
 
 

 

 
 

Robust Hierarchical Regression for Calculating Unique Explained 
Variance with Single and Multiple Indicator Variables 

 

This document describes methods for executing hierarchical regression in Mplus to 
calculate incremental explained variance. The approach allows you to use an Mplus robust 
estimator and to adjust for measurement error. I also describe how to use robust MM 
regression in limited information structural equation modeling (LISEM) to obtain outlier-
resistant estimates of incremental explained variance. I assume you are familiar with Mplus 
programming.  

HIERACHICAL REGRESSION IN SEM  

To perform hierarchical regression in Mplus, one must use what are known as phantom 
variables. Phantom variables or phantom factors are latent variables that are included in 
a model for their mathematical convenience rather than for their substantive meaning. They 
may have indicators or causes, but the indicators and causes are matters of convenience. 
They usually do not affect model fit, and they are applied purely for mathematical reasons. 
In older iterations of SEM, phantom variables often were needed to incorporate non-linear 
constraints within models, but this has become less necessary given programing advances.  
 A common use of hierarchical regression is to provide perspectives on unique 
explained variance though the analysis of incremental explained variance when a predictor 
is added to an equation that already includes a set of predictors. There are different ways 
one can implement hierarchical regression and semi-part correlation estimation in SEM. I 
describe a method by de Jong (1999), which uses phantom factors. For descriptions of the 
logic of using phantom factors for hierarchical analysis, see de Jong (1999). de Jong’s 
strategy is tied to Cholesky decompositions of the covariance matrix of variables, the 
underlying mathematics of which are complex. My focus here is on articulating basic 
programming strategy rather than explicating the statistical logic of it. I assume you are 
familiar with the basics of traditional hierarchical regression and semi-partial correlations. 
 The advantage of using SEM/Mplus to perform hierarchical regression or to estimate 
semi-partial correlations relative to more traditional regression is that one can use modern 
methods for taking into account missing data, such as full information maximum likelihood 
(FIML). One also can use robust estimation to protect against forms of non-normality and 
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variance heterogeneity. SEM also can be used to provide perspectives on the biasing effects 
of measurement error in ways not possible with traditional methods.      
      In hierarchical regression, one enters variables into the prediction equation in steps. To 
estimate the unique explained variance of a variable relative to all other predictors in the 
equation, one enters that variable last in the sequence and documents the increase in the 
squared multiple correlation that occurs by adding it. To implement hierarchical regression 
in SEM, I need to define k phantom variables for the k predictors. Ultimately, I will need to 
conduct k computer runs, one for each predictor whose semi-part correlation I want to 
isolate. Each phantom factor, which I adopt the general practice of labeling with an F 
followed by the step number it yields information about, is defined in a way that maps onto 
a sequential step in the hierarchical analysis.    
 I will use an example where I focus on three types of social support as predictors of 
parenting satisfaction. One type of support is emotional support, a second is emotional 
support, and a third is tangible support. I refer to the measures of these constructs as emot, 
info, and tang and for the outcome, satis. There are three phantom factors in the current 
example because I have three predictors, emotional support, informational support, and 
tangible support. To illustrate the logic, I decide to enter emot at the first step, info at the 
second step, and tang at the final step. The key is not so much the order of entry of the first 
two variables but rather the entry of tang lastly. The last entered variable is the one I target 
for purposes of calculating its unique explained variance over and above the other 
predictors.  The phantom factors are F1, F2 and F3, representing steps 1, 2 and 3 in the 
hierarchical analysis.  
 I need to create a “measurement model” for each phantom factor. I will define the 
observed “indicators” for the phantom factors as follows: 
 
The latent factor F1 influences the indicators emot, info, tang 
The latent factor F2 influences the indicators info, tang 
The latent factor F3 influences the indicator tang 
 
F1 ultimately will provide information about step 1 in the hierarchical sequence and has as 
indicators all predictor variables in the equation, ordered by the step in which they will be 
entered into the equation, in this case emot, info, and tang. F2 provides information about 
step 2 in the hierarchical sequence and is assumed to influence the last k-1 
predictors/indicators listed in F1, in this case info and tang;  F3 provides information about 
step 3 and is assumed to influence the last k-2 predictors/indicators listed for F1, in this case 
tang. Thus, all predictors are listed for F1 and then you drop a predictor at each subsequent 
step until you are left with the variable that you want to calculate the squared semi-part 
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correlation (unique explained variance) for.  If there was a fourth predictor, F1 would 
influence all 4 predictors/indicators, F2 would influence all predictors/indicators except the 
first one listed in F1, F3 would influence all the predictors/indicators except the first two 
listed in F1, and F4 would influence all the predictors/indicators except the first 3.  
 Figure 1 presents the model I will be working with. The correlations between the 
factors are fixed to 0 and the variance of each factor is fixed to be 1.0. The error variances 
of the observed “indicators” (i.e., emot, info, tang) are fixed to zero, but not for satis, 
because it is the outcome variable. The factor means are fixed at 0 and the measurement 
intercepts are estimated but are not of substantive interest. All of these mathematical 
manipulations make the phantom variables behave in the desired way (see deJong, 1999, 
for elaboration).  
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FIGURE 1. Logic model for income intervention 

 The parameters of interest are the standardized coefficients from the regression of 
satis on F1, F2 and F3.  Here are the relevant standardized coefficients from Mplus output: 
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STANDARDIZED MODEL RESULTS 
 
STDYX Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E. Est./S.E.   P-Value 
 
 SATIS1   ON 
    F1                 0.371      0.029     12.645      0.000 
    F2                 0.184      0.032      5.706      0.000 
    F3                 0.274      0.030      9.144      0.000 

 
Recall the a priori order of entry I specified was emot at step 1, then info at step2, then 
tang at step 3. The standardized coefficient for F1 (under the column called Estimate) is 
the zero-order correlation for emot and satis, which is 0.371 because emot is entered at 
the first step. The column labeled S.E. is the estimated standard error for the coefficient 
and the column labeled Est./S.E. is analogous to a z test for statistical significance, i.e., 
it is the critical ratio. The column labeled Two-Tailed P-Value is the p value associated 
with the critical ratio. In this case, the coefficient is statistically significant.   
 The coefficient for F2 is the semi-part correlation for the variable added at step 2 
(info) partialling out all the predictors at the prior steps (emot). It tests if adding info to 
the equation at step 2 (where emot was entered at the prior step) results in statistically 
significant explained incremental variance. It does so in this case because the critical ratio 
for the test of the semi-partial correlation is 5.706, p < 0.05. The coefficient for F3 is the 
semi-part correlation for the variable added at step 3 (tang) partialling out all the predictors 
at the prior steps (emot, info). The test for this incremental explained variance also is 
statistically significant (critical ratio = 9.14, p < 0.05). If I square each of the semi-part 
correlations in the Estimate column, they reflect the proportions of incremental explained 
variance at each step. The proportion of unique explained variance for tang is the semi-
part correlation squared, which is (0.27)(0.27) = 0.07. I can repeat the analyses but moving 
emot or info to the last position to isolate the semi-part correlation for them. The R square 
when all predictors are included in the equation is  0.246. 
 It is straightforward to extend the approach to cases where the predictors represent 
latent variables with multiple indicators; one simply constructs the phantom variables as 
underlying the latent predictors rather than the observed predictors. One also can adjust for 
measurement error for single indicator models using the strategy discussed in the document 
on the resources tab of my webpage for Chapter 3 on addressing measurement error for 
single indicator SEM models. The robust estimation strategies in Mplus (e.g., MLR) are not 
outlier-resistant. To deal with this, one can either use MM regression in a LISEM context 
as discussed below or one can identify outliers using the robust outlier analysis program on 
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my website and then test for the robustness of results of the above analysis with and without 
those outliers in the analysis.  

OUTLIER-RESISTANT MM REGRESSION AND UNIQUE EXPLAINED 
VARIANCE  

Another option to deal with non-normality, variance heterogeneity, outliers and leverages 
is to use the MM regression program on my website. The program yields an analog robust 
R squared. You conduct the regression analysis first using the prediction equation without 
the target predictor and then again adding the target predictor to the equation. The difference 
between the two squared Rs will index the incremental explained variance of the target 
predictor. You will not obtain a significance test for the additional explained variance but 
you can set an a priori value as a cutoff for meaningfulness, such as an incremental squared 
R that corresponds to Cohen's medium effect size, which would be a squared R increment 
of about 0.05 or 0.06 or whatever seems substantively appropriate.  
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