

Calculation of Blocked Squared R

In this document, I show you how to calculate Hayduk's (2006) blocked R squared for models with reciprocal causation and correlated errors. I use the results from the numerical example in Figure 16.1 from the main text of Chapter 16 to do so. I focus first on calculating the blocked squared R for the mediator M, then I turn to Y.

There are three computational steps. First, from the Mplus output in the primary analysis, I make note of the variance of the endogenous variable that I want to compute the blocked error squared R for. I locate the predicted variance in the section called TECHNICAL 4 OUTPUT in the subsection ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES. The variance is in the diagonal element of the covariance matrix for the variable M and it equals 0.995.

Step 2 involves first noting the values of all the unstandardized parameter estimates for the path coefficients and the exogenous correlations in the MODEL RESULTS section, ignoring the means and intercepts. I reproduce them here:

MODEL RESULTS

		Two-Tailed			
		Estimate	S.E.	Est./S.E.	P-Value
LZ	BY				
Z2		1.000	0.000	999.000	999.000
Z3		1.034	0.052	19.944	0.000
LY	BY				
Y1		1.000	0.000	999.000	999.000
Y2		0.860	0.068	12.689	0.000
LY	ON				
LZ		0.682	0.071	9.556	0.000
M		0.419	0.105	3.992	0.000
T		0.052	0.096	0.539	0.590
M	ON				
LY		0.289	0.085	3.415	0.001
Z1		0.393	0.071	5.526	0.000
T		0.042	0.118	0.357	0.721

LZ	WITH			
Z1		0.336	0.062	5.422
T		0.020	0.034	0.591
M	WITH			
LY		-0.301	0.093	-3.244
Z1	WITH			
T		0.041	0.035	1.175
Variances				
Z1		0.995	0.085	11.661
T		0.250	0.001	353.482
LZ		0.829	0.104	7.959
Residual Variances				
Z2		0.166	0.035	4.706
Z3		0.110	0.030	3.696
M		0.675	0.071	9.519
Y1		0.121	0.039	3.108
Y2		0.348	0.043	8.072
LY		0.317	0.078	4.035

I then re-run the model but rather than estimate the above parameters, I fix them at the above values listed under Estimate, with one exception; I set the disturbance variance for the target variable, M, to 0 as well as its covariance with the disturbance term for LY to zero, thereby negating the confound it carries to bias the estimate of the squared R. In short, I block the error. Table 1 presents the Mplus syntax I use:

Table 1 Intermediate Step to Calculated the Blocked R Squared

```

1.  TITLE: Intermediate step
2.  DATA: FILE IS recipmainM.txt ;
3.  VARIABLE:
4.    NAMES ARE id z2 z3 m y1 y2 z1 t ;
5.    USEVARIABLES ARE z2 z3 m y1 y2 z1 t ;
6.  ANALYSIS: ESTIMATOR = MLR;
7.  MODEL:
8.    Lz@0.829 ;
9.    Lz BY z2@1.0 z3@1.034 ;
10.   Ly BY y1@1.0 y2@.860 ;
11.   y1@.121 ; y2@.348 ; z2@.166 ; z3@.110 ;
12.   m ON z1@.393 Ly@.289 t@.042 ;
13.   Ly on m@.419 Lz@.682 t@.052 ;
14.   !Ly@.317 ; m@.675 ; !reminder of original disturbance variance
15.   Ly@.317 ; m@0 ;      !set M disturbance variance to 0
16.   Lz WITH z1@.336 ;
17.   LZ WITH t@.020 ;

```

```
18.  z1 with t@.041 ;
19.  m WITH Ly@0 ;           !set correlation between disturbances to zero
OUTPUT: TECH4 ;
```

I look in the in the section called TECHNICAL 4 OUTPUT in the subsection ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES for the variance in the diagonal element of the covariance matrix for the variable M and it equals 0.345. I divide this value by the variance of M from the original analysis and obtain $0.345/0.995 = 0.347$. This is the value of the blocked R square (the original R square was 0.321). I then apply analogous steps to Ly instead of M and I find the blocked R square was 0.905 (the original R square was 0.638). One minus these values are the estimated proportions of unexplained variance in the respective endogenous variables.