrators ask me to 
use a measure of depression that has an extensive history in their local health system. The 
measure is a clinician rating of depression based on a clinician interview with the patient, 
with categories 0 = not depressed, 1 = mild depression, not disabling, 2 = moderate 
depression, somewhat disabling, 3 = clinically depressed, moderately disabling, 4 = quite 
depressed, quite disabling, and 5 = extremely depressed, very disabling. Clinicians can 
assign decimals to their ratings to make more nuanced discriminations. The program 
targeted three mediators, one of which was coping skills measured on a 1 to 7 disagree-
agree metric using multiple items. Items were averaged, with higher scores indicating 
better skills. A key constituency for this RET is the clinicians who treat patients. I decide 
to create, among others, a clinician focus-group to discuss effect sizes for the above 
measures. I organize my discussion around this particular focus group.  

The Effect of the Treatment on the Outcome  

In the focus group, I might show a line graph for the outcome measure with an arrow 
demarcating the mean baseline value for patients in the clinic who are treated for 
depression, per Figure 10.2. I “anchor” the different scale points on the graph by giving 
the clinicians case summaries of anonymized prototypical patients for each category (e.g., 
for patients who have a score of ”1,” for patients who have a score of “2,” and so on). 
After fully exploring the scale with them, I ask the clinicians to discuss how far to the left 
they think we need to move the arrow, on average, for reasonable clinical progress to 
have been made as a result of the program. I encourage them to think about change on 
both the individual patient level as well as the aggregate level for patients as a whole at 
the clinic. To help them appreciate the meaning of a mean shift of, say, 0.50, I tell them 
that such a shift would occur if the program shifted 50% of all patients, assuming a 
baseline score of 3 (clinically depressed, moderately disabling) to a posttreatment score 
of 2 (moderate depression, somewhat disabling). A mean shift of 0.35 would map onto a 
scenario of 35% of patients moving from a score of 3 to 2. And so on. The discussion is 
comprehensive and I make sure clinicians keep in mind the general life circumstances of 
patients as a whole and how treatment affects their lives more generally. I ask clinicians 
to identify a cutoff value that represents the smallest amount that we need to move the 
arrow to the left to produce what the clinicians feel is meaningful change. 
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FIGURE 10.2. Line graph of outcome 
  

Suppose almost all clinicians felt that changes of more than -1.0 are meaningful. 
Suppose also that most clinicians agreed that changes less than half a unit (-0.50) would 
not be meaningful. Finally, suppose there was disagreement between the values of -0.50 
to -1.00, with some clinicians believing such change is meaningful but others not. Once 
these values are identified, I can specify, (a) the lower bound for the latitude of 
meaningfulness (it equals -1.0), (b) the upper bound for the latitude of no effect (it is        
-0.50) and (c) the latitude of effect ambiguity (-0.50 to -1.00). The overall goal of the 
discussions is to evolve standards based on input from scientists (myself and my team) 
who bring past research and psychometric theory to bear, and input from the clinicians 
and other constituencies who bring to bear context-relevant and practical knowledge. 
Presenting a reference baseline on the graph is important because sometimes the amount 
of change deemed meaningful depends on where on the dimension the change is from. 
For example, a change of -1.0 may not be deemed meaningful from a baseline score of 4 
but it might be meaningful from a score of 3. I explore this during my discussions.  
 Sometimes the measure of the outcome is a multi-item self-report. For example, the 
classic PHQ-9 is a measure of depression that consists of nine-items. Each item is rated 
relative to the past two weeks in response to the stem “Over the last 2 weeks, how often 
have you been bothered by the following,” with each item rated on a scale of 0 = not at 
all, 1 = several days, 2 = more than half the days, and 3 = nearly every day. Responses to 
items are summed yielding a total score that ranges from 0 to 27. Scores of 5, 10, 15, and 
20 on this scale are said by some to represent cut points for mild, moderate, moderately 
severe, and severe depression, respectively. However, the empirical bases for these cut 
points is not strong nor is it certain the standards apply to the particular population I 
might be working with. If I were to use this measure as my primary outcome, I would 
distribute to focus group participants a copy of the PHQ-9 items and have participants 
review and discuss them in depth. Instead of working with summed total scores, I might 
score it using the average item response a person made. I present the line graph for this 
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scoring showing the mean baseline average score of patients in their clinic per Figure 
10.3. A score of 2 means the person gave an average response of “more than half the 
days” to the 9 items. I ensure the focus group participants understand the scoring. I find 
that structuring the task in this way is more intuitive to participants than using summed 
total scores, unless the clinicians are already quite familiar with the PHQ-9. I again 
prepare prototypical summaries of anonymized patients for each major scale point. I then 
explore how far we need to move the arrow to the left to bring about what the clinicians 
think is meaningful change.  

  
 

 

 

FIGURE 10.3. Line graph for PHQ-9 
 

 The above strategy is an imperfect way of seeking to define standards for effect size 
meaningfulness in a specific substantive context rather than in the abstract. The 
constituencies participating in the focus groups are reminded to take into account the 
populations they work with, the contexts in which the populations live, the impacts on the 
quality of life that accompany outcome changes, and the constraints the program works 
under. The three latitudes are meant to take into account the degree of consensus that 
emerges during discussion. I do not trivialize the challenges of using the above strategy 
to set meaningfulness standards when evaluating a program in applied settings. It can be 
difficult. However, it is far more informative and useful than simply arbitrarily declaring 
“a Cohen’s d of 0.50 defines a meaningful effect.”    
 Once meaningfulness standards for the unstandardized outcome differences 
between treatment and control groups have been isolated, you can use them in your 
evaluation study to make meaningfulness judgments for the total effect.   

The Effect of the Treatment on a Mediator  

For treatment effects on mediators, the focus-group approach is challenging because 
mediators are mechanisms rather than outcomes and usually are not as familiar to focus 
group participants. Given this, it can be difficult for focus group participants to make 
judgments about meaningful change in them. Also, meaningful change in a mediator is, 
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in part, a function of how much the mediator impacts the outcome. In the depression 
example where change of -1.0 or more depression units is considered meaningful for the 
outcome, how much change in a mediator is necessary to bring about that much outcome 
change? The answer to this question helps define the standard for meaningful mediator 
change for the program being evaluated. The answer can be informed, in part, by 
examining results from the data collected during the formal RET or in pilot research. For 
example, suppose that the path coefficient for the effect of coping skills on depression 
was -0.50. This means that for every one unit that coping skills increases, the depression 
outcome is predicted to decrease by -0.50 units. It therefore takes a two unit change in 
coping skills to produce a meaningful change in the outcome of -1.0 units because       
(2)(-.50) = -1.0. A treatment effect that produces a 2.0 unit change in the mediator, in 
some ways, defines the lower bound meaningfulness standard for coping skills as 
impacted by the treatment condition.  
 One problem with the above logic is that sometimes change in a single mediator is 
not enough to bring about meaningful outcome change on its own, but small changes in 
several mediators will do so when considered collectively. This might lead me to set the 
meaningfulness standard to some fraction lower than a 2.0 unit change for coping skills, 
recognizing that the mediator only needs to accomplish ‘part of the job’ rather than the 
‘full job’ of producing meaningful outcome change; the other mediators should finish the 
job started by the target mediator. You need to determine what you think is a reasonable 
fraction to use given the broader RET logic model and context. In the depression 
example, there are three mediators, one of which is coping skills. If I set the fraction to 
1/3, I am asking each mediator to carry an equal and shared load in bringing about 
meaningful change of at least -1 in the outcome. 
 In my experience, it is easier to specify a meaningfulness standard for the effect of 
the treatment on the mediator once I have a reasonable sense of or I make a working 
assumption about the magnitude of the effect of the mediator on the outcome. Rather than 
make wild guesses about the latter, I find it useful to examine the RET data to gain a 
sense of the magnitude of the coefficient based on empirics. This post hoc approach, 
which I formalize shortly, is counter to philosophies advocated by some scientists who 
feel that such criteria should be specified a priori when clinical trials are formally 
registered with oversite organizations (van t'Veer & Giner-Sorolla, 2016; Chambers, 
Feredoes, Muthukumaraswamy, & Etchells, 2014). The idea is to protect against, among 
other things, p-hacking and HARKing (hypothesizing after results are known; see Jaccard 
& Jacoby, 2020). I am sympathetic to these goals, but the fact is that reasonable statistical 
practice and scientific inference sometimes require initial data exploration, such as when 
the choice of an analytic method depends on the nature of non-normality or non-



                                                                                                                     Mediation Effect Size    30 

 
 

linearities in the data. There must be a balance between analysis pre-specification and 
needed analytic flexibility for optimizing scientific and statistical practice. Having said 
that, I do think it is important to a priori explain and justify the contingencies you will use 
in your analyses and what those contingencies entail.    
 To summarize, to make a judgment about the meaningfulness standard for the effect 
of the treatment on the mediator, T→M, you need to 

1. Make a working assumption about what constitutes a meaningful effect of the 
treatment on the outcome; in the depression example, it was -1. 

2. Make a working assumption about the likely true value of the path coefficient linking 
the mediator to the outcome, namely M→O; in the depression example, it was -0.50. This 
assumption can be informed either by prior research, common sense, expert opinion, or 
even by the results from your RET data.  

3. Decide the fraction of the total program effect on the outcome that you want each 
mediator to account for; in the depression example, it was 0.33 but you also can assign 
different values to different mediators, as appropriate. 

 4. Then, given these working assumptions, calculate the meaningfulness standard for the 
effect of the treatment on the mediator using the following formula: 

Standard for treatment effect on mediator = [(F)(MCO)] / pM→O 

where F is the value of the fraction, MCO is the meaningful change for the outcome, and  
pM→O is the path coefficient from the mediator to the outcome. For the depression 
example, it is 

Standard for treatment effect on mediator = [(.33)(-1)] / -0.50 = 0.66 

 Thus, a true mean difference on coping skills between the treatment and control 
groups of 0.66 or more will contribute sufficiently to meaningful change on the outcome, 
given the viability of the working assumptions and the appropriateness of the fractional 
assignment of the total outcome effect to the mediator. On my website, I provide a 
program called effect size standards to apply the formula. The video associated with the 
program provides an example and I make use of the program in my numerical examples 
in future chapters. I encourage you to watch the video to help you make decisions about 
meaningfulness of treatment effects on mediators.  
 Note that this approach allows the meaningfulness standard to be tailored to the 
specific program evaluation context in which your RET is conducted. Some scientists 
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might view this as a disadvantage from the standpoint of knowledge accumulation in the 
scientific literature, arguing that meaningfulness standards should not be nuanced by 
context. Your clients who hire you to do the program evaluation, however, will 
appreciate your sensitivity to their context and, indeed, it can be argued that 
meaningfulness standards more generally should be context dependent. The argument is 
that one size does not fit all and that scientist’s insistence on common standards is naïve.      

The Effect of the Mediator on the Outcome  

Once a standard for judging meaningful change on the outcome has been determined, it 
also can be used in conjunction with the RET data to form effect size standards for 
mediator effects on the outcome. To do so, I use the same logic as for the T→M link, but 
now I apply it to the M→O link.  
 To outline the logic, suppose I find in the data that the program raises the coping 
skill mean in the treatment group by 1.2 units relative to the control group on the 1-7 
coping skill metric. If I use this to represent the change I can likely bring about in the 
mediator, I can ask what the value of the M→O coefficient would need to be to produce a 
mean change of at least -1.0 on the depression measure, i.e., the outcome meaningfulness 
standard. The answer is -1/1.2 or -0.83. Thus, if my program raises coping skills, on 
average, by 1.2 units and if the M→O coefficient is -0.83, then the overall mean shift in 
depression between the treatment and control conditions will equal -1.0, which is 
meaningful. I therefore might choose -0.83 as my effect size standard for the M→O 
coefficient. 
 There are complications to this logic. First, perhaps my program did not bring about 
much change in coping skills but I believe that I can modify the program to do a better 
job. Instead of setting the meaningfulness standard for the M→O coefficient based on the 
change my program actually produced (which might underestimate the amount of change 
that can be achieved), I might instead specify the plausible change in coping skills that I 
think I can bring about. Suppose that after much thought, I decide that the plausible 
change in coping skills I can probably bring about is closer to 2.0 coping skill units, give 
or take. Now the meaningfulness standard for the M→O coefficient would be -1/2.0, 
which equals -0.50 instead of -0.83. Second, as before, instead of demanding that the 
mediator carry all the responsibility for producing meaningful change in the outcome, I 
can assign a fraction of the outcome change, F, that I want it to fulfill.  
 Here are the key action steps you need to enact to form the M→O coefficient 
meaningfulness standard: 

1. Make a working assumption about what constitutes a meaningful effect of the 
treatment on the outcome; in the depression example, it was -1. 
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2. Make a working assumption about the true value of the path coefficient linking the 
treatment dummy variable to the mediator, i.e., the mean change that your program likely 
will produce or that it can plausibly produce. In the depression example, it was -2.0. This 
assumption can be informed either by prior research, common sense, or by using results 
from your RET data.  

3. Decide the fraction of the total program effect on the outcome that you want each 
mediator to account for; in the depression example, it was 0.33. 

 4. Then, given these working assumptions, calculate the effect size standard for the 
effect of the mediator on the outcome using the following formula: 

Standard for mediator effect on outcome = [(F)(MCO)] / PC 

where PC is plausible change in the mediator. For the depression example, it is 

Standard for mediator effect on outcome = [(.33)(-1.0)] / -2.0 = 0.165 

You can experiment with different values of F, MCO, and PC as you seek an effect size 
standard to use. The program on my website called effect size standards also implements 
this formulation. The core idea is that we are able to quantify how strong the M→O link 
needs to be by making working assumptions about (a) the minimal meaningful program 
effect on the outcome, and (b) the plausible change that we can bring about in the 
mediator.  

Commentary on Establishing Standards for Effect Size Meaningfulness 

Ultimately, the effect size standards you set will be a matter of judgment that you need to 
defend if challenged. The framework I suggest is far more nuanced than abstractly stating 
a standard like “I want coping skills to account for at least 3% of the variance in 
depression” or “I want the program to have an effect on the mediator equal to an absolute 
d of 0.50 or greater.” Preacher and Kelly (2011) note that an advantage of standardized 
effect sizes is that it “frees the researcher from having to prepare a new set of interpretive 
benchmarks for every new scale or application” (p. 95). This statement also describes a 
disadvantage of standardized effect sizes; they encourage not thinking about context.  
 One concern my colleagues express about my approach is that the resulting 
standards are tied to the specific population, program, and organization in which the RET 
is conducted. As such, the standards can lack generality. When I am hired by a client to 
evaluate a specific program in a specific context, I would argue that this narrow focus is 
entirely appropriate. It is only if I am interested in advancing science or policy more 
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generally that the issue of meaningfulness generalizability arises.   
 Contrary to blindly adopting arbitrary standardized effect size benchmarks that 
ignore context, I encourage you to consider context and partner with relevant 
constituencies to determine appropriate effect size standards. The way you approach such 
discussions and ultimately settle on standards might differ from program to program or it 
may depend on the substantive application. The tools I suggest for setting effect size 
standards are best informed by educated guesses of true program effects on mediators and 
mediator effects on outcomes. If you are philosophically opposed to relying on such 
information post hoc within your RET, then you can obtain estimates of the parameters in 
pilot research. However, pilot research usually is not feasible in contracted program 
evaluations.  

Setting Effect Size Standards for Programs in the Abstract 

As noted, another scenario that occurs is when a scientist seeks to evaluate a program that 
serves as a model for use in multiple applied settings. In such cases, I think it makes 
sense to identify prototypical settings in which the program is expected to be 
implemented and then to conduct focus groups with different constituencies to explore 
effect size standards for those settings using measures that ultimately will be 
recommended for use with the intervention.  
 Scenarios can arise, of course, where explorations of meaningful change standards 
in prototypical settings is not possible. If so, is it possible to state in the abstract what is a 
meaningful amount of change to expect for a program? This is exactly the question that 
Cohen attempted to affirmatively answer when he suggested his effect size standards. In a 
similar vein, Smith and Glass (1977) conducted a meta-analysis of 400 studies from the 
psychological literature on the effectiveness of psychotherapy and found an average 
Cohen’s d of 0.68. Smith and Glass then suggested that one might expect therapeutic 
effects for outcome mean differences equivalent to about 2/3 of an outcome standard 
deviation and that we use this as a standard for judging meaningfulness. Eysenck (1978) 
referred to the Smith and Glass meta-analysis as an “exercise in meta-silliness,” objecting 
to aggregating so many diverse outcomes and diverse therapeutic methods into a single 
numerical summary that ignores context. The key point here is that wherever possible 
make an effort to contextualize standards even if you are developing an abstract program. 
If you are conducting an RET to evaluate a program to promote exercise by the elderly 
and you are unable to do the type of contextualizing research I recommend, then at least 
base your effect size standards on prior research on exercise by the elderly, paying 
particular attention to studies that map onto the contexts you envision your program 
applying to.  
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EFFECT SIZE INTERPRETATION AND SAMPLING ERROR  

In this final section, I describe an approach for interpreting effect sizes that takes 
sampling error into account. Recall that the parameter of interest in the depression 
example was the population difference between the mean depression for the treatment 
and control conditions using a 0 to 5 clinician rating of patient depression. The null and 
alternative hypotheses in this case are: 

H0: µT - µC = 0 

H1: µT - µC ≠ 0 

I can draw a line graph to depict the possible population values of the mean difference 
that might operate per Figure 10.4a. Recall that the latitude of no effect was specified to 
be -0.5 to 0.5. The two dashed lines designate the boundaries of this latitude. If the 
population mean difference occurs anywhere in this latitude, the means for the two 
groups are deemed functionally equivalent. Suppose the 95% confidence interval for the 
sample mean difference is -0.25 to +0.25. If the lower and upper limits of this interval are 
completely contained within the latitude of no effect, per Figure 10.4b, then I can be 95% 
confident that the population means are indeed functionally equivalent.  

 

0-1.0-2.0 1.0 2.0-0.5 0.5-1.5 1.5

Latitude of No Effect

 

FIGURE 10.4a. Line graph showing latitude of no effect 
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Latitude of No Effect

95% CI: -.25 to .25
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FIGURE 10.4b. Line graph showing latitude of no effect with 95% CI 

 Figure 10.5a shows the same line graph but now with the latitude of meaningfulness 
highlighted; the desired difference between the treatment and control group means is a 
negative number less than or equal to -1.00. Suppose the 95% confidence interval for the 
sample mean difference was -1.75 to -1.25, per Figure 10.5b. In this case, the sample 
confidence interval is fully contained within the latitude for meaningful change, so it is 
reasonable to conclude that a meaningful effect exists in the population. 

0-1.0-2.0 1.0 2.0-0.5 0.5-1.5 1.5

Latitude of Meaningfulness

 

FIGURE 10.5a. Line graph showing latitude of meaningfulness 

95% CI: -1.75 to -1.25

0-1.0-2.0 1.0 2.0-0.5 0.5-1.5 1.5

Latitude of Meaningfulness

 

FIGURE 10.5b. Line graph showing latitude of meaningfulness with 95% CI 

Finally, suppose the 95% confidence interval for the group difference overlaps two 
latitudes, one of which is the latitude of meaningfulness. For example, if the confidence 
interval for the mean difference is -1.25 to -0.55, then there is overlap between the 
latitude of meaningfulness (≤ -1) and the latitude of effect ambiguity (>-1.0 to <-0.5). In 
this case, I cannot confidently conclude there is a meaningful population difference 
between the means because some of the confidence interval is in the latitude of effect 
ambiguity. The meaningfulness of the effect is suggestive, but not conclusive.  
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Basically, the approach I recommend is to calculate the confidence interval for the 
parameter of interest in your RET and then map that confidence interval onto the latitudes 
of meaningfulness, effect ambiguity, and no effect. If the confidence interval is fully 
within the latitude of meaningfulness or fully within the latitude of no effect, the 
conclusion is straightforward. If the interval overlaps two latitudes, the result is less 
straightforward. Note that this approach does not require interpreting p values, although 
one can do so if one desires; conclusions are completely effect size driven. The approach 
takes into account sampling error in the effect size estimates. Note also that the larger the 
confidence interval, the more likely it is one will obtain inconclusive results because wide 
intervals are likely to produce overlap between latitudes. Smaller sample sizes are likely 
to lead to inconclusive results, which makes intuitive sense. In my approach, instead of 
choosing sample sizes to increase statistical power, I choose sample sizes to produce 
narrow confidence intervals. I discuss sample size selection for achieving narrow 
confidence intervals in Chapter 28. 
 Interestingly, if one relies exclusively on statistically significant p values to make 
statements of meaningfulness (e.g., p < 0.05 is a meaningful effect, p > 0.05 is not), then 
this is tantamount to defining a standard for a meaningful effect as any population 
difference that is not zero. This is because the p value tests the null hypothesis of a zero 
mean difference. Perhaps a meaningfulness standard of anything-but-zero is justifiable in 
some contexts. However, if an anything-but-zero value is chosen as the standard, I 
believe that researchers need to make a case for its choice. It does not seem very 
defensible to me in most applied settings. 
 It is instructive to contrast this approach with more typical approaches used in 
published research. When reviewing articles from clinical psychology for possible use as 
examples, I found that none of the articles addressed the topic of effect size 
meaningfulness. Instead, the articles reported significance tests for treatment versus 
control group differences and presented Cohen’s d statistics for effect size, leaving it to 
readers to form their own judgments about meaningfulness. In the Discussion sections, 
nothing was said about the magnitude of the ds and discussion centered almost 
exclusively on effects that were statistically significant (p < 0.05). Thus, although effect 
sizes were reported, discussion revolved around the significance tests. To me, the 
researchers were not taking matters of effect size seriously enough.  
  I isolated studies of treatment programs that used the classic CES-D scale for 
depression as an outcome. As noted, the metric of the CES-D ranges from 0 to 60, but the 
vast majority of people score less than 30 on it, giving it a functional metric of about 0 to 
30. Several psychometric articles discuss what constitutes meaningful clinical change on 
the CES-D, with minimal meaningful change typically being defined as somewhere 
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between 5 and 10 scale points. For purposes of illustration, I will define the latitude of no 
effect as change less than an absolute value of 5, the latitude of effect ambiguity as 
absolute changes between 5 and 8, and the latitude of meaningfulness as absolute changes 
larger than 8.  
 In one study, the sample size was 19 per group and the mean in the control group 
was 12.89 (SD = 4.78) and in the treatment group it was 5.68 (SD = 4.74). The reduction 
in depression was -7.21, which was statistically significant (t(36) = 4.67, p < 0.05 d =       
-1.51). The 95% confidence interval for the mean reduction was -10.34 to -4.08. The 
confidence interval overlaps the latitude of meaningfulness (-8 or less) and the latitude of 
no effect (-5 to +5), so we cannot conclude with confidence that the treatment produced a 
meaningful effect, despite its statistically significant p value; there is too much sampling 
error in this study to draw a firm conclusion, likely because of the small N. With the 
sample of 19 per group and the results that were observed, I would not agree with the 
authors that the treatment effects were meaningful.  
 In another study, the sample size was 90 per group and the mean in the control 
group was 9.64 (SD = 8.23) and in the treatment group it was 6.80 (SD = 5.77). The 
reduction in depression was -2.84, which was statistically significant (t(178) = 2.68, p < 
0.05 d = -0.40). The 95% confidence interval for the mean reduction was -4.93 to -0.75. 
The confidence interval is completely contained within the latitude of no effect (-5 to +5), 
so I would declare the population group means as functionally equivalent. By contrast, 
the authors interpreted the results as supporting the meaningfulness of the treatment 
because they relied exclusively on the p value for their conclusion.  
 The framework I propose shifts the focus of analysis from one of testing group 
differences against a null hypothesis of zero to one of testing group differences against a 
null hypothesis of the minimum value of meaningful change. This can be more sample 
size demanding, but it is appropriate if one wants to know if meaningful change has been 
brought about by a program after taking into account sampling error. Perhaps a case can 
be made for using a lower percent confidence/credibility interval than 95% given the shift 
in focus from a null hypothesis of a zero difference, but this will depend on the 
substantive context of the study. For an extension of this approach to omnibus mediation 
analysis rather than effect sizes for a link within a mediational chain, see Beribisky et al., 
(2020).  
 A somewhat frustrating result for program evaluators will be situations where a 
“mixed message” results relative to the sample mean difference, the estimated confidence 
interval for the mean difference, and the meaningfulness standard. Consider a study 
where I evaluate an intervention to increase moderate to vigorous physical activity 
(MVPA) in adolescents and where the minimum meaningfulness standard for the 
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program is to increase MVPA by an average of 30 minutes per week. Suppose the 
treatment versus control posttest mean difference is 37 minutes and that this is 
statistically significant (p < 0.05) by traditional null hypothesis testing standards with a 
margin of error of ±8 minutes. The 95% confidence interval is 29 minutes to 45 minutes. 
Because the meaningfulness standard of 30 overlaps the lower limit of this interval, I 
cannot conclude with 95% confidence that the intervention produced a meaningful effect 
on MVPA. To be sure, I can confidently conclude that the intervention effect is non-zero 
because the null hypothesis of no effect was rejected. And, if you ask me my single best 
guess of the true mean difference between the treatment and control conditions, it would 
be the sample mean of 37 minutes, which also exceeds the meaningfulness standard. 
Despite these facts, I can’t say that I am 95% confident the intervention produced a 
meaningful result due to the overlap of the lower limit and the meaningfulness standard. 

If I instead calculate a 90% confidence interval for the above, the margin of error 
becomes ±6.60 and the confidence interval is 30.4 minutes to 43.6 minutes. I can now 
state with 90% confidence that the intervention produces a meaningful effect.7 This 
suggests a possible strategy of reporting to clients the sample mean difference that 
represents your best guess of the program effect but then also convey the confidence level 
you have that the meaningfulness standard is exceeded in the population given the 
operative sampling error based on your exploration of different confidence intervals. In 
the current case, I would say that my best guess of the intervention effect is to raise 
MVPA on average by 37 minutes and that I am 90% confident that the program produces 
a meaningful effect when one takes into account the operative sampling error.         

CONCLUDING COMMENTS  

A central task of RETs is to determine if (1) the program effect on the outcome is 
meaningful, (2) if the program effects on mediators are meaningful, and (3) if the 
mediator effects on the outcome are meaningful. Many social scientists rely on 
standardized effect size indices coupled with guidelines for labeling effects as “small,” 
“medium,” and “large” to make meaningfulness judgments. The guidelines vary and the 
rationales for them are either underdeveloped or fairly arbitrary. Importantly, effect size 
does not equate with effect meaningfulness. Small effects can have major consequences 
and large effects can have trivial consequences. Judgments of meaningfulness require we 
broaden our focus to account for context. Meaningfulness judgments ultimately are 
derived from a collaborative process that involves exchanges between scientists, 

 
7 As discussed in Chapter 6, some methodologists prefer the use of Bayesian credible intervals when MOEs are used 
in this fashion, but a case also can be made for using traditional confidence intervals, especially when the Bayesian 
analysis relies on uninformative priors.  
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practitioners, and program participants, among others.  
  My own preference is to use unstandardized indices when documenting effect size. 
Such indices generally avoid many of the artifacts that afflict standardized indices, such 
as range restriction and distortion due to heavy tailed distributions. Researchers complain 
that unstandardized metrics can be arbitrary and lack inherent meaning. My response is 
that we should make our metrics non-arbitrary rather than mindlessly shift to 
standardized metrics with arbitrary standards (see Jaccard, 2022, for how to do so). 
Among the more intuitive standardized indices, in my opinion, are the probability of 
exception to the rules, the number needed to treat, and risk (percentage) differences and 
relative risks.  
 When reporting and interpreting effect sizes, it is useful to include margins of error 
or confidence intervals for those effect sizes so that readers can appreciate the sample-to-
sample fluctuations of them. I make formal use of such information by integrating effect 
size estimates and their confidence intervals into an interpretational framework that uses 
a latitude of meaningfulness, a latitude of effect ambiguity, and a latitude of no effect. 
The framework leads to conclusions that do not rely on p values, although p values can 
be used to assist conclusions, if desired. Sample size decisions in this framework are 
driven more by the minimization of confidence interval width rather than statistical 
power.  
 Some readers may be disappointed that I have not told them which effect size 
indices to use and what standards to apply to those indices. Unfortunately, the task is not 
that simple. I have made known my own preferences, namely (a) to work with 
unstandardized metrics and to try to make them non-arbitrary if they are arbitrary vis-à-
vis discussions with relevant constituencies, and (b) for standardized indices, to rely on 
multiple indices to provide different vantage points on effect size, with my own 
preferences leaning towards the probability of exceptions to the rule, the number needed 
to treat, and risk differences or relative risks coupled with reports of their component 
parts. I have shown that once you settle upon a definition of a meaningful effect for the 
outcome, it is possible to derive from this, coupled with RET linear equations, standards 
for meaningful effects for mediator influences on outcomes and for treatment effects on 
mediators. I also highlighted issues that you should consider as you form meaningfulness 
standards in a given RET, taking into account such factors as the number of people 
affected, the impact on the quality of their lives, the severity and reversibility (or 
positiveness and sustainability) of the outcome for people, the vulnerability of the 
affected population, and the costs and organizational readiness to bring about change, 
among others. I also showed you how to take into account sampling error using the 
latitude of meaningful effects, latitude of no effects, and latitude of effect ambiguity. 
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Finally, I provided you with strategies that might help you form effect size standards 
through focus groups and qualitative work with relevant constituencies. The above 
mindset is a far richer approach than reporting, say, a Cohen’s d and letting it speak for 
itself, without commentary (see the opening quote to this chapter). I apply my approach 
throughout the remaining chapters of this book.  
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APPENDIX: CALCULATION OF EFFECT SIZES 

This appendix provides formulae for the calculation of different effect size indices. The 
formulae apply to OLS regression, but often can be used with output from Mplus for RET 
analysis (see Chapter 11 for details). 

Squared Semi-part Correlation  

To calculate a squared semi-part correlation for a given predictor in a regression equation 
with multiple predictors use the following equation: 

2 2 2sr  = (CR  (1 R )) / (N-k-1)−                                [10.A.1] 

where sr2 is the squared semi-part correlation for the predictor, CR is the critical ratio for 
the predictor coefficient, R2 is the overall squared multiple correlation, N is the sample 
size, and k is the number of predictors (for a z test, some statisticians use N in place of N-
k-1; with N > 100, the difference in results usually is trivial). As an example, suppose the 
outcome is a continuous measure, Y, and the target predictor, X1, is a continuous 
measure. There are three covariates, so the number of predictors is 4. Suppose the 
squared correlation for the four predictors is 0.23 and the critical ratio (t ratio) for X1 is 
2.31, with N = 200. Using Equation 10.A.1, the squared semi-part correlation for X1 is 
((2.312)(1-.23))/(200-4-1) = 0.02, indicating X1 uniquely explains 2% of the variation in 
smoking behavior.  

Partial Correlation  

To calculate the partial correlation for a given predictor in an equation with multiple 
predictors, use the following formula: 

2 2srpr = sr / 1 (R )− −                 [10.A.2]  

where sr is the square root of sr2 from Equation 10.A.1, but signed (positive or negative) 
in the same direction as the coefficient for the predictor. As an example, suppose that X1 
in a multi-predictor equation has a semi-part correlation of 0.30, a squared semi-part 
correlation of 0.09 and that R2 = 0.40. The partial correlation: 

2 2srpr = sr / 1 (R )− −  = -  0.30 / 1 - (0.40 0.09)  =  0.36 
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Cohen’s d for Independent Groups 

To calculate Cohen’s d, calculate the difference between the two means in question and 
then divide this difference by either (a) the pooled standard deviation for the two groups, 
(b) the standard deviation for the control group, or (c) a covariate adjusted standard 
deviation.   
 A covariate adjusted Cohen’s d index can be calculated from Mplus output if one 
predicts a continuous outcome/mediator from a binary predictor plus the covariates by 
dividing the path coefficient for the binary predictor (assuming the use of 0-1 dummy 
coding) by the square root of the unstandardized residual for the outcome/mediator under 
the output label Residual Variances in the section on Model Results.  

Probability of Exception for Two Groups Based on Cohen’s d 

To calculate the probability of exception for a binary predictor of a continuous outcome 
from Cohen’s d use the equation 

E AP  = 1 (d / 2) − Φ                  [10.A.3] 

where dA is the absolute value of the d statistic and Φ is the cumulative standard normal 
distribution function. In words, calculate an intermediate value, z, as dA divided by the 
square root of 2. Then translate z into a probability value, p, in the cumulative standard 
normal distribution. This is accomplished using tables in statistical texts or on a web 
calculator. As examples, a z of 0 translates into a probability of 0.50, a z of 0.33 
translates into a probability of 0.63, a z of 1.00 translates into a probability of 0.84, and a 
z of 1.65 translates into a probability of 0.95. PE is one minus this p value. For example, 
if Cohen’s d = 2.10, then PE is  

EP  = 1 (2.10/ 2) − Φ = 1 (1.484)− Φ  = 1- 0.931 = 0.07 

Formula 10.A.3 assumes there are equal or roughly equal sample sizes in the two groups.  

Probability of Exception for Predictor in Multiple Regression 

To calculate PE for two continuous variables with no covariates (i.e., for bivariate 
regression), use a Pearson correlation coefficient in the following equation: 

PE = 1 – [(arcsin(r)/ π) + 0.5]                 [10.A.4]   

where r is the absolute value of the observed correlation, arcsin is an arcsine function and 
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π is the mathematical constant pi (which is 3.14159). For example, if X and Y are 
correlated 0.35, then PE is 

PE = 1 – [(arcsin(.35)/ 3.14159) + 0.5]  = 1 – (.11164 + 0.5)  = 0.39  

When the predictor of concern, X1, is one of many predictors in a linear equation, use the 
program on my website to calculate the partial correlation for the quantitative predictor of 
interest and then use the absolute value of it in Equation 10.A.4 to calculate PE.  
 If the predictor in the multiple regression is a dummy variable that reflects a 
contrast between two groups, use 

E eP  = 1 (b/ SD ) − Φ                  [10.A.5]   
 
where b is the absolute value of the regression coefficient for the predictor and SDe is  
 

2
e 2(1 R )(var(Y)SD  = −   

where R2 is the squared multiple correlation for the equation and var(y) is the variance 
(or squared standard deviation) of the outcome variable, Y. The derivation of Equations 
10.A.4 and 10.A.5 and their robustness to violations of normality are described in 
Krasikova, Le and Bachura (2018). 

Semi-Parametric Probability of Exception 

On my website, I provide two programs for calculating the probability of exception using 
approaches based on summary statistics typically reported in journal articles, one 
program for a binary predictor and one program for a continuous predictor, each with the 
ability to control for covariates. These methods make parametric assumptions and yield 
point estimates of PE but not confidence intervals or margins of error. They also can be 
applied to output from SEM software like Mplus.  

I also provide two semi-parametric methods for when you have access to raw data, 
both of which allow for covariate control and both of which use percentile bootstrapping 
to generate confidence intervals. One strategy relies on the work of Vargha and Delaney 
(2000) using what they call an A statistic for the case of a  binary predictor. It accounts 
for discrete data and ties, whereas the other methods assume continuous variables. A is 
defined as 

A = [#(X> Y) + .5#(X=y)]/nXnY 
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where # is the count function, X and Y are vectors of scores for the two groups, 
respectively, and n is the respective group sample sizes. For the case of covariates, the 
program generates a set of score residuals for each group after predicting the outcome 
from the covariates using OLS regression. It then applies the above equation to these 
residuals. Bootstrap replicates are generated from the original sample and includes 
bootstrap of the covariate regression equation. The program for continuous predictors 
uses the same principle but defines the probability of superiority based on Li (2018) by 
summing the following across individuals: 

#[sign(Xi−MX)⋅sign(Yi−MY)>0]+0.5#[sign(Xi−MX )=sign (Yi−MY)=0])/N 

where N is the number of paired X-Y observations, # is the count function, MX is the 
mean of X, MY is the mean of Y, sign is a sign function. Conceptually, the equation 
counts the number of times when an X score is above (or below) the mean of X is paired 
with a Y score that is also above (or below) the mean of Y. If both the X and Y scores are 
identical to their corresponding means, then a count of 0.50 is used. 

Number Needed to Treat 

The NNT is the number of people we need to treat by having them participate in the 
program in order to have one more “success” than if we just left people alone per the 
control condition. If the formula for the NNT when “successes” are represented by a 
smaller proportion (e.g., the proportion of alcoholics who relapsed) 

NNT = 1 / (PC – PT)                   [10.A.6] 

and when “successes” are represented by a larger proportion, it is: 

NNT = 1 / (PT – PC)                  [10.A.7] 

where PC is the proportion of people in the control condition exhibiting “success” and 
where PT is the proportion of people in the treatment condition exhibiting “success.”  
 Strategies have been developed to extend the concept of NNT to continuous 
outcomes but these ultimately involve some form of dichotomization of Y, which I find 
questionable unless one has a strong theoretical rationale for it. One can compute the 
NNT directly from data by applying the threshold to the continuous variable to 
dichotomize it and then using Equation 10.A.6 or 10.A.7. If one does not have access to 
the raw data, one can estimate the NNT using an approach by Furukawa and Leucht 
(2011), not the one by Kraemer and Gibbons (2009). The formula is  
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(1 CER)) CERNNT = 1/ ( (d )Ψ − −Φ −                [10.A.8] 

where Φ is the cumulative standard normal distribution function as described for formula 
10.A.4, Ψ is the inverse function of the cumulative standard normal distribution, d is 
Cohen’s d for the outcome, and CER is control group event rate, i.e., the proportion of 
cases in the control condition that have an event score of “1” for the dichotomized 
outcome measure. The dichotomization occurs at an a priori determined cutoff value by 
the investigator. For example, if Cohen’s d is 0.34 and CER is 0.42, the NNT is    

( ))0.51/ ( ( 8 0.40 3 )2. 4 Ψ −Φ −  = )1/ ( (0.34 0.202 )0.42−Φ −  = 1/ (0.555 )0.420−  = 7.41 
 

 
 
 
 


