Additional Applications of SEM-based Fixed Effects Modeling with
Panel Data

In this document, I expand on topics relevant to fixed effects modeling with panel data.
These include modeling predictor lags, autoregression in the outcomes, autoregression in
both predictors and outcomes, cross-lagged modeling, and contemporaneous reciprocal
causality. I also describe how to extend SEM-based fixed effects analysis to binary, ordinal
and count outcomes. Finally, I discuss multiple indicator latent variables and sensitivity
tests for the biasing effects of measurement error. I assume you have read Chapter 16 and
mastered the material on SEM-based fixed effects modeling within it.

Lagged Predictors in SEM-Based Fixed Effects Models

The numerical example in the main text linked the mediators MA and MB to the outcome
Y vis-a-vis contemporaneous effects. Suppose I want to, in addition to the contemporaneous
effects, allow for a first order lagged effect for the MB mediator. The idea is that in addition
to an “immediate” MB effect on Y, there also is a delayed, independent carry over effect on
Y from MB at the prior time period. Although one would not expect this to be the case for
the numerical example in the main text, there are instances in some domains where lagged
effects might occur. Figure 1 presents an abbreviated influence diagram at a given time
point that highlights the causal dynamics for just the observed variables to provide a flavor
of what I am modeling. The dashed line is a short hand way of signifying that all of the
exogenous variables are correlated rather than drawing the traditional pairwise curved
arrows. This reduces clutter in the diagram. Note that MB has two variants, MB at time 7 to
reflect the concurrent influence and MB at time #-/ to represent the lagged influence of MB
on Y. Of course, the full influence diagram would include all the relevant time points and
the latent o variable. Table 1 presents the relevant Mplus syntax.
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FIGURE 1. Model for lagged effect of MB

Table 1: Mplus Syntax for Lagged Predictor

1. TITLE: Fixed effect analysis with lagged MB

2. DATA: FILE = FEmainM.dat ;

3. VARIABLE:

4. NAMES ARE id za zb cov0 covl cov2 cov3 cov4 malO mal ma2 ma3 ma4
5. mb0 mbl mb2 mb3 mb4 y0 yl y2 y3 y4 treat covmean mamean mbmean ymean ;
6. USEVARIABLES = mal ma2 ma3 mad4d mb0 mbl mb2 mb3 mb4

7. covl cov2 cov3 covd yl y2 y3 vy4 ;

8. ANALYSIS: ESTIMATOR=MLR ;

9. MODEL:

10. alpha BY yl@1 y2@1 y3@1 y4@1;

11. yl ON mal mbl mb0O covl (pl p2 p3 bl) ;

12. y2 ON ma2 mb2 mbl cov2 (pl p2 p3 bl) ;

13. y3 ON ma3 mb3 mb2 cov3 (pl p2 p3 bl) ;

14. y4 ON mad4 mb4 mb3 covd (pl p2 p3 bl) ;

15. vyl y2 y3 y4 (evar);

le. alpha WITH mal-ma4 mbO-mb4 covl-covéd ;

17. OUTPUT: Samp Std¥YX Mod(All 4) Residual Tech4 ;

Noteworthy in this syntax is the omission of the line predicting Y at time 0 and the omission
of YO from Lines 10 and 15. This is because we cannot include the lagged predictor for MB
for YO as a measure of MB before time 0 does not occur in the data set. The disadvantage
of using a lagged predictor is that you lose some information in the model. I also had to alter
the USEVARIABLES line relative to the corresponding line in the main text to reflect only
those variables in the model lines of Table 1. Some researchers might decide to not include
Y1 in the model because the MB lagged variable in this case represents a baseline measure
that likely has a different time lag between it and the concurrent MB as compared to the
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other time points. However, as I discussed in the main text, for this particular example, the
differing time lags likely are irrelevant given the substantive content of the variables.
Nevertheless, the inclusion of baseline information is an issue to think about. An alternative
strategy to dealing with the differential time lags is to remove the equality constraint for the
path linking MBO to Y1 or for that matter, all of the paths linking the lagged MB to Y. When
I re-ran the analysis using only Y2 through Y4 and freeing up the equality constraints, the
results were comparable to what I report here.

The global fit indices of the model from the syntax in Table 1 all suggested satisfactory
model fit. The chi square was 32.98 with df=43, p < 0.87; the RMSEA was <0.001 with a
90% confidence interval of 0.00 to 0.012; the p value for close fit was < 1.00; the CFI was
1.00 and the standardized RMR was 0.008. For localized fit, there were no statistically
significant differences between the predicted and observed covariances on a cell-by-cell
basis and there were no theoretically meaningful modification indices above 4.0.

Here are the results for the key path coefficients:

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y1 ON
MA1 0.497 0.011 44,341 0.000
MB1 0.490 0.012 40.563 0.000
MBO -0.003 0.012 -0.249 0.804
covil 0.201 0.012 16.182 0.000

Y2 ON
MA2 0.497 0.011 44,341 0.000
MB2 0.490 0.012 40.563 0.000
MB1 -0.003 0.012 -0.249 0.804
Ccov2 0.201 0.012 16.182 0.000

Y3 ON
MA3 0.497 0.011 44,341 0.000
MB3 0.490 0.012 40.563 0.000
MB2 -0.003 0.012 -0.249 0.804
Cov3 0.201 0.012 16.182 0.000

Y4 ON
MA4 0.497 0.011 44 .341 0.000
MB4 0.490 0.012 40.563 0.000
MB3 -0.003 0.012 -0.249 0.804
Ccov4 0.201 0.012 16.182 0.000
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Because of the equality constraints I built into the analysis, the results are identical for
each time point. The results for the contemporaneous MA and MB closely follow the results
in the main text where the lagged MB predictor was not included. The coefficient for the
lagged MB predictor was near zero (-.003 +0.02) and statistically non-significant (CR = -
0.249, ns). In this case, the lagged predictor could reasonably be dropped from the model.
Had its effect been meaningful, the model fit indices in the original analysis likely would
have been amiss. The equality constraints I imposed in this analysis could be relaxed, per
my discussion in the main text.

Lagged Outcomes in SEM-Based Fixed Effects Models

The numerical example in the main text did not include lagged causal effects of prior Y on
current Y. The assumption was that any correlation between the Y across time were largely
due to the common causes of time-invariant variables or the correlations among the
predictors across time. If I believed there were meaningful within-person first order
autoregressive causal effects for the Y, then I would want to add causal paths representing
these effects. Figure 2 presents an abbreviated influence diagram at a given time point that
highlights the presumed causal dynamics for just the observed variables to provide a flavor
of what I am modeling. Of course, the full influence diagram would include all the relevant
time points and the latent o variable. Table 2 presents the relevant Mplus syntax.

-~ T~ r—— - 1
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v v v v
MA; MB; COV; Y1

FIGURE 2. Model for first order autoregressive effect for Y



SEM-Based Fixed Effects 5

Table 2: Mplus Syntax for Autoregressive Y Effects

1. TITLE: Fixed effect analysis with autoregressive Y

2. DATA: FILE = FEmainM.dat ;

3. VARIABLE:

4. NAMES ARE id za zb cov0 covl cov2 cov3 cov4 maO mal ma2 ma3 ma4

5. mb0 mbl mb2 mb3 mb4 y0 yl y2 y3 y4 treat covmean mamean mbmean ymean ;
6. USEVARIABLES = mal ma2 ma3 ma4 mbl mb2 mb3 mb4 covl cov2 cov3 cov4

7. vO vl yv2 y3 v4 ;

8. ANALYSIS: ESTIMATOR=MLR ;

9. MODEL:

10. alpha BY yl@1 y2@1 y3@1 y4@1l; !'define latent vy

11. yl ON mal mbl y0 covl (pl p2 p3 bl) ; !regress tl y onto tl preds

12. y2 ON ma2 mb2 yl cov2 (pl p2 p3 bl) ; !regress t2 y onto t2 preds

13. y3 ON ma3 mb3 y2 cov3 (pl p2 p3 bl) ; !'regress t3 y onto t3 preds

14. yv4 ON ma4 mb4 y3 cov4d (pl p2 p3 bl) ; !regress t4 y onto t4 preds

15. vl y2 y3 y4 (evar); !lestimate disturbance variances

16. alpha WITH mal-ma4 mbl-mb4 covl-cov4 y0 ; !correlate latent var with all

17. OUTPUT: Samp Std¥X Mod(All 4) Residual Tech4 ;

As before, I omit a line that predicts Y at time 0 and omit YO from Lines 10 and 15. I also
altered the useEvARIABLES line relative to the corresponding line in the main text to reflect
only those variables formally included in the model lines of Table 2. Also, as before, some
researchers might decide to not include Y1 in the model because the lagged Y in this case
represents a baseline measure in the RET. Or, instead they might consider removing the
equality constraint for the path linking YO to Y1 or, for that matter, the equality constraints
for all of the Y autoregressive coefficients. It turns out that when I re-ran the analysis using
only Y2 through Y4 and yet again removing the equality constraints, the results were
comparable to the analysis I report here.

This model assumes that the causal flow of the predictors to Y is unidirectional, i.e.,
that the mediators are free of any reverse impact by Y either concurrently or at prior time
points. If Y impacts the mediators in a non-trivial way, then special accommodations need
to be taken into account to deal with what is known as sequential exogeneity; see Allison et
al., (2017) and Leszczensky and Wolbring (2022).

The global fit indices of the model based on the syntax in Table 2 all suggest
satisfactory model fit. The chi square was 29.92 with df=43, p < 0.94; the RMSEA was
<0.001 with a 90% confidence interval of 0.00 to 0.006; the p value for close fit was < 1.00;
the CFI was 1.00 and the standardized RMR was 0.007. For localized fit, there were no
statistically significant differences between the predicted and observed covariances on a
cell-by-cell basis and there were no theoretically meaningful modification indices above
4.0.
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Here are the results for the key path coefficients:

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y1 ON
MA1 0.496 0.011 44 .238 0.000
MB1 0.490 0.012 42.041 0.000
YO0 -0.006 0.013 -0.488 0.626
Cov1l 0.200 0.012 16.095 0.000

Y2 ON
MA2 0.496 0.011 44,238 0.000
MB2 0.490 0.012 42.041 0.000
Y1 -0.006 0.013 -0.488 0.626
Cov2 0.200 0.012 16.095 0.000

Y3 ON
MA3 0.496 0.011 44 .238 0.000
MB3 0.490 0.012 42.041 0.000
Y2 -0.006 0.013 -0.488 0.626
cov3 0.200 0.012 16.095 0.000

Y4 ON
MA4 0.496 0.011 44 .238 0.000
MB4 0.490 0.012 42.041 0.000
Y3 -0.006 0.013 -0.488 0.626
cov4 0.200 0.012 16.095 0.000

The results for the contemporaneous MA and MB closely follow the results in the
main text where the first order autoregressive Y effect was not included. The autoregressive
coefficient for Y was near zero (-.006 £0.03) and statistically non-significant (CR = -0.488,
ns). In this case, the lagged Y could reasonably be dropped from the model. Had its effect
been meaningful but not modeled, the global fit indices in the original analysis reported in
the main text likely would have been amiss.

Parenthetically, some methodologists include Y lags to deal with what is known as
exchangeability, namely the assumption that the correlations between Y at any two time
points are the same no matter the length of the time lag between them. This assumption can
be (but is not always) unrealistic with the magnitude of correlations decreasing as the length
of the time lag increases (per the simplex structure discussed in the main text). Including
lagged Y is a strategy for dealing with this phenomena even if one does not truly believe
that inertia effects exist. Rather it is a methodological strategy for modeling exchangeability
violations. Of course, if you believe inertia effects exist, you will want to include the lags.
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Binary and Count Outcomes

In some RETs with multiple follow-ups the outcome is binary rather than continuous. A
common strategy for dealing with this is to use logistic or probit models. Consider an RET
that has no baseline assessments (in many RCTs with binary outcomes, baseline measures
are not collected). Individuals are randomly assigned to a treatment or control condition.
Suppose there are five posttreatment assessments, including a binary outcome (e.g., the
individual achieved a satisfactory level of adherence for assigned exercise protocols, 0 =
no, 1 = yes), a binary mediator (MA), a continuous mediator (MB) and a binary covariate
(COV). The Mplus syntax for an SEM-based fixed effects model of the M—Y links is quite
similar to the case of continuous outcomes which I elaborated in the main text in Table 16.5.
Table 3 presents the relevant syntax for the binary outcome RET.

Table 3: Mplus Syntax for Binary Outcome

1. TITLE: Fixed effect analysis with autoregressive Y
2. DATA: FILE =binarydvM.dat;

3. VARIABLE:

4. NAMES = id yl-y5 mal-ma5 covl-cov5 mbl-mb5;

5. USEVARIABLES ARE yl-y5 mal-ma5 covl-cov5 mbl-mbb5;
6. CATEGORICAL = yl-y5;

7. ANALYSIS: ESTIMATOR=ML;

8. MODEL:

9. alpha BY yl-y5@1;

10. yl-y5 PON mal-mab5 (a);

11. y1-y5 PON mbl-mb5 (b) ;

12. yl-y5 PON covl-cov5 (c);

13. alpha ON mal-ma5 mbl-mb5 covl-covb;

14. OUTPUT: Samp Std¥X Tech4d4 ;

I use Mplus syntax shortcuts to make programming more efficient. First, on Lines 4-6 I refer
to multiple Mplus variables that have the same name but that are differentiated by successive
integers at the end of the variable name. Thus y1-y5 refers to the variables y1, y2, y3, y4
and y5, which are the outcomes measured at each of the five time periods. Line 6 tells Mplus
that y1-y5 should be treated as categorical outcomes. Mplus determines internally if the
measures are binary. If any of the y1-y5 contain more than two values, it is treated by Mplus
as ordinal rather than binary. On Line 9, I use the variable shorthand with the BY command
to place arrows from the latent alpha to each of the outcomes. The @1 notation applies to
each referenced arrow thereby fixing each of the five paths to the value 1.0. On Line 10, I
use the pon shortcut. The five variables to the right of pon are regressed onto the five
predictors to the right of PoN but using pairwise logic. Thus, line 9 actually represents five
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different on statements, yl oN mal; y2 oN ma2; y3 oN ma3; y4 oN ma4; and y5 oN ma5;.
The label at the end of the line (a) is applied to each statement thereby setting an equality
constraint to the five coefficients on the line. The presence of the binary outcomes means |
cannot request modification indices or the RESIDUAL option on the ouTpUT line. On Line
13, with continuous outcomes I would use the wITH command, per the main text. For
technical reasons I will not sidetrack on, for the case of binary outcomes I need to use on
instead of WITH to establish an association between alpha and each of the exogenous
predictors.

When I execute the syntax, because of the binary outcomes I do not obtain any of the
traditional fit indices. Here is the output for global model fit:

MODEL FIT INFORMATION

Number of Free Parameters 24
Loglikelihood
HO Value -3416.657

Information Criteria

Akaike (AIC) 6881.314

Bayesian (BIC) 7002.476

Sample-Size Adjusted BIC 6926.244
(n* = (n + 2) / 24)

I obtain the classic information criteria indices as well as the model log likelihood and the
number of free parameters. None of these indices, alone or in combination, are adequate as
indices of model fit but I make use of them shortly to provide some perspectives on fit.

Here are the results for the log odds path coefficients linking M—Y as well as the
transformed coefficients in the form of odds ratios:

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y1 ON
MA1 0.407 0.152 2.687 0.007
MB1 -0.243 0.038 -6.362 0.000

Ccovl 0.338 0.112 3.023 0.003
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Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y2 ON
MA2 0.407 0.152 2.687 0.007
MB2 -0.243 0.038 -6.362 0.000
Ccov2 0.338 0.112 3.023 0.003

Y3 ON
MA3 0.407 0.152 2.687 0.007
MB3 -0.243 0.038 -6.362 0.000
Cov3 0.338 0.112 3.023 0.003

Y4 ON
MA4 0.407 0.152 2.687 0.007
MB4 -0.243 0.038 -6.362 0.000
Ccov4 0.338 0.112 3.023 0.003

Y5 ON
MAS5 0.407 0.152 2.687 0.007
MB5 -0.243 0.038 -6.362 0.000
COV5 0.338 0.112 3.023 0.003

LOGISTIC REGRESSION ODDS RATIO RESULTS FOR OBSERVED VARIABLES

95% C.I.
Estimate S.E. Lower 2.5% Upper 2.5%
Y1 ON
MA1 1.503 0.228 1.116 2.022
MB1 0.784 0.030 0.727 0.845
covl 1.402 0.157 1.126 1.745
Y2 ON
MA2 1.503 0.228 1.116 2.022
MB2 0.784 0.030 0.727 0.845
Cov2 1.402 0.157 1.126 1.745
Y3 ON
MA3 1.503 0.228 1.116 2.022
MB3 0.784 0.030 0.727 0.845
Ccov3 1.402 0.157 1.126 1.745
Y4 ON
MA4 1.503 0.228 1.116 2.022
MB4 0.784 0.030 0.727 0.845

cov4 1.402 0.157 1.126 1.745
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95% C.I.
Estimate S.E. Lower 2.5% Upper 2.5%
Y5 ON
MAS 1.503 0.228 1.116 2.022
MB5 0.784 0.030 0.727 0.845
COV5 1.402 0.157 1.126 1.745

Focusing on the odds ratios, the value for MA was 1.50 with a 95% confidence interval of
1.12 to 2.02. Because the confidence interval does not contain the value of 1.0, the effect is
declared statistically significant (p < 0.05). The lower 95% margin of error is 1.116-1.503
= -0.39 and the upper 95% margin of error is 2.022—-1.503 = 0.52. Because MA is
dichotomous and dummy coded 0, 1, the odds ratio indicates that the odds of Y when MA
=11s 1.50 times larger than the odds of Y when MA = 0.

MB is continuous and is defined by a metric such that it has a standard deviation of
approximately 1. For MB the odds ratios was 0.784 with a 95% confidence interval of 0.73
to 0.85. Because the confidence interval does not contain the value of 1.0, the effect is
declared statistically significant (p < 0.05). The lower 95% based margin of error is 0.727
—0.784 =-0.057 and the upper 95% based margin of error is 0.845 —0.727 = 0.118. Because
MB is continuous, the odds ratio indicates that for every one unit that MB increases, the
odds of Y are predicted to decrease by a multiplicative constant of 0.78.

I can obtain approximate indices of these effects expressed as marginal effects in the
form of probabilities and risk differences by re-running the syntax in Table 3 but using the
modified linear probability model (MLPM; see Timoneda, 2021; Angrist & Pischke, 2008).
This requires commenting out Line 6 and changing the on to wITH in Line 13. Here are the
results for MA and MB, reported only for Y1 to save space because the results for Y2 to Y5
are identical given the equality constraints:

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y1 ON
MA1 0.080 0.027 2.911 0.004
MB1 -0.040 0.006 -6.308 0.000
covl 0.057 0.019 2.939 0.003

For MA, the probability that Y =1 when MA=1 minus when MA = 0 is approximately 0.08
+0.05. For MB, for every one unit that MB increases, the probability that Y =1 decreases
by -0.04 £0.01. The margins of error are approximated by double the values of the standard
errors.
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In the main text, I evaluated if some of the equality constraints I imposed could be
relaxed by means of chi square difference testing for nested models. I can use the same
strategy for binary outcomes even though no chi square statistic is reported by Mplus. The
strategy is to compare nested models by means of their respective log likelihoods and the
number of free parameters in each model. In the above model, I found that the log-likelihood
was -3416.657 with 24 free parameters. Suppose I re-run the model but relax the constraint
that the paths from alpha to Y 1 through Y5 all equal 1.0, i.e., that the time invariant variables
impact Y1 through Y5 to an equal extent. To relax the constraint, I change Line 9 in Table
3 toread

alpha BY yl@l y2-y5;

I need to fix at least one of the paths to 1.0 in order for the model to be identified which I
did for yl. The paths for y2 through y5 all are free to vary. The loglikelihood yielded by
this model -3409.192 with 28 free parameters. I provide a program on my website called LL
difference test that performs a significance test comparing the two models based on their
loglikelihoods by transforming them to chi square statistics. In the present case, the chi
square difference in fit for the two models was 14.93 with df =4, p <0.005. The model with
the relaxed constraint fit better than the model with the equality constraint. The sample size
for this comparison was large (N = 1,151) and when I examined the difference in the
magnitude of the key parameter estimates of interest, they were trivial in magnitude. Thus,
although statistically significant, imposing the equality constraint did not matter much.

Parenthetically, the referenced program on my website assumes the use of ML as
opposed to MLR as the estimation algorithm for the respective models. If you use MLR,
then you will want to use the program called Scaled LL difference test to compare the models
using log likelihoods. The formulae used for these programs is provided on the home page
of the Mplus website.

For count outcomes that have highly skewed data, the analysis will typically use a
negative binomial strategy with maximum likelithood. The Mplus programming is similar
to Table 3 but instead of Line 6 reading CATEGORICAL = y1-y5; itwill read COUNT = yi1-
y5 (nb) ;. The nb in parentheses after the listed variables tells Mplus to use a negative
binomial model. On Line 13, you can use either the on or wITH operator. I usually add an
optional line after Line 13 and before Line 14 that reads y1-y5 (d) ;. This command tells
Mplus to impose an equality constraint on the dispersion parameters across time. The core
output follows the same format as above but with the statistics tailored to a negative
binomial model per Chapter 14.
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More Complex Models

Allison et al.’s (2017) approach works well for the prior model types but cases occur where
more complex causal structures between mediators and outcomes need to be tackled. I have
found it more productive to shift to an alternative modeling strategy within Mplus to better
deal with the complexity while preserving the spirit of SEM-based fixed effects analysis
Zyphur et al. (2020a, 2020b). Consider the model in Figure 3 that links two mediators, MA
and MB, to an outcome Y with 3 month intervals between the time periods. To avoid clutter,
I omit disturbance terms for the endogenous variables as well as the time- varying covariate
COV but parameters for them will be included in the Mplus syntax I describe below. There
is a fixed effect factor for each mediator and covariate as well as the outcome. In prior
models we only had one latent fixed effect variable for the outcome. We need to treat the
variables as having separate fixed effect factors because the mediators and covariates all
have autoregressive lags. They are necessary for the programming to work.

bmb
1.0
1.0 1.0
mbl | mb?2 mb3 mb4
bLy yl y2 y3 v4

mal ma2 ma3 ma4

1.0

bma

FIGURE 3. Model with complex causal dynamics
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Note that the path coefficient for the first variable that the latent factor influences does
not have a measured lag in the model. The path coefficient for it is estimated rather than
fixed at 1.0. By doing so, the first variable loading creates an initial impact value of the
fixed effect factor on the observed variable which then remains constant throughout the
series. It is a way of adjusting for the missing lag in the autoregressive chains. The model
portion of the model that links MB to Y across time has the form of a classic cross-lagged
panel model after adjusting for all unmeasured time-invariant influences on MB and Y. It
allows for MB to influence Y at a later point in time and for Y to influence MB. By contrast,
the portion of the model that links MA to Y assumes lagged and autoregressive effects but
treats the influence of the one variable on the other as unidirectional from MA to Y but not
vice versa. I did not include the covariate COV in the diagram but you should assume for
this example that it has the same causal structure to Y as MA does to Y. Table 4 presents
the relevant Mplus syntax.

Table 4: Mplus Syntax for Complex Model

1. TITLE: Fixed effect analysis of a complex model
2. DATA: FILE = feclpm.dat;

3. VARIABLE:

4. NAMES ARE Y1 Y2 Y3 Y4 MA1l MA2 MA3 MA4
5. MB1 MB2 MB3 MB4 COV1 COV2 COV3 COV4 ;
6. ANALYSIS: ESTIMATOR=MLR;

7. MODEL:

8. !fixed effects latent variables and their correlations
9. yl-y4 mal-ma4; mbl-mb4 covl-covi4;

10. bly BY y2-y4@1 vyl ;

11. bma BY ma2-ma4@l mal ;

12. bmb BY mb2-mb4@1 mbl ;

13. bcov BY cov2-cov4@l covl ;

14. bly with bma bmb bcov;

15. bma with bmb bcov ;

16. bmb with bcov ;

17 lautoregressions

18. y2-y4 PON yl-y3 (a) ;

19. maz2-ma4 PON mal-ma3 (b) ;

20. mb2-mb4 PON mbl-mb3 (c) ;

21. cov2-cov4 PON covl-cov3 (d) ;

22. !lagged effects

23. y2-y4 PON mal-ma3 (e) ;

24, y2-y4 PON mbl-mb3 (f) ;

25. y2-y4 PON covl-cov3 (g) ;

26. mb2-mb4 PON yl-y3 (h) ;

27 !contemporaneous correlated disturbances
28. yl-yv4 pwith mal-mad (i)
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29. yl-y4 pwith mbl-mb4 (3);

30. yl-y4 pwith covl-cov4d (k);
31. mal-mad4 pwith mbl-mb4 (1) ;
32. mal-ma4 pwith covl-cov4 (m);
33. covl-cov4 pwith mbl-mb4 (n)
34. MODEL INDIRECT:

35. y4 IND MB1 ;

36. OUTPUT: Samp Std¥X Mod(All 4) Residual Techi4

Much of the syntax is self-explanatory. I use the pon syntax structure that I introduced
in Table 3. Line 9 to 13 define the fixed effect latent factors. Note that I fix the paths at
times 2 to 4 to 1.0 and then estimate the first path coefficient. I do not put the variable whose
path is to be estimated first because Mplus by default sets the first listed variable in a BY
statement to 1.0. Lines 14-17 define the correlations between the latent factors while Lines
17-21 define the first order autoregressive effects in the model. I introduce labels in
parentheses at the end of each line but before the semi-colon. For pon syntax, these labels
create equality constraints for all the paths implied by the line. For example, on Line 18 the
paths for yl—y2, y2—y3 and y3—y4 all are constrained to be equal by virtue of the
specification (a). There is no measured lag for y1, so it is omitted. Of course, you can relax
the equality constraints if the results yield a poor model fit or suggest in some way that the
constraints need to be modified via the modification indices or nested chi square tests as
illustrated in the main text.

Lines 22 to 26 define the lagged effects in the model. Lines 27 to 33 define places in
the model where I believe correlated disturbances are needed. These lines use the pwiTH
command which is similar in function to the pon command but it specifies covariances
instead of causal paths. In this case, I specify correlated disturbances between the variables
measured at the same time points. This is likely necessary because there are no
contemporaneous paths in the model (setting aside the factors); they all are lagged in one
form or another. In theory, I might not need these parameters once I have controlled for the
time-invariant variables, but I might decide to include them based on theory. Lines 34 and
35 ask for an indirect effect analysis. This is not necessary but I include to illustrate a point
[ want to make later.

The global model fit indices were satisfactory. The chi square was 84.968 with df=92,
p < 0.69; the RMSEA was <0.001 with a 90% confidence interval of 0.00 to 0.014; the p
value for close fit was < 1.00; the CFI was 1.00 and the standardized RMR was 0.015. For
localized fit, there were no statistically significant differences between the predicted and
observed covariances on a cell-by-cell basis and there were no theoretically meaningful
modification indices above 4.0.
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Here are the relevant path coefficients which I only report for the second time point
because the values were constrained to be equal across time points. I omit results for the
covariate because they are not of substantive interest. [ add some annotations in red.

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value
Y2 ON (effects of lagged MA and MB on Y)
MA1 0.219 0.022 10.168 0.000
MB1 0.235 0.024 9.695 0.000
MB2 ON (cross-lagged effect of Y on MB)
Y1 0.172 0.022 7.707 0.000
Y2 ON (autoregressive effects)
Y1 0.466 0.031 15.048 0.000
MA2 ON
MA1l 0.444 0.046 9.604 0.000
MB2 ON
MB1 0.541 0.061 8.879 0.000

All of the coefficients are statistically significant, p < 0.05.

The MODEL INDIRECT commands can be used to explore long run effects. The
commands on Line 34 and 35 yield estimates of the causal coefficient linking a one unit
change in MB at time 1 on Y one year later (Y4). Here is the relevant output:

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Effects from MB1 to Y4

Total 0.189 0.035 5.394 0.000
Total indirect 0.189 0.035 5.394 0.000

Specific indirect 1
Y4
Y3
Y2
MB1 0.051 0.008 6.174 0.000
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Specific indirect 2
Y4
Y3
MB2
MB1 0.059 0.011 5.564 0.000

Specific indirect 3
Y4
MB3
Y2
MB1 0.010 0.003 3.514 0.000

Specific indirect 4
Y4
MB3
MB2
MB1 0.069 0.019 3.693 0.000

The effect of a one unit change in MB at time 1 is estimated to produce a 0.189 +0.070
increase in Y one year later (Y4), which is statistically significant (CR = 5.39, p < 0.05).
The specific indirect causal effects listed beneath this total effect of MB1 on Y4
identify the different mediational chains through which MB at time 1 reaches Y at time 4.
They are MB1—-Y2—Y3—-Y4, MBI-MB2—-Y3—-Y4, MB1->Y2—>MB3—Y4, and
MB1—-MB2—-MB3—Y4. The separate coefficients associated with each of these
mediational chains (0.051 0.059, 0.010, 0.069) sum together to yield the total effect of
0.189. For a more detailed discussion of analyzing long term effects in SEM-based fixed
effects modeling, see Shamsollahi, Zyphur and Ozkok (2022).

Contemporaneous Reciprocal Causality

I can use the above programming strategy to estimate contemporaneous reciprocal causality
in a within person sense again using SEM-based fixed effects analysis. I illustrate the
programming strategy here using a simple example with only two variables, MA and Y,
measured at four time points per Figure 4. It is straight forward to add additional mediators
and covariates. For more details on the approach (but implemented using random intercept
modeling, see Speyer et al, 2025 and Muthén and Asparouhov (2024). The figure omits
disturbance terms to avoid clutter but they are taken into account in the Mplus syntax.

Key to model implementation is the presence of instrumental variables for the
reciprocal causal relationships as discussed in the main text. In this case, the lagged MA
and lagged Y serve as instruments. For a discussion of using lagged variables as instruments,
see Bellemare, Masaki and Pepinsky (2017) and Wang and Bellemare (2020). Their use
requires both the independence and exclusion restriction assumptions hold (see main text).
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FIGURE 4. Model with contemporaneous reciprocal causality

The Mplus syntax with equality constraints appears in Table 5.

Table 5: Mplus Syntax for Contemporaneous Reciprocal Causation

1. TITLE: Fixed effect analysis with contemporaneous reciprocal causes ;
2. DATA: FILE = ferecip.dat;

3. VARIABLE:

4. NAMES ARE Y1 Y2 Y3 Y4 MA1l MA2 MA3 MA4 ;

5. ANALYSIS: ESTIMATOR=MLR;

6. MODEL:

8. !fixed effects factors

9. bly by y2-y4@1 y1 ;

10. bma by ma2-ma4@l mal ;
11. bly with bma ;

12. lautoregressive Effects:
13. y2-y4 PON yl-y3 (a) ;

14. ma2Z2-ma4 PON mal-ma3 (b) ;
15. !reciprocal effects

16. y2-y4 PON maz2-mad (c) ;
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17. ma2-mad4 PON y2-y4 (d) ;

18. !correlation with first time period
19. mal WITH yl;
20. l!error wvariances

21. ma2-mad (e) ;

22. y2-y4 (f) ;

23. MODEL INDIRECT:

24. y2 IND MA2 ;

25. y2 IND MA2 ;

26. OUTPUT: Samp Std¥YX Mod(All 4) Residual Techd ;

Most of the syntax should be self-explanatory given the prior examples in this
document. The model indirect commands estimate the effects of MA—Y and Y—->MA
taking into account the looping effects inherent in contemporaneous reciprocal causality
(see the main text for elaboration).

When I fit the implied model to a simulated set of data, the global model fit indices
were satisfactory. The chi square was 10.80 with df=22, p < 0.98; the RMSEA was <0.001
with a 90% confidence interval of 0.00 to <0.001; the p value for close fit was < 1.00; the
CFI was 1.00 and the standardized RMR was 0.008. For localized fit, there were no
statistically significant differences between the predicted and observed covariances on a
cell-by-cell basis and there were no modification indices above 4.0.

Here are the core relevant path coefficients which I only report for the second time
point because the values were constrained to be equal across time points:

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y2 ON
Y1l 0.344 0.032 10.599 0.000

MA2 ON
MA1 0.436 0.041 10.741 0.000

Y2 ON
MA2 0.301 0.026 11.366 0.000

MA2 ON
Y2 0.296 0.026 11.478 0.000

The first two set of results are the autoregressive coefficients and the second two set of
results are for the reciprocal causal effects. Here are the results that take into account the
looping effects:
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TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

Effects from MA2 to Y2

Total 0.330 0.030 10.991 0.000

Total indirect 0.029 0.004 7.236 0.000
Effects from Y2 to MA2

Total 0.325 0.029 11.113 0.000

Total indirect 0.029 0.004 7.329 0.000

Taking into account the looping effects, for every one unit that MA increases, the mean of
Y is predicted to increase by 0.33 units (95% MOE = +0.06, CR = 10.99, p < 0.05).
Similarly, for every one unit that Y increases, the mean of MA is predicted to increase by
0.32 units (95% MOE =+0.06, CR =11.11, p <0.05).

Latent Variable Models

It is reasonably straightforward to work with multiple indicators in SEM-based fixed effects
models, but there are different ways of doing so. The approaches are discussed in Mulder
Hamaker (2021). One approach defines indicator-specific intercepts that capture stable
differences between persons coupled with occasion-specific factors that capture the within-
person dynamics. The second approach creates a separate latent variable per occasion and
then uses the latent variable as if they were “observed” variables in a single indicator
modeling strategy. Figure 5 presents an example that predicts sleeping problems (S) from
anxiety (A) and vice versa in a cross-lagged panel design.! The variables were measured at
five time points with three indicators for each variable at each time point. The circles for
the error and disturbance variances are omitted to avoid clutter. Of course, one would want
to conduct longitudinal measurement invariance analyses for the respective measurement
loadings to ensure reasonable functional equivalence in them (see the supplemental
document on my website for Chapter 3, point number 6). The turquoise box contains the
between-person factors. Mplus syntax follows directly from the material we have covered,
so I do not present it here.

! This figure was adapted from Mulder and Hamaker (2021) based on Sedig (2020).
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FIGURE 5. SEM model with indicators for latent variables to address measurement error

Sensitivity Tests for Measurement Error Bias

If you lack multiple indicators to adjust for measurement error, you can still perform
sensitivity tests for the effects of measurement error on parameter estimates in your model
by using the strategies discussed in the supplemental document on my website for the
Resources tab of Chapter 3, point 5. Basically, you convert a given single indicator to a
latent variable with a fixed factor loading of 1.0 and a fixed error variance value
corresponding to the amount of unreliability you want to impose on the measure. The
supplemental document for Chapter 3 discusses strategies you can use to choose reliability
levels and illustrates Mplus syntax for implementing the approach.

Consider the program from the main text that applied the Allison et al. (2017) SEM-
based fixed effects approach. I reproduce the Mplus syntax for it in Table 6. In Table 7, |
provide the Mplus syntax that introduces 10% random error into the observed Y at each
time point using the strategy outlined in the supplement. Note Lines 11 to 16 in Table 7
where I translate the observed Y into single indictor latent variables with fixed loadings of
1.0 and non-zero error variances. I then substitute those latent variables for the Y in the
original analysis. To fully understand this syntax, you likely will need to first read the
referenced supplement but after doing so, it should make sense to you.
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Table 6: Original Syntax from Main Numerical Example in Main Text

1. TITLE: Evaluation of mediators on outcome

2. DATA: FILE = FEmainM.dat;

3. VARIABLE:

4. NAMES ARE id za zb cov0 covl cov2 cov3 cov4d maO mal ma2
5. ma3 ma4 mb0 mbl mb2 mb3 mb4 y0 yl y2 y3 y4 treat covmean
6. mamean mbmean ymean ;

7. USEVARIABLES ARE ma0 mal ma2 ma3 mad4 mb0 mbl mb2 mb3 mbi4
8. cov0 covl cov2 cov3 covd y0 yl y2 y3 vy4 ;

9. ANALYSIS: ESTIMATOR=MLR ;

10. MODEL:

11. alpha BY y0@1 y1@1 y2@1 y3@l y4@l; !'define latent time-invariant wvars
12. y0 ON maO mb0O cov0 (pl p2 bl) ; !regress tO y onto t0 preds

13. yl1 ON mal mbl covl (pl p2 bl) ; !regress tl y onto tl preds

14. y2 ON ma2 mb2 cov2 (pl p2 bl) ; !regress t2 y onto t2 preds

15. y3 ON ma3 mb3 cov3 (pl p2 bl) ; !regress t3 y onto t3 preds

16. vy4 ON mad4 mb4 covd (pl p2 bl) ; !regress t4 y onto t4 preds

17. y0 yl y2 y3 y4 (evar); !estimate disturbance variances

18. alpha WITH maO-ma4 mbO-mb4 covO-cov4 ; !correlate latent var with all Xs
19. OUTPUT: Samp Std¥X Mod(All 4) Residual Tech4 ;

Table 7: Original Syntax from Main Numerical Example in Main Text

1. TITLE: Evaluation of mediators on outcome

2. DATA: FILE = FEmainM.dat;

3. VARIABLE:

4. NAMES ARE id za zb cov0 covl cov2 cov3 cov4 maO mal ma2

5. ma3 mad4 mb0 mbl mb2 mb3 mb4 y0 yl y2 y3 y4 treat covmean

6. mamean mbmean ymean ;

7. USEVARIABLES ARE ma0 mal ma2 ma3 mad4 mb0 mbl mb2 mb3 mb4

8. cov0 covl cov2 cov3 covd y0 yl y2 y3 y4 ;

9. ANALYSIS: ESTIMATOR=MLR ;

10. MODEL:

11. !translate observed y to latent y with .9 reliability

12. 1y0 BY y0@1.0 ; y0@.114 ;

13. 1yl BY y1l@1.0 ; y1l@.200 ;

14. ly2 BY y2@1.0 ; y2@.207 ;

15. ly3 BY y3@1.0 ; y3@.132 ;

lo6. ly4 BY y4Q@1.0 ; y4Q@0.125 ;

17. alpha BY 1y0@1 1lyl@1 1y2@1 1y3@1 1y4Q@1l; !define latent fixed factors
18. 1y0 ON ma0 mb0 cov0 (pl p2 bl) ;

19. lyl ON mal mbl covl (pl p2 bl) ;

20. ly2 ON ma2 mb2 cov2 (pl p2 bl) ;

21. 1ly3 ON ma3 mb3 cov3 (pl p2 bl) ;

22. ly4 ON ma4 mb4 cov4d (pl p2 bl) ;

23. 1y0 1yl 1y2 1y3 1ly4 (evar) ; !estimate ly disturbance variances
24. alpha WITH maO-ma4 mbO-mb4 covO-cov4 ; !correlate latent var with all Xs

25. OUTPUT: Samp Std¥YX Mod(All 4) Residual Tech4 ;
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The global fit of the model for Table 7 still yielded satisfactory fit. Here is the
coefficient output for the first time point in the original model followed by the
corresponding output for the model with measurement error (keep in mind that these results
are identical at all time points because of the equality constraints):

MODEL RESULTS

Two-Tailed

Estimate S.E. Est./S.E. P-Value

YO0 ON
MAQ 0.495 0.010 50.114 0.000
MBO 0.492 0.010 49.778 0.000
Ccovo 0.218 0.011 19.687 0.000

and for the second model:

Two-Tailed

Estimate S.E. Est./S.E. P-Value

LYO ON
MAO 0.495 0.010 49.847 0.000
MBO 0.492 0.010 49.636 0.000
Covo 0.219 0.011 19.636 0.000

Note that the measurement error had little effect on the core model estimates.

Additional Applications

SEM-based fixed effects analysis can be easily pursued in conjunction with commonly used
SEM analytics such as the analysis of clustered data, multiple group analyses, and
bootstrapping to name a few. I illustrate such applications in future chapters of my book.
Another advantage of using SEM to conduct fixed effects analysis for panel data is that it
can address missing data using state of the art full information maximum likelihood, which
is the default in Mplus. This is especially important for longitudinal modeling where
missing data are common.

A Note on Random Effects Analyses

In the main text, I stated that the SEM-based fixed effects model assumes the within-person
coefficients do not vary across individuals, i.e., that the reported coefficient for a time-
varying predictor is the same for everyone. You can evaluate the reasonableness of this
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assumption using the program on my website called GLM panel regression. In this program,
you request a between-within model and follow the instructions to specify, say, from the
RET example in the main text that you want the predictor MA coefficients to be allowed to
vary across individuals (or what is often said “to allow for a random slope or random
coefficient”). Here are the results I obtained:

WITHIN EFFECTS:

Est S.E t val d.f o)
ma 0.499 0.009 53.235 3979.870 0.000
mb 0.496 0.009 52.504 3997.028 0.000
cov 0.218 0.011 20.518 3997.018 0.000

Group Parameter Std. Dev
id (Intercept) 0.2981
id ma 0.004372

Residual 0.685

The reported within-person coefficient for MA is 0.499, which actually is the mean of
the within person coefficients that were allowed to vary across individuals. In the table
labeled rRaNDOM EFFECTS, the standard deviation across individuals of the within-person
coefficients is reported and it is 0.004372. This value is extremely small and suggests that
treating the within-person coefficients for MA as the same for everyone is not unreasonable.

Because the panelr program that underlies the R program on my website uses a
different algorithm than Allison et al. (2017) to calculate the within-person coefficients with
no random slopes, it usually is helpful to examine the results for such a model for
comparative purposes. Here is what I found:

Est S.E t val d.f o)
(Intercept) 0.454 0.023 19.352 999.000 0.000
ma 0.499 0.009 53.238 3997.000 0.000
mb 0.496 0.009 52.501 3997.000 0.000
cov 0.218 0.011 20.523 3997.000 0.000

The two sets of results are quite close which further reinforces my conclusion.
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